Homework 0

1 Define on the circle $x^{2}+y^{2}=R^{2}$ the following four local coordinates:
a) angle coordinate which is not define at the point $(R, 0)$
b) angle coordinate which is not define at the point $(-R, 0)$
c) stereographic coordinate with respect to North pole
d) stereographic coordinate with respect to South pole

Find transition functions between these coordinates
2 Define on the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ the following local coordinates:
a) spherical coordinates,
b) stereographic coordinates with respect to North pole
c) stereographic coordinates with respect to South pole

Find transition functions between these coordinates
3 Consider 2-dimensional manifold, the domain $D=\mathbf{E}^{2} \backslash \mathbf{0}$ in \mathbf{E}^{2} (plane without a point). Let (x, y) be standard Cartesian coordinates in this domain. Consider new local coordinates (u, v) such that

$$
\begin{equation*}
u=\frac{x}{x^{2}+y^{2}}, \quad v=\frac{y}{x^{2}+y^{2}}, \quad(x \neq 0, y \neq 0) \quad \text { (inversion) } . \tag{1}
\end{equation*}
$$

Calculate Jacobian matrix of changing of local coordinates, and its determinant.
Write down inverse transition functions $x=x(u, v), y=y(u, v)$ from coordinates (u, v) to coordinates (x, y).
\dagger Answer questions above using holomorphic and antiholomorphic functions
4 Consider 3-dimensional manifold, the domain $D=\mathbf{E}^{3} \backslash \mathbf{0}$ in \mathbf{E}^{3} (space without a point). Let (x, y, z) be standard Cartesian coordinates in this domain. Consider new local coordinates (u, v, w) such that
$u=\frac{x}{x^{2}+y^{2}+z^{2}}, v=\frac{y}{x^{2}+y^{2}+z^{2}}, w=\frac{z}{x^{2}+y^{2}+z^{2}}, \quad(x \neq 0, y \neq 0, z \neq 0) \quad$ (inversion). Write down inverse transition functions from coordinates (u, v, w) to coordinates (x, y, z).

Calculate Jacobian matrix of changing of local coordinates, and its determinant.
Hint: May be it is easier to calculate the determinant performing calculations in general case when dimension n is an arbitrary number

5 Consider the following tensor fields given in local coordinates x^{i} by equations

$$
\mathbf{A}=x^{i} \frac{\partial}{\partial x^{i}}, \quad G=g_{i k}(x) d x^{i} \otimes d x^{k}, \quad Q=F^{i k}(x) \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{k}} .
$$

Express these tensor fields in new local coordinates $y^{i}=2 x^{i}$.
6 Consider in manifold $\mathbf{E}^{2} \backslash \mathbf{0}$ (see Exercise 3, above) vector field $\mathbf{K}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$ and differential 1-form $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$.

Express these objects in inversed local coordinates (u, v) (see equation (1)).

