Homework 5. Solutions

1 Calculate the Christoffel symbols of the canonical flat connection in \mathbf{E}^{3} in
a) cylindrical coordinates ($x=r \cos \varphi, y=r \sin \varphi, z=h$),
b) spherical coordinates.
(For the case of sphere try to make calculations at least for components $\Gamma_{r r}^{r}, \Gamma_{r \theta}^{r}, \Gamma_{r \varphi}^{r}, \Gamma_{\theta \theta}^{r}, \ldots, \Gamma_{\varphi \varphi}^{r}$)
In cylindrical coordinates (r, φ, h) we have

$$
\left\{\begin{array} { l }
{ x = r \operatorname { c o s } \varphi } \\
{ y = r \operatorname { s i n } \varphi } \\
{ z = h }
\end{array} \quad \text { and } \left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\varphi=\arctan \frac{y}{x} \\
h=z
\end{array}\right.\right.
$$

We know that in Cartesian coordinates all Christoffel symbols vanish. Hence in cylindrical coordinates (see in detail lecture notes):

$$
\begin{gathered}
\Gamma_{r r}^{r}=\frac{\partial^{2} x}{\partial^{2} r} \frac{\partial r}{\partial x}+\frac{\partial^{2} y}{\partial^{2} r} \frac{\partial r}{\partial y}+\frac{\partial^{2} z}{\partial^{2} r} \frac{\partial r}{\partial z}=0 \\
\Gamma_{r \varphi}^{r}=\Gamma_{\varphi r}^{r}=\frac{\partial^{2} x}{\partial r \partial \varphi} \frac{\partial r}{\partial x}+\frac{\partial^{2} y}{\partial r \partial \varphi} \frac{\partial r}{\partial y}+\frac{\partial^{2} z}{\partial r \partial \varphi} \frac{\partial r}{\partial z}=-\sin \varphi \cos \varphi+\sin \varphi \cos \varphi=0 . \\
\Gamma_{\varphi \varphi}^{r}=\frac{\partial^{2} x}{\partial^{2} \varphi} \frac{\partial r}{\partial x}+\frac{\partial^{2} y}{\partial^{2} \varphi} \frac{\partial r}{\partial y}+\frac{\partial^{2} z}{\partial^{2} \varphi} \frac{\partial r}{\partial z}=-x \frac{x}{r}-y \frac{y}{r}=-r . \\
\Gamma_{r r}^{\varphi}=\frac{\partial^{2} x}{\partial^{2} r} \frac{\partial \varphi}{\partial x}+\frac{\partial^{2} y}{\partial^{2} r} \frac{\partial \varphi}{\partial y}+\frac{\partial^{2} z}{\partial^{2} r} \frac{\partial \varphi}{\partial z}=0 . \\
\Gamma_{\varphi r}^{\varphi}=\Gamma_{r \varphi}^{\varphi}=\frac{\partial^{2} x}{\partial r \partial \varphi} \frac{\partial \varphi}{\partial x}+\frac{\partial^{2} y}{\partial r \partial \varphi} \frac{\partial \varphi}{\partial y}+\frac{\partial^{2} z}{\partial r \partial \varphi} \frac{\partial \varphi}{\partial z}=-\sin \varphi \frac{-y}{r^{2}}+\cos \varphi \frac{x}{r^{2}}=\frac{1}{r} \\
\Gamma_{\varphi \varphi}^{\varphi}=\frac{\partial^{2} x}{\partial^{2} \varphi} \frac{\partial \varphi}{\partial x}+\frac{\partial^{2} y}{\partial^{2} \varphi} \frac{\partial \varphi}{\partial y}+\frac{\partial^{2} z}{\partial^{2} \varphi} \frac{\partial \varphi}{\partial z}=-x \frac{-x}{r^{2}}-y \frac{y}{r^{2}}=0 .
\end{gathered}
$$

All symbols $\Gamma_{\cdot h}, \Gamma_{h}$. vanish

$$
\Gamma_{r h}^{r}=\Gamma_{h r}^{r}=\Gamma_{h h}^{r}=\Gamma_{\varphi h}^{r}=\Gamma_{h \varphi}^{r}=\Gamma_{h r}^{\varphi}=\operatorname{dot} s=00
$$

since $\frac{\partial^{2} x}{\partial h \partial \ldots}=\frac{\partial^{2} y}{\partial h \partial \ldots}=\frac{\partial^{2} z}{\partial h \partial \ldots}=0$
For all symbols $\Gamma_{. .}^{h} \Gamma_{. .}^{h}=\frac{\partial^{2} z}{\partial \cdot \partial .}$ since $\frac{\partial h}{\partial x}=\frac{\partial h}{\partial y}=0$ and $\frac{\partial h}{\partial y}=1$. On the other hand all $\frac{\partial^{2} z}{\partial \cdot \partial \cdot}$ vanish. Hence all symbols $\Gamma_{\text {.. }}^{h}$ vanish.
b) spherical coordinates

$$
\left\{\begin{array} { l }
{ x = r \operatorname { s i n } \operatorname { c o s } \varphi } \\
{ y = r \operatorname { s i n } \operatorname { s i n } \varphi } \\
{ z = r \operatorname { c o s } \theta }
\end{array} \quad \left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\arccos \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
\varphi=\arctan \frac{y}{x}
\end{array}\right.\right.
$$

Perform now brute force calculations only for some components *
$\Gamma_{r r}^{r}=0$ since $\frac{\partial^{2} x^{i}}{\partial^{2} r}=0$.

$$
\Gamma_{r \theta}^{r}=\Gamma_{\theta r}^{r}=\frac{\partial^{2} x}{\partial r \partial \theta} \frac{\partial r}{\partial x}+\frac{\partial^{2} y}{\partial r \partial \theta} \frac{\partial r}{\partial y}+\frac{\partial^{2} z}{\partial r \partial \theta} \frac{\partial r}{\partial z}=\cos \theta \cos \varphi \frac{x}{r}+\cos \theta \sin \varphi \frac{y}{r}-\sin \theta \frac{z}{r}=0
$$

