Homework 6

1. Calculate Levi-Civita connection of the metric $G=a(u, v) d u^{2}+b(u, v) d v^{2}$
a) in the case if functions $a(u, v), b(u, v)$ are constants.
b) in the case if u, v are conformal coordinates
c) in the general case

2 Calculate Levi-Civita connection of the Riemannian metric $G=e^{-x^{2}-y^{2}}\left(d x^{2}+d y^{2}\right)$ at the point $x=y=0$.
3. Calculate Levi-Civita connection of Euclidean plane in polar coordinates

4 Calculate Levi-Civita connection of the Riemannian metric induced on cylinder $x^{2}+y^{2}=a^{2}$ in coordinates h, φ :

$$
\mathbf{r}(h, \varphi):\left\{\begin{array}{l}
x=a \cos \varphi \\
y=a \sin \varphi \\
z=h
\end{array} .\right.
$$

5. Calculate Levi-Civita connection of the Riemannian metric induced on the cone $x^{2}+y^{2}-k^{2} z^{2}=0$ in coordinates h, φ

$$
\mathbf{r}(h, \varphi):\left\{\begin{array}{l}
x=k h \cos \varphi \\
y=k h \sin \varphi . \\
z=h
\end{array} .\right.
$$

Do there exist coordinates on the cone such that Christoffel symbols of Levi-Civita connection of induced metric vanish in these coordinates?
6. Calculate Levi-Civita connection of the metric $G=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)$ on the sphere.

7 Let \mathbf{E}^{2} be the Euclidean plane with the standard Euclidean metric $G_{\text {Eucl. }}=d x^{2}+d y^{2}$.
You know that for the Levi-Civita connection of this metric the Christoffel symbols vanish in the Cartesian coordinates x, y. (Why?)

Let ∇ be a symmetric connection on the Euclidean plane \mathbf{E}^{2} such that its Christoffel symbols satisfy the condition $\Gamma_{x y}^{y}=\Gamma_{y x}^{y} \neq 0$.

Show that for vector fields $\mathbf{A}=\partial_{x}$ and $\mathbf{B}=\partial_{y}, \partial_{\mathbf{A}}\langle\mathbf{B}, \mathbf{B}\rangle \neq 2\left\langle\nabla_{\mathbf{A}} \mathbf{B}, \mathbf{B}\right\rangle$, i.e. the connection ∇ does not preserve the Euclidean scalar product \langle,$\rangle .$

Here is described the quickest way to calculate Levi-Civita connection
$8 \dagger$ Consider the Lagrangian of a free particle $L=\frac{1}{2} g_{i k} \dot{x}^{i} \dot{x}^{k}$ for Riemannian manifold with a metric $G=g_{i k} d x^{i} d x^{k}$. Write down the Euler-Lagrange equations of motion for this Lagrangian and compare them with differential equations for geodesics on this Riemannian manifold. In fact show that

$$
\begin{equation*}
\underbrace{\frac{\partial L}{\partial x^{i}}=\frac{d}{d t} \frac{\partial L}{\partial \dot{x}^{i}}}_{\text {Euler-Lagrange equations }} \Leftrightarrow \underbrace{\frac{d^{2} x^{i}}{d t^{2}}+\Gamma_{k m}^{i} \dot{x}^{k} \dot{x}^{m}=0}_{\text {Equations for geodesics }} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{k m}^{i}=\frac{1}{2} g^{i j}\left(\frac{\partial g_{j k}}{\partial x^{m}}+\frac{\partial g_{j m}}{\partial x^{k}}-\frac{\partial g_{k m}}{\partial x^{j}}\right) . \tag{2}
\end{equation*}
$$

Write down the Lagrangian of a free particle $L=\frac{1}{2} g_{i k} \dot{x}^{i} \dot{x}^{k}$ and using the EulerLagrange equations for this Lagrangian calculate the Christoffel symbols (the Christoffel symbols of the Levi-Civita connection) for
a) Euclidean plane in polar coordinates
b) for the sphere of radius R
c) for the Lobachevsky plane

Compare with the results that you obtained using another methods.

