## Homework 1

1 Let $G=\left\|g_{i k}(x)\right\|$ be Riemannian metric on $n$-dimensional Riemannian manifold $M$ in local coordinates $\left(x^{i}\right)(i=1,2, \ldots, n)$.
a) Show that

$$
g_{11}(x)>0, g_{22}(x)>0, \ldots, g_{n n}(x)>0 .
$$

b) show that condition of non-degeneracy for a symmetric matrix $G=\left\|g_{i k}\right\|\left(\operatorname{det} g_{i k} \neq 0\right)$ follows from the condition that this matrix is positive-definite.

2 Let $(u, v)$ be local coordinates on 2-dimensional Riemannian manifold $M$. Let Riemannian metric be given in these local coordinates by the matrix

$$
G=\left\|g_{i k}\right\|=\left(\begin{array}{ll}
A(u, v) & B(u, v) \\
C(u, v) & D(u, v)
\end{array}\right)
$$

where $A(u, v), B(u, v), C(u, v), D(u, v)$ are smooth functions. Show that the following conditions are fulfilled:
a) $B(u, v)=C(u, v)$,
b) $A(u, v) D(u, v)-B(u, v) C(u, v)=A(u, v) D(u, v)-B^{2}(u, v) \neq 0$,
c) $A(u, v)>0$,
d) $A(u, v) D(u, v)-B(u, v) C(u, v)=A(u, v) D(u, v)-B^{2}(u, v)>0$.
e) ${ }^{\dagger}$ Show that conditions a), c) and d) are necessary and sufficient conditions for matrix $\left\|g_{i k}\right\|$ to define locally a Riemannian metric.

3 Consider 2-dimensional Euclidean plane with standard Euclidean metric

$$
G=d x^{2}+d y^{2} .
$$

a) How this metric will transform under arbitrary affine coordinates transformation

$$
\left\{\begin{array}{l}
x=a x^{\prime}+b y^{\prime}+e  \tag{1}\\
y=c x^{\prime}+\delta y^{\prime}+f
\end{array}, \quad(a, b, c, \delta, e, f \in \mathbf{R}) .\right.
$$

b) Find an affine transformation such that metric has the same appearance in new and old coordinates: $G=d x^{2}+d y^{2}=\left(d x^{\prime}\right)^{2}+\left(d y^{\prime}\right)^{2}$.
c) How this metric will transform under coordinates transformation

$$
x=\frac{u}{u^{2}+v^{2}}, \quad y=\frac{v}{u^{2}+v^{2}}, \quad(u, v \neq 0) .
$$

d) ${ }^{\dagger}$ Let $x=x(u, v)$, and $y=y(u, v)$ be an arbitrary coordinate transformation such that the metric has the same appearance in new and old coordinates:

$$
G=d x^{2}+d y^{2}=d u^{2}+d v^{2} .
$$

How does this coordinate transformation look?
4 Consider domain in two-dimensional Riemannian manifold with Riemannian metric $G=d u^{2}+2 b d u d v+d v^{2}$ in local coordinates $u, v$, where $b$ is a constant.

Show that $b^{2}<1$
5 Riemannian metric $G$ of 3-dmensional manifold $M^{3}$ in local coordinates $u, v, w$ in a vicinity of a point $\mathbf{p}$ is given by equation

$$
G=d u^{2}+u^{2} d v^{2}+d w^{2}, \quad(u \neq 0) .
$$

Show that the metric $G$ in the vicinity of the point $\mathbf{p}$ is Euclidean, i.e. there exist coordinates $u^{\prime}, v^{\prime} . w^{\prime}$ such that

$$
G=\left(d u^{\prime}\right)^{2}+\left(d v^{\prime}\right)^{2}+\left(d w^{\prime}\right)^{2}
$$