[^0]\[

$$
\begin{gathered}
\Gamma_{\theta \theta}^{r}=\frac{\partial^{2} x}{\partial^{2} \theta} \frac{\partial r}{\partial x}+\frac{\partial^{2} y}{\partial^{2} \theta} \frac{\partial r}{\partial y}+\frac{\partial^{2} z}{\partial^{2} \theta} \frac{\partial r}{\partial z}=-r \sin \theta \cos \varphi \frac{x}{r}-r \sin \theta \sin \varphi \frac{y}{r}-r \cos \theta \frac{z}{r}=-r \\
\Gamma_{r \varphi}^{r}=\Gamma_{\varphi r}^{r}=\frac{\partial^{2} x}{\partial r \partial \varphi} \frac{\partial r}{\partial x}+\frac{\partial^{2} y}{\partial r \partial \varphi} \frac{\partial r}{\partial y}+\frac{\partial^{2} z}{\partial r \partial \varphi} \frac{\partial r}{\partial z}=-\sin \theta \sin \varphi \frac{x}{r}+\sin \theta \cos \varphi \frac{y}{r}=0
\end{gathered}
$$
\]

and so on....
$\mathbf{2}$ Let ∇ be an affine connection on a 2-dimensional manifold M such that in local coordinates (u, v) it is given that $\Gamma_{u v}^{u}=v, \Gamma_{u v}^{v}=0$.

Calculate the vector field $\nabla_{\frac{\partial}{\partial u}}\left(u \frac{\partial}{\partial v}\right)$.
Using the properties of connection and definition of Christoffel symbols have

$$
\begin{gathered}
\nabla_{\frac{\partial}{\partial u}}\left(u \frac{\partial}{\partial v}\right)=\partial_{\frac{\partial}{\partial u}}(u) \frac{\partial}{\partial v}+u \nabla_{\frac{\partial}{\partial u}}\left(\frac{\partial}{\partial v}\right)= \\
\frac{\partial}{\partial v}+u\left(\Gamma_{u v}^{u} \frac{\partial}{\partial u}+\Gamma_{u v}^{v} \frac{\partial}{\partial v}\right)=\frac{\partial}{\partial v}+u\left(v \frac{\partial}{\partial u}+0\right)=\frac{\partial}{\partial v}+u v \frac{\partial}{\partial u} .
\end{gathered}
$$

3 Let ∇ be an affine connection on the 2-dimensional manifold M such that in local coordinates (u, v)

$$
\nabla_{\frac{\partial}{\partial u}}\left(u \frac{\partial}{\partial v}\right)=\left(1+u^{2}\right) \frac{\partial}{\partial v}+u \frac{\partial}{\partial u} .
$$

Calculate the Christoffel symbols $\Gamma_{u v}^{u}$ and $\Gamma_{u v}^{v}$ of this connection.
Using the properties of connection we have $\nabla_{\frac{\partial}{\partial u}}\left(u \frac{\partial}{\partial v}\right)=u \nabla_{\frac{\partial}{\partial u}}\left(\frac{\partial}{\partial v}\right)+$

$$
\partial_{\frac{\partial}{\partial u}}(u) \frac{\partial}{\partial v}=u\left(\Gamma_{u v}^{u} \frac{\partial}{\partial u}+\Gamma_{u v}^{v} \frac{\partial}{\partial v}\right)+1 \cdot \frac{\partial}{\partial v}=\left(1+u \Gamma_{u v}^{v}\right) \frac{\partial}{\partial v}+u \Gamma_{u v}^{u} \frac{\partial}{\partial u}=\left(1+u^{2}\right) \frac{\partial}{\partial v}+u \frac{\partial}{\partial u} .
$$

Hence $1+u^{2}=1+u \Gamma_{u v}^{v}$ and $u \Gamma_{u v}^{v}=u$, i.e. $\Gamma_{u v}^{v}=u$ and $\Gamma_{u v}^{u}=1$.
4 a) Consider a connection such that its Christoffel symbols are symmetric in a given coordinate system: $\Gamma_{k m}^{i}=\Gamma_{m k}^{i}$.

Show that they are symmetric in an arbitrary coordinate system.
b^{*}) Show that the Christoffel symbols of connection ∇ are symmetric (in any coordinate system) if and only if

$$
\nabla_{\mathbf{X}} \mathbf{Y}-\nabla_{\mathbf{Y}} \mathbf{X}-[\mathbf{X}, \mathbf{Y}]=0
$$

for arbitrary vector fields \mathbf{X}, \mathbf{Y}.
c)* Consider for an arbitrary connection the following operation on the vector fields:

$$
S(\mathbf{X}, \mathbf{Y})=\nabla_{\mathbf{X}} \mathbf{Y}-\nabla_{\mathbf{Y}} \mathbf{X}-[\mathbf{X}, \mathbf{Y}]
$$

and find its properties.
Solution
a) Let $\Gamma_{k m}^{i}=\Gamma_{m k}^{i}$. We have to prove that $\Gamma_{k^{\prime} m^{\prime}}^{i^{\prime}}=\Gamma_{m^{\prime} k^{\prime}}^{i^{\prime}}$

We have

$$
\begin{equation*}
\Gamma_{k^{\prime} m^{\prime}}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} \Gamma_{k m}^{i}+\frac{\partial x^{r}}{\partial x^{k^{\prime}} \partial x^{m^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}} \tag{1}
\end{equation*}
$$

Hence

$$
\Gamma_{m^{\prime} k^{\prime}}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \Gamma_{m k}^{i}+\frac{\partial x^{r}}{\partial x^{m^{\prime}} \partial x^{k^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}}
$$

But $\Gamma_{k m}^{i}=\Gamma_{m k}^{i}$ and $\frac{\partial x^{r}}{\partial x^{m^{\prime}} \partial x^{k^{\prime}}}=\frac{\partial x^{r}}{\partial x^{k^{\prime}} \partial x^{m^{\prime}}}$. Hence

$$
\Gamma_{m^{\prime} k^{\prime}}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \Gamma_{m k}^{i}+\frac{\partial x^{r}}{\partial x^{m^{\prime}} \partial x^{k^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \Gamma_{k m}^{i}+\frac{\partial x^{r}}{\partial x^{k^{\prime}} \partial x^{m^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}}=\Gamma_{k^{\prime} m^{\prime}}^{i^{\prime}} .
$$

b) The relation

$$
\nabla_{\mathbf{X}} \mathbf{Y}-\nabla_{\mathbf{Y}} \mathbf{X}-[\mathbf{X}, \mathbf{Y}]=0
$$

holds for all fields if and only if it holds for all basic fields. One can easy check it using axioms of connection (see the next part). Consider $\mathbf{X}=\frac{\partial}{\partial x^{i}}, \mathbf{Y}=\frac{\partial}{\partial x^{j}}$ then since $\left[\partial_{i}, \partial_{j}\right]=0$ we have that

$$
\nabla_{\mathbf{X}} \mathbf{Y}-\nabla_{\mathbf{Y}} \mathbf{X}-[\mathbf{X}, \mathbf{Y}]=\nabla_{i} \partial_{j}-\nabla_{j} \partial_{i}=\Gamma_{i j}^{k} \partial_{k}-\Gamma_{j i}^{k} \partial_{k}=\left(\Gamma_{i j}^{k}-\Gamma_{j i}^{k}\right) \partial_{k}=0
$$

