Homework 5

- 1 Calculate the Christoffel symbols of the canonical flat connection in ${\bf E}^3$ in
- a) cylindrical coordinates $(x = r \cos \varphi, y = r \sin \varphi, z = h)$,
- b) spherical coordinates.

(For the case b) try to make calculations at least for components $\Gamma^r_{rr}, \Gamma^r_{r\theta}, \Gamma^r_{r\varphi}, \Gamma^r_{\theta\theta}, \dots, \Gamma^r_{\varphi\varphi}$

2 Let ∇ be an affine connection on a 2-dimensional manifold M such that in local coordinates (u,v) it is given that $\Gamma^u_{uv}=v, \, \Gamma^v_{uv}=0.$

Calculate the vector field $\nabla_{\frac{\partial}{\partial v}} \left(u \frac{\partial}{\partial v} \right)$.

3 Let ∇ be an affine connection on the 2-dimensional manifold M such that in local coordinates (u, v)

$$\nabla_{\frac{\partial}{\partial u}} \left(u \frac{\partial}{\partial v} \right) = (1 + u^2) \frac{\partial}{\partial v} + u \frac{\partial}{\partial u} \,.$$

Calculate the Christoffel symbols Γ^u_{uv} and Γ^v_{uv} of this connection.

4 a) Consider a connection such that its Christoffel symbols are symmetric in a given coordinate system: $\Gamma^i_{km} = \Gamma^i_{mk}$.

Show that they are symmetric in an arbitrary coordinate system.

b)*) Show that the Christoffel symbols of connection ∇ are symmetric (in any coordinate system) if and only if

$$\nabla_{\mathbf{X}}\mathbf{Y} - \nabla_{\mathbf{Y}}\mathbf{X} - [\mathbf{X}, \mathbf{Y}] = 0,$$

for arbitrary vector fields X, Y.

c)* Consider for an arbitrary connection the following operation on the vector fields:

$$S(\mathbf{X}, \mathbf{Y}) = \nabla_{\mathbf{X}} \mathbf{Y} - \nabla_{\mathbf{Y}} \mathbf{X} - [\mathbf{X}, \mathbf{Y}]$$

and find its properties.

Exercises 4b) and 4c) are for students who know commutator of vector fields

- **5** Let ∇_1, ∇_2 be two different connections. Let $^{(1)}\Gamma^i_{km}$ and $^{(2)}\Gamma^i_{km}$ be the Christoffel symbols of connections ∇_1 and ∇_2 respectively.
- a) Find the transformation law for the object : $T_{km}^i = {}^{(1)}\Gamma_{km}^i {}^{(2)}\Gamma_{km}^i$ under a change of coordinates. Show that it is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ tensor.
 - b)*? Consider an operation $\nabla_1 \nabla_2$ on vector fields and find its properties.
 - **6** * a) Consider $t_m = \Gamma_{im}^i$. Show that the transformation law for t_m is

$$t_{m'} = \frac{\partial x^m}{\partial x^{m'}} t_m + \frac{\partial^2 x^r}{\partial x^{m'} \partial x^{k'}} \frac{\partial x^{k'}}{\partial x^r}.$$

1

b) † Show that this law can be written as

$$t_{m'} = \frac{\partial x^m}{\partial x^{m'}} t_m + \frac{\partial}{\partial x^{m'}} \left(\log \det \left(\frac{\partial x}{\partial x'} \right) \right).$$

The exercise 7 is for the week 8

7 Consider the surface M in the Euclidean space \mathbf{E}^n . Calculate the induced connection in the following cases

- a) $M = S^1 \text{ in } \mathbf{E}^2$,
- b) M— parabola $y = x^2$ in \mathbf{E}^2 ,
- c) cylinder in \mathbf{E}^3 .
- d) cone in \mathbf{E}^3 .
- e) sphere in \mathbf{E}^3 .
- f) saddle z = xy in \mathbf{E}^3