We see that commutator for basic fields $\nabla_{\mathbf{X}} \mathbf{Y}-\nabla_{\mathbf{Y}} \mathbf{X}-[\mathbf{X}, \mathbf{Y}]=0$ if and only if $\Gamma_{i j}^{k}-\Gamma_{j i}^{k}=0$.
c) One can easy check it by straightforward calculations or using axioms for connection that $S(\mathbf{X}, \mathbf{Y})$ is a vector-valued bilinear form on vectors. In particularly $S(f \mathbf{X}, Y)=f S(\mathbf{X}, \mathbf{Y})$ for an arbitrary (smooth) function. Show this just using axioms defining connection:

$$
\begin{gathered}
S(f \mathbf{X}, Y)=\nabla_{f \mathbf{X}} \mathbf{Y}-\nabla_{\mathbf{Y}}(f \mathbf{X})-[f \mathbf{X}, \mathbf{Y}]=f \nabla_{X} \mathbf{Y}-f \nabla_{\mathbf{Y}} \mathbf{X}-\partial_{\mathbf{Y}} f \mathbf{X}+[\mathbf{Y}, f \mathbf{X}]= \\
f \nabla_{X} \mathbf{Y}-f \nabla_{\mathbf{Y}} \mathbf{X}-\left(\partial_{\mathbf{Y}} f\right) \mathbf{X}+\partial_{\mathbf{Y}} f \mathbf{X}+f[\mathbf{Y}, \mathbf{X}]=f\left(\nabla_{X} \mathbf{Y}-\nabla_{\mathbf{Y}} \mathbf{X}-[\mathbf{X}, \mathbf{Y}]\right)=f S(\mathbf{X}, \mathbf{Y})
\end{gathered}
$$

$\mathbf{5}$ Let ∇_{1}, ∇_{2} be two different connections. Let ${ }^{(1)} \Gamma_{k m}^{i}$ and ${ }^{(2)} \Gamma_{k m}^{i}$ be the Christoffel symbols of connections ∇_{1} and ∇_{2} respectively.
a) Find the transformation law for the object: $T_{k m}^{i}={ }^{(1)} \Gamma_{k m}^{i}-{ }^{(2)} \Gamma_{k m}^{i}$ under a change of coordinates. Show that it is $\binom{1}{2}$ tensor.
$b)^{* ?}$ Consider an operation $\nabla_{1}-\nabla_{2}$ on vector fields and find its properties.
Christoffel symbols of both connections transform according the law (1). The second term is the same. Hence it vanishes for their difference:

$$
T_{k^{\prime} m^{\prime}}^{i^{\prime}}={ }^{(1)} \Gamma_{k^{\prime} m^{\prime}}^{i^{\prime}}-{ }^{(2)} \Gamma_{k^{\prime} m^{\prime}}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}}\left({ }^{(1)} \Gamma_{k m}^{i}-{ }^{(2)} \Gamma_{k m}^{i}\right)=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{k}}{\partial x^{k^{\prime}}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} T_{k m}^{i}
$$

We see that $T_{1 k m^{\prime}}^{i^{\prime}}$ transforms as a tensor of the type $\binom{1}{2}$.
b) One can do it in invariant way. Using axioms of connection study $T=\nabla_{1}-\nabla_{2}$ is a vector field. Consider

$$
T(\mathbf{X}, \mathbf{Y})=\nabla_{1 \mathbf{x}} \mathbf{Y}-\nabla_{2 \mathbf{X}} \mathbf{Y}
$$

Show that $T(f \mathbf{X}, \mathbf{Y})=f T(\mathbf{X}, \mathbf{Y})$ for an arbitrary (smooth) function, i.e. it does not possesses derivatives:

$$
T(f \mathbf{X}, \mathbf{Y})=\nabla_{1 f X} \mathbf{Y}-\nabla_{2 f X} \mathbf{Y}=\left(\partial_{\mathbf{x}} f\right) \mathbf{Y}+f \nabla_{1 \mathbf{X}} \mathbf{Y}-\left(\partial_{\mathbf{x}} f\right) \mathbf{Y}-f \nabla_{2 \mathbf{X}} \mathbf{Y}=f T(\mathbf{X}, \mathbf{Y})
$$

$\mathbf{6}^{*}$ a) Consider $t_{m}=\Gamma_{i m}^{i}$. Show that the transformation law for t_{m} is

$$
t_{m^{\prime}}=\frac{\partial x^{m}}{\partial x^{m^{\prime}}} t_{m}+\frac{\partial^{2} x^{r}}{\partial x^{m^{\prime}} \partial x^{k^{\prime}}} \frac{\partial x^{k^{\prime}}}{\partial x^{r}}
$$

b) \dagger Show that this law can be written as

$$
t_{m^{\prime}}=\frac{\partial x^{m}}{\partial x^{m^{\prime}}} t_{m}+\frac{\partial}{\partial x^{m^{\prime}}}\left(\log \operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)\right) .
$$

Solution. Using transformation law (1) we have

$$
t_{m^{\prime}}=\Gamma_{i^{\prime} m^{\prime \prime}}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{k}}{\partial x^{i^{\prime}}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} \Gamma_{k m}^{i}+\frac{\partial x^{r}}{\partial x^{i^{\prime}} \partial x^{m^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}}
$$

We have that $\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{k}}{\partial x^{i^{\prime}}}=\delta_{i}^{k}$. Hence
$t_{m^{\prime}}=\Gamma_{i^{\prime} m^{\prime \prime}}^{i^{\prime}}=\frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{k}}{\partial x^{i^{\prime}}} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} \Gamma_{k m}^{i}+\frac{\partial x^{r}}{\partial x^{i^{\prime}} \partial x^{m^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}}=\delta_{i}^{k} \frac{\partial x^{m}}{\partial x^{m^{\prime}}} \Gamma_{k m}^{i}+\frac{\partial x^{r}}{\partial x^{i^{\prime}} \partial x^{m^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}}=\frac{\partial x^{m}}{\partial x^{m^{\prime}}} t_{m}+\frac{\partial x^{r}}{\partial x^{i^{\prime}} \partial x^{m^{\prime}}} \frac{\partial x^{i^{\prime}}}{\partial x^{r}}$.
b) \dagger When calculating $\frac{\partial}{\partial x^{m^{\prime}}}\left(\log \operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)\right)$ use very important formula:

$$
\delta \operatorname{det} A=\operatorname{det} A \operatorname{Tr}\left(A^{-1} \delta A\right) \rightarrow \delta \log \operatorname{det} A=\operatorname{Tr}\left(A^{-1} \delta A\right)
$$

Hence

$$
\frac{\partial}{\partial x^{m^{\prime}}}\left(\log \operatorname{det}\left(\frac{\partial x}{\partial x^{\prime}}\right)\right)=\frac{\partial x^{i^{\prime}}}{\partial x^{r}} \frac{\partial^{2} x^{r}}{\partial x^{i^{\prime}} \partial x^{m^{\prime}}}
$$

and we come to transformation law for (1).
To deduce the formula for $\delta \operatorname{det} A$ notice that

$$
\operatorname{det}(A+\delta A)=\operatorname{det} A \operatorname{det}\left(1+A^{-1} \delta A\right)
$$

and use the relation: $\operatorname{det}(1+\delta A)=1+\operatorname{Tr} \delta A+O\left(\delta^{2} A\right)$
7 Consider the surface M in the Euclidean space \mathbf{E}^{n}. Calculate the induced connection in the following cases
a) $M=S^{1}$ in \mathbf{E}^{2},
b) $M-$ parabola $y=x^{2}$ in \mathbf{E}^{2},
c) cylinder in \mathbf{E}^{3}.
d) cone in \mathbf{E}^{3}.
e) sphere in \mathbf{E}^{3}.
f) saddle $z=x y$ in \mathbf{E}^{3}

Solution.
a) Consider polar coordinate on $S^{1}, x=R \cos \varphi, y=R \sin \varphi$. We have to define the connection on S^{1} induced by the canonical flat connection on \mathbf{E}^{2}. It suffices to define $\nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}=\Gamma_{\varphi \varphi}^{\varphi} \partial_{\varphi}$.

Recall the general rule. Let $\mathbf{r}\left(u^{\alpha}\right): x^{i}=x^{i}\left(u^{\alpha}\right)$ is embedded surface in Euclidean space \mathbf{E}^{n}. The basic vectors $\frac{\partial}{\partial u^{\alpha}}=\frac{\partial \mathbf{r}(u)}{\partial u^{\alpha}}$. To take the induced covariant derivative $\nabla_{\mathbf{X}} \mathbf{Y}$ for two tangent vectors \mathbf{X}, \mathbf{Y} we take a usual derivative of vector \mathbf{Y} along vector \mathbf{X} (the derivative with respect to canonical flat connection: in Cartesian coordiantes is just usual derivatives of components) then we take the tangent component of the answer, since in general derivative of vector \mathbf{Y} along vector \mathbf{X} is not tangent to surface:

$$
\nabla_{\frac{\partial}{\partial u^{\alpha}}} \frac{\partial}{\partial u^{\beta}}=\Gamma_{\alpha \beta}^{\gamma} \frac{\partial}{\partial u^{\gamma}}=\left(\nabla_{\partial_{\alpha}}^{(\text {canonical) }} \frac{\partial}{\partial u^{\beta}}\right)_{\text {tangent }}=\left(\frac{\partial^{2} \mathbf{r}(u)}{\partial u^{\alpha} \partial u^{\beta}}\right)_{\text {tangent }}
$$

($\nabla_{\text {canonical }} \partial_{\alpha} \frac{\partial}{\partial u^{\beta}}$) is just usual derivative in Euclidean space since for canonical connection all Christoffel symbols vanish.)

In the case of 1-dimensional manifold, curve it is just tangential acceleration!:

$$
\nabla_{\frac{\partial}{\partial u}} \frac{\partial}{\partial u}=\Gamma_{u u}^{u} \frac{\partial}{\partial u}=\left(\nabla_{\partial_{u}}^{(\text {canonical) }} \frac{\partial}{\partial u}\right)_{\text {tangent }}=\left(\frac{d^{2} \mathbf{r}(u)}{d u^{2}}\right)_{\text {tangent }}=\mathbf{a}_{\text {tangent }}
$$

For the circle $S^{1},(x=R \cos \varphi, y=R \sin \varphi)$, in \mathbf{E}^{2}. We have

$$
\begin{gathered}
\mathbf{r}_{\varphi}=\frac{\partial}{\partial \varphi}=\frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y}=-R \sin \varphi \frac{\partial}{\partial x}+R \cos \varphi \frac{\partial}{\partial y} \\
\nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}=\Gamma_{\varphi \varphi}^{\varphi} \partial_{\varphi}=\left(\nabla_{\partial_{\varphi}}^{(\text {canonic. })} \partial_{\varphi}\right)_{\text {tangent }}=\left(\frac{\partial}{\partial \varphi} \mathbf{r}_{\varphi}\right)_{\text {tangent }}= \\
\left(\frac{\partial}{\partial \varphi}(-R \sin \varphi) \frac{\partial}{\partial x}+\frac{\partial}{\partial \varphi}(R \cos \varphi) \frac{\partial}{\partial y}\right)_{\text {tangent }}=\left(-R \cos \varphi \frac{\partial}{\partial x}-R \sin \varphi \frac{\partial}{\partial y}\right)_{\text {tangent }}=0
\end{gathered}
$$

since the vector $-R \cos \varphi \frac{\partial}{\partial x}-R \sin \varphi \frac{\partial}{\partial y}$ is orthogonal to the tangent vector \mathbf{r}_{φ}. In other words it means that acceleration is centripetal: tangential acceleration equals to zero.

We see that in coordinate $\varphi, \Gamma_{\varphi \varphi}^{\varphi}=0$.
Additional work: Perform calculation of Christoffel symbol in stereographic coordinate t :

$$
x=\frac{2 t R^{2}}{R^{2}+t^{2}}, y=\frac{R\left(t^{2}-R^{2}\right)}{t^{2}+R^{2}}
$$

In this case

$$
\begin{gathered}
\mathbf{r}_{t}=\frac{\partial}{\partial t}=\frac{\partial x}{\partial t} \frac{\partial}{\partial x}+\frac{\partial y}{\partial t} \frac{\partial}{\partial y}=\frac{2 R^{2}}{\left(R^{2}+t^{2}\right)^{2}}\left(\left(R^{2}-t^{2}\right) \frac{\partial}{\partial x}+2 t R \frac{\partial}{\partial x}\right) \\
\nabla_{\frac{\partial}{\partial t}} \frac{\partial}{\partial t}=\Gamma_{t t}^{t} \partial_{t}=\left(\nabla_{\partial_{t}}^{(\text {canonic.) }} \partial_{t}\right)_{\text {tangent }}=\left(\frac{\partial}{\partial t} \mathbf{r}_{t}\right)_{\text {tangent }}=\left(\mathbf{r}_{t t}\right)_{\text {tangent }}= \\
\left(-\frac{4 t}{t^{2}+R^{2}} \mathbf{r}_{t}+\frac{2 R^{2}}{\left(R^{2}+t^{2}\right)^{2}}\left(-2 t \frac{\partial}{\partial x}+2 R \frac{\partial}{\partial y}\right)\right)_{\text {tangent }}
\end{gathered}
$$

In this case $\mathbf{r}_{t t}$ is not orthogonal to velocity: to calculate $\left(\mathbf{r}_{t t}\right)_{\text {tangent }}$ we need to extract its orthogonal component:

$$
\left(\mathbf{r}_{t t}\right)_{\text {tangent }}=\mathbf{r}_{t t}-\left\langle\mathbf{r}_{t t}, \mathbf{n}_{t}\right\rangle \mathbf{n}
$$

We have

$$
\mathbf{n}_{t}=\frac{\mathbf{r}}{|\mathbf{r}|}=\frac{1}{R^{2}+t^{2}}\left(2 t R \partial_{x}+\left(t^{2}-R^{2}\right) \partial_{y}\right)
$$

where $\left\langle\mathbf{r}_{t}, \mathbf{n}\right\rangle=0$. Hence $\left\langle\mathbf{r}_{t t}, \mathbf{n}_{t}\right\rangle=\frac{-4 R^{3}}{\left(t^{2}+R^{2}\right)^{2}}$ and

$$
\left(\mathbf{r}_{t t}\right)_{\text {tangent }}=\mathbf{r}_{t t}-\left\langle\mathbf{r}_{t t}, \mathbf{n}_{t}\right\rangle \mathbf{n}=
$$

$$
\left(-\frac{4 t}{t^{2}+R^{2}} \mathbf{r}_{t}+\frac{2 R^{2}}{\left(R^{2}+t^{2}\right)^{2}}\left(-2 t \frac{\partial}{\partial x}+2 R \frac{\partial}{\partial y}\right)\right)+\frac{4 R^{3}}{\left(t^{2}+R^{2}\right)^{2}} \cdot \frac{1}{R^{2}+t^{2}}\left(2 t R \partial_{x}+\left(t^{2}-R^{2}\right) \partial_{y}\right)=\frac{-2 t}{t^{2}+R^{2}} \mathbf{r}_{t}
$$

We come to the answer:

$$
\nabla_{\partial_{t}} \partial_{t}=\frac{-2 t}{t^{2}+R^{2}} \partial_{t}, \quad \text { i.e. } \Gamma_{\mathrm{tt}}^{\mathrm{t}}=\frac{-2 \mathrm{t}}{\mathrm{t}^{2}+\mathrm{R}^{2}}
$$

Of course we could calculate the Christoffel symbol in stereographic coordinates just using the fact that we already know the Christoffel symbol in polar coordinates: $\Gamma_{\varphi \varphi}^{\varphi}=0$, hence

$$
\Gamma_{t t}^{t}=\frac{d t}{d \varphi} \frac{d \varphi}{d x} \frac{d \varphi}{d x} \Gamma_{\varphi \varphi}^{\varphi}+\frac{d^{2} \varphi}{d t^{2}} \frac{d t}{d \varphi}=\frac{d^{2} \varphi}{d t^{2}} \frac{d t}{d \varphi}
$$

It is easy to see that $t=R \tan \left(\frac{\pi}{4}+\frac{\varphi}{2}\right)$, i.e. $\varphi=2 \arctan \frac{t}{R}-\frac{\pi}{2}$ and

$$
\Gamma_{t t}^{t}=\frac{d^{2} \varphi}{d t^{2}} \frac{d t}{d \varphi}=\frac{\frac{d^{2} \varphi}{d t^{2}}}{\frac{d \varphi}{d t}}=-\frac{2 t}{t^{2}+R^{2}}
$$

b) For parabola $x=t, y=t^{2}$

$$
\begin{gathered}
\mathbf{r}_{t}=\frac{\partial}{\partial t}=\frac{\partial x}{\partial t} \frac{\partial}{\partial x}+\frac{\partial y}{\partial t} \frac{\partial}{\partial y}=\frac{\partial}{\partial x}+2 t \frac{\partial}{\partial y} \\
\nabla_{\frac{\partial}{\partial t}} \frac{\partial}{\partial t}=\Gamma_{t t}^{t} \partial_{t}=\left(\nabla_{\partial_{t}}^{\text {(canonic.) }} \partial_{t}\right)_{\text {tangent }}=\left(\frac{\partial}{\partial t} \mathbf{r}_{t}\right)_{\text {tangent }}=\left(\mathbf{r}_{t t}\right)_{\text {tangent }}=\left(2 \frac{\partial}{\partial y}\right)_{\text {tangent }}
\end{gathered}
$$

To calculate $\left(\mathbf{r}_{t t}\right)_{\text {tangent }}$ we need to extract its orthogonal component: $\left(\mathbf{r}_{t t}\right)_{\text {tangent }}=\mathbf{r}_{t t}-\left\langle\mathbf{r}_{t t}, \mathbf{n}_{t}\right\rangle \mathbf{n}$, where \mathbf{n} is an orthogonal unit vector: $\left\langle\mathbf{n}, \mathbf{r}_{t}\right\rangle=0,\langle\mathbf{n}, \mathbf{n}\rangle=1$:

$$
\mathbf{n}_{t}=\frac{1}{\sqrt{1+4 t^{2}}}\left(-2 t \partial_{x}+\partial_{y}\right)
$$

We have

$$
\begin{gathered}
\left(\mathbf{r}_{t t}\right)_{\text {tangent }}=\mathbf{r}_{t t}-\left\langle\mathbf{r}_{t t}, \mathbf{n}_{t}\right\rangle \mathbf{n}=2 \partial_{y}-\left\langle 2 \partial_{y}, \frac{1}{\sqrt{1+4 t^{2}}}\left(-2 t \partial_{x}+\partial_{y}\right)\right\rangle \frac{1}{\sqrt{1+4 t^{2}}}\left(-2 t \partial_{x}+\partial_{y}\right)= \\
\frac{4 t}{1+4 t^{2}} \partial_{x}+\frac{8 t^{2}}{1+4 t^{2}} \partial_{y}=\frac{4 t}{1+4 t^{2}}\left(\partial_{x}+2 t \partial_{y}\right)=\frac{4 t}{1+4 t^{2}} \partial_{t}
\end{gathered}
$$

We come to the answer:

$$
\nabla_{\partial_{t}} \partial_{t}=\frac{4 t}{1+4 t^{2}} \partial_{t}, \quad \text { i.e. } \Gamma_{\mathrm{tt}}^{\mathrm{t}}=\frac{4 \mathrm{t}}{1+4 \mathrm{t}^{2}}
$$

Remark Do not be surprised by resemblance of the answer to the answer for circle in stereographic coordinates.
c) Cylinder
$\mathbf{r}(h, \varphi):\left\{\begin{array}{l}x=a \cos \varphi \\ y=a \sin \varphi . \\ z=h\end{array}\right.$
$\partial_{h}=\mathbf{r}_{h}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), \partial_{\varphi}=\mathbf{r}_{\varphi}=\left(\begin{array}{c}-a \sin \varphi \\ a \cos \varphi \\ 0\end{array}\right)$
Calculate

$$
\nabla_{\partial_{h}} \partial_{h}=\Gamma_{h h}^{h} \partial_{h}+\Gamma_{h h}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial h^{2}}\right)_{\text {tangent }}=0 \text { since } \mathbf{r}_{h h}=0
$$

Hence $\Gamma_{h h}^{h}=\Gamma_{h h}^{\varphi}=0$

$$
\nabla_{\partial_{h}} \partial_{\varphi}=\nabla_{\partial_{\varphi}} \partial_{h}=\Gamma_{h \varphi}^{h} \partial_{h}+\Gamma_{h \varphi}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial h \partial \varphi}\right)_{\text {tangent }}=0 \text { since } \mathbf{r}_{h \varphi}=0
$$

Hence $\Gamma_{h \varphi}^{h}=\Gamma_{\varphi h}^{h}=\Gamma_{h \varphi}^{\varphi}=\Gamma_{\varphi h}^{\varphi}=0$.

$$
\nabla_{\partial_{\varphi}} \partial_{\varphi}=\Gamma_{\varphi \varphi}^{h} \partial_{h}+\Gamma_{\varphi \varphi}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi \partial \varphi}\right)_{\text {tangent }}=\left(\left(\begin{array}{c}
-a \cos \varphi \\
-a \sin \varphi \\
0
\end{array}\right)\right)_{\text {tangent }}=0
$$

since the vector $\mathbf{r}_{\varphi \varphi}=\left(\begin{array}{c}-a \cos \varphi \\ -a \sin \varphi \\ 0\end{array}\right)$ is orthogonal to the surface of cylinder. Hence $\Gamma_{h \varphi}^{h}=\Gamma_{\varphi h}^{h}=\Gamma_{h \varphi}^{\varphi}=$ $\Gamma_{\varphi h}^{\varphi}=0$

We see that for cylinder all Christoffel symbols in cylindrical coordinates vanish. This is not big surprise: in cylindrical coordinates metric equals $d h^{2}=a^{2} d \varphi^{2}$. This due to Levi-Civita theorem one can see that LeviCivita connection which is equal to induced connection vanishes since all coefficients are constants.
d) Cone

For cone: $x^{2}+y^{2}=k^{2} z^{2}$ we have $\mathbf{r}(h, \varphi)=\left\{\begin{array}{l}x=k h \cos \varphi \\ y=k h \sin \varphi \\ z=h\end{array}\right.$

$$
\frac{\partial}{\partial h}=\mathbf{r}_{h}=\left(\begin{array}{c}
k \cos \varphi \\
k \sin \varphi \\
1
\end{array}\right), \frac{\partial}{\partial \varphi}=\mathbf{r}_{\varphi}=\left(\begin{array}{c}
-k h \sin \varphi \\
k h \cos \varphi \\
0
\end{array}\right), \mathbf{n}=\frac{1}{\sqrt{1+k^{2}}}\left(\begin{array}{c}
\cos \varphi \\
\sin \varphi \\
-k
\end{array}\right)
$$

We have $\mathbf{r}_{h h}=0$, hence $\nabla_{\partial_{h}} \partial_{h}=0$. i.e. $\Gamma_{h h}^{h}=\Gamma_{h h}^{\varphi}=0$.
We have that $\mathbf{r}_{h \varphi}=\mathbf{r}_{\varphi h}=\left(\begin{array}{c}-k \sin \varphi \\ k \cos \varphi \\ 0\end{array}\right)=\frac{\mathbf{r}_{\varphi}}{h}$, i.e. $\nabla_{\partial_{h}} \partial_{\varphi}=\nabla_{\partial_{\varphi}} \partial_{h}=\frac{\mathbf{r}_{\varphi}}{h}:$

$$
\Gamma_{h \varphi}^{\varphi}=\Gamma_{\varphi, h}^{\varphi}=\frac{1}{h}, \quad \Gamma_{h \varphi}^{h}=\Gamma_{\varphi h}^{h} .
$$

Now calculate $\mathbf{r}_{\varphi \varphi}: \mathbf{r}_{\varphi \varphi}=\left(\begin{array}{c}-k h \cos \varphi \\ -k h \sin \varphi \\ 0\end{array}\right)$. This vector is neither tangent to the cone nor orthogonal to the cone: $0 \neq\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle=-\frac{k h}{\sqrt{1+k^{2}}}$. Hence we have consider its decomposition:

$$
\mathbf{r}_{\varphi \varphi}=\underbrace{\mathbf{r}_{\varphi \varphi}-\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle \mathbf{n}}_{\text {tangent component }}+\underbrace{\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle \mathbf{n}}_{\text {orthogonal component }}
$$

Hence we have

$$
\begin{gathered}
\nabla_{\varphi} \partial_{\varphi}=\left(\mathbf{r}_{\varphi \varphi}\right)_{\text {tangent }}=\mathbf{r}_{\varphi \varphi}-\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle \mathbf{n}=\mathbf{r}_{\varphi \varphi}+\frac{k h}{\sqrt{1+k^{2}}} \mathbf{n}= \\
\left(\begin{array}{c}
-k h \cos \varphi \\
-k h \sin \varphi \\
0
\end{array}\right)+\frac{k h}{1+k^{2}}\left(\begin{array}{c}
\cos \varphi \\
\sin \varphi \\
-k
\end{array}\right)=-\frac{h k^{2}}{1+k^{2}}\left(\begin{array}{c}
k \cos \varphi \\
k \sin \varphi \\
1
\end{array}\right)=-\frac{h k^{2}}{1+k^{2}} \mathbf{r}_{h},
\end{gathered}
$$

i.e.

$$
\Gamma_{\varphi \varphi}^{h}=-\frac{h k^{2}}{1+k^{2}}, \Gamma_{\varphi \varphi}^{\varphi}=0
$$

e) Sphere

For the sphere $\mathbf{r}(\theta, \varphi):\left\{\begin{array}{l}x=R \sin \theta \cos \varphi \\ y=R \sin \theta \sin \varphi \\ z=R \cos \theta\end{array}\right.$, we have

$$
\frac{\partial}{\partial \theta}=\mathbf{r}_{\theta}=\left(\begin{array}{c}
R \cos \theta \cos \varphi \\
R \cos \theta \sin \varphi \\
-R \sin \theta
\end{array}\right), \frac{\partial}{\partial \varphi}=\mathbf{r}_{\varphi}=\left(\begin{array}{c}
-R \sin \theta \sin \varphi \\
R \sin \theta \cos \varphi \\
0
\end{array}\right), \mathbf{n}=\left(\begin{array}{c}
\sin \theta \cos \varphi \\
\sin \theta \sin \varphi \\
\cos \theta
\end{array}\right)
$$

Calculate

$$
\nabla_{\partial_{\theta}} \partial_{\theta}=\Gamma_{\theta \theta}^{\theta} \partial_{\theta}+\Gamma_{\theta \theta}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \theta^{2}}\right)_{\text {tangent }}=0
$$

since $\frac{\partial^{2} \mathbf{r}}{\partial \theta^{2}}=-R \mathbf{n}$ is orthogonal to the sphere. Hence $\Gamma_{\theta \theta}^{\theta}=\Gamma_{\theta \theta}^{\varphi}=0$.
Now calculate

$$
\nabla_{\partial_{\theta}} \partial_{\varphi}=\Gamma_{\theta \varphi}^{\theta} \partial_{\theta}+\Gamma_{\theta \varphi}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \theta \partial \varphi}\right)_{\text {tangent }}
$$

We have

$$
\frac{\partial^{2} \mathbf{r}}{\partial \theta \partial \varphi}=\operatorname{cotan} \theta \mathbf{r}_{\varphi}
$$

hence

$$
\nabla_{\partial_{\theta}} \partial_{\varphi}=\Gamma_{\theta \varphi}^{\theta} \partial_{\theta}+\Gamma_{\theta \varphi}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \theta \partial \varphi}\right)_{\text {tangent }}=\operatorname{cotan} \theta \mathbf{r}_{\varphi}, \text { i.e. }
$$

$\Gamma_{\theta \varphi}^{\theta}=0, \Gamma_{\theta \varphi}^{\varphi}=\operatorname{cotan} \theta$
Now calculate

$$
\nabla_{\partial_{\varphi}} \partial_{\theta}=\Gamma_{\varphi \theta}^{\theta} \partial_{\theta}+\Gamma_{\varphi \theta}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi \partial \theta}\right)_{\text {tangent }}
$$

We have

$$
\frac{\partial^{2} \mathbf{r}}{\partial \varphi \partial \theta}=\operatorname{cotan} \theta \mathbf{r}_{\varphi}
$$

hence

$$
\nabla_{\partial_{\theta}} \partial_{\varphi}=\Gamma_{\theta \varphi}^{\theta} \partial_{\theta}+\Gamma_{\theta \varphi}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \theta \partial \varphi}\right)_{\text {tangent }}=\operatorname{cotan} \theta \mathbf{r}_{\varphi}, \text { i.e. }
$$

$\Gamma_{\varphi \theta}^{\theta}=0, \Gamma_{\varphi \theta}^{\varphi}=\operatorname{cotan} \theta$. Of course we did not need to perform these calculations: since ∇ is symmetric connection and $\nabla_{\partial_{\varphi}} \partial_{\theta}=\nabla_{\partial_{\theta}} \partial_{\varphi}$, i.e.

$$
\Gamma_{\varphi \theta}^{\theta}=\Gamma_{\theta \varphi}^{\theta}=0 \Gamma_{\varphi \theta}^{\varphi}=\Gamma_{\theta \varphi}^{\varphi}=\operatorname{cotan} \theta
$$

and finally

$$
\nabla_{\partial_{\varphi}} \partial_{\varphi}=\Gamma_{\varphi \varphi}^{\theta} \partial_{\theta}+\Gamma_{\varphi \varphi}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi^{2}}\right)_{\text {tangent }}
$$

We have

$$
\frac{\partial^{2} \mathbf{r}}{\partial \varphi^{2}}=\mathbf{r}_{\varphi \varphi}=\left(\begin{array}{c}
-R \sin \theta \cos \varphi \\
-R \sin \theta \sin \varphi \\
0
\end{array}\right)
$$

The vector $\mathbf{r}_{\varphi \varphi}$ is not proportional to normal vector \mathbf{n}, i.e. it is not orthogonal to the sphere; the vector $\mathbf{r}_{\varphi \varphi}$ is not tangent to sphere, i.e. it is not orthogonal to vector $\mathbf{n}: 0 \neq\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle=-R \sin ^{2} \theta$. We decompose the vector $\mathbf{r}_{\varphi \varphi}$ on the sum of tangent vector and orthogonal vector:

$$
\mathbf{r}_{\varphi \varphi}=\underbrace{\mathbf{r}_{\varphi \varphi}-\mathbf{n}\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle}_{\text {tangent vector }}+\mathbf{n}\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle,
$$

We see that

$$
\begin{aligned}
\left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi^{2}}\right)_{\text {tangent }} & =\mathbf{r}_{\varphi \varphi}-\mathbf{n}\left\langle\mathbf{r}_{\varphi \varphi}, \mathbf{n}\right\rangle=\mathbf{r}_{\varphi \varphi}+R \sin ^{2} \theta \mathbf{n}=\left(\begin{array}{c}
-R \sin \theta \cos \varphi \\
-R \sin \theta \sin \varphi \\
0
\end{array}\right)+R \sin ^{2} \theta\left(\begin{array}{c}
\sin \theta \cos \varphi \\
\sin \theta \sin \varphi \\
\cos \theta
\end{array}\right)= \\
& \left(\begin{array}{c}
-R \cos ^{2} \theta \sin \theta \cos \varphi \\
-R \cos ^{2} \theta \sin \theta \sin \varphi \\
R \sin ^{2} \theta \cos \theta
\end{array}\right)=-\sin \theta \cos \theta\left(\begin{array}{c}
\cos \theta \cos \varphi \\
\cos \theta \sin \varphi \\
-\sin \theta
\end{array}\right)=-\sin \theta \cos \theta \mathbf{r}_{\theta} .
\end{aligned}
$$

We have

$$
\nabla_{\partial_{\varphi}} \partial_{\varphi}=\Gamma_{\varphi \varphi}^{\theta} \partial_{\theta}+\Gamma_{\varphi \varphi}^{\varphi} \partial_{\varphi}=\left(\frac{\partial^{2} \mathbf{r}}{\partial \varphi \partial \varphi}\right)_{\text {tangent }}=-\sin \theta \cos \theta \mathbf{r}_{\theta} \text {, i.e. }
$$

$\Gamma_{\varphi \varphi}^{\theta}=-\sin \theta \cos \theta, \Gamma_{\varphi \varphi}^{\varphi}=0$.
f) Saddle

For saddle $z=x y$: We have $\mathbf{r}(u, v):\left\{\begin{array}{l}x=u \\ y=v \\ z=u v\end{array}, \partial_{u}=\mathbf{r}_{u}=\left(\begin{array}{l}1 \\ 0 \\ v\end{array}\right), \partial_{v}=\mathbf{r}_{v}=\left(\begin{array}{l}0 \\ 1 \\ u\end{array}\right)\right.$ It will be useful also to use the normal unit vector $\mathbf{n}=\frac{1}{\sqrt{1+u^{2}+v^{2}}}\left(\begin{array}{c}-v \\ -u \\ 1\end{array}\right)$.

Calculate:

$$
\nabla_{\partial_{u}} \partial_{u}=\Gamma_{u u}^{u} \partial_{u}+\Gamma_{u u}^{v} \partial_{v}=\left(\frac{\partial^{2} \mathbf{r}}{\partial u^{2}}\right)_{\text {tangent }}=\left(\mathbf{r}_{u u}\right)_{\text {tangent }}=0 \text { since } \mathbf{r}_{u u}=0 .
$$

Hence $\Gamma_{u u}^{u}=\Gamma_{u u}^{v}=0$.
Analogously $\Gamma_{v v}^{u}=\Gamma_{v v}^{v}=0$ since $\mathbf{r}_{v v}=0$.
Now calculate $\Gamma_{u v}^{u}, \Gamma_{u v}^{v}, \Gamma_{v u}^{u}, \Gamma_{v u}^{v}$:

$$
\nabla_{\partial_{u}} \partial_{v}=\nabla_{\partial_{v}} \partial_{u}=\Gamma_{u v}^{u} \partial_{u}+\Gamma_{u v}^{v} \partial_{v}=\left(\mathbf{r}_{u v}\right)_{\text {tangent }}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)_{\text {tangent }}
$$

Using normal unit vector \mathbf{n} we have: $\left(\mathbf{r}_{u v}\right)_{\text {tangent }}=\mathbf{r}_{u v}-\left\langle\mathbf{r}_{u v}, \mathbf{n}\right\rangle \mathbf{n}=\Gamma_{u v}^{u} \partial_{u}+\Gamma_{u v}^{v} \partial_{v}=$

$$
\begin{aligned}
& \left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)_{\text {tangent }}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-\left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{1+u^{2}+v^{2}}}\left(\begin{array}{c}
-v \\
-u \\
1
\end{array}\right)\right\rangle \frac{1}{\sqrt{1+u^{2}+v^{2}}}\left(\begin{array}{c}
-v \\
-u \\
1
\end{array}\right)= \\
& \frac{1}{1+u^{2}+v^{2}}\left(\begin{array}{c}
v \\
u \\
u^{2}+v^{2}
\end{array}\right)=\frac{v}{1+u^{2}+v^{2}}\left(\begin{array}{l}
1 \\
0 \\
v
\end{array}\right)+\frac{u}{1+u^{2}+v^{2}}\left(\begin{array}{l}
0 \\
u \\
u
\end{array}\right)=\frac{v \mathbf{r}_{u}+u \mathbf{r}_{v}}{1+u^{2}+v^{2}} .
\end{aligned}
$$

Hence $\Gamma_{u v}^{u}=\Gamma_{v u}^{u}=\frac{v}{1+u^{2}+v^{2}}$ and $\Gamma_{u v}^{v}=\Gamma_{v u}^{v}=\frac{u}{1+u^{2}+v^{2}}$.
Sure one may calculate this connection as Levi-Civita connction of the induced Riemannian metric using explicit Levi-Civita formula or using method of Lagrangian of free particle.

[^0]: * they can be quickly calculated using Lagrangian of free particle.

