Homework 5. Solutions
1 Calculate the Christoffel symbols of the canonical flat connection in E> in
a) cylindrical coordinates (x = rcosp,y =rsing,z = h),
b) spherical coordinates.
(For the case of sphere try to make calculations at least for components I'y, T, Ty Thg, ..., T)

In cylindrical coordinates (r, ¢, h) we have

T =Tcosp r =22 + 92
{?J =rsing andq o= arctan?
z=h h=z

We know that in Cartesian coordinates all Christoffel symbols vanish. Hence in cylindrical coordinates
(see in detail lecture notes):
_3:1:6r 0%y Or (9228r_
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—singpcosp +sinpcosp =0.

o Pzdp  Pydp  9z0p N
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T oo Doy 020 0z T2 r
All symbols I';,,I';, vanish

7, =T, =Th, =T, =T}, =T¥, = dots = 00

: 8%z Py . 9% _
since 55 = gro— = oo (3
For all symbols rh Fh 5 5 since gg = g}yL =0 and ‘% = 1. On the other hand all 88 vanish. Hence

all symbols T'" vanish. m

b) spherical coordinates

i 0 = arccos —=2——
y = rsinsin g Ve tge 2t

z=rcosd ¢ = arctan ¥
x

{xrsincoscp r=/z?+y?+2?

Perform now brute force calculations only for some components *

I'7, =0 since 2 02 =0.

0%x or 0% or 0%z Or x y 2
ro=T7 = — — =cosf - Osinp= —sinf— =
0 =Yor = 5900z T aronoy T aragas ~ o8P0Sy Feostsingl —sinb =0,

* they can be quickly calculated using Lagrangian of free particle.
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Iy 782x 787“ —azy 75‘7‘ —an 787" sin 6 cos x sin 6 si 4 cos&z r
= = —rsi — —rsinfsinp= —r - =—
00" 200r ' 9200y | 02002 vy " r
0%z Or 0%y or 0%z Or x y
FT‘ f 1"7" = —_—— [ — - = 1 3 _ M e
ro or 3T8903$+6T8<p3y+3r84p82 sm@smgor —&—sm@cosapr 0

and so on....

2 Let V be an affine connection on a 2-dimensional manifold M such that in local coordinates (u,v) it

s given that Ty, =v, I't =0
Calculate the vector field Vai (u%).

Using the properties of connection and definition of Christoffel symbols have

0 0 0
Vo <u<%> zaﬁ(u)%—kuv(ﬁ% (61}) =

A VIS RN B PN AL
v T\ Fegy way ) = v "\ ou T “ou

3 Let V be an affine connection on the 2-dimensional manifold M such that in local coordinates (u,v)

0\ 9 0

Calculate the Christoffel symbols 'Y, and 'y,

0

of this connection.

. . . a o 8
Using the properties of connection we have V% (u%) = uv% (%) +

) B R
8% (U) % =u (Fuvau +Fuvav) +1

Hence 1 +u?2 =1+ ul™®

uv

-g:(l—i—uffw)g—i—ufu

ov ov “ o v

v — N v — (O —
and ul'y, = wu, ie Iy, =uwand I'}, = 1. m

3:(1+u2)3+u—

4 a) Consider a connection such that its Christoffel symbols are symmetric in a given coordinate system:

% T
ka - ka

Show that they are symmetric in an arbit

rary coordinate system.

b*) Show that the Christoffel symbols of connection V are symmetric (in any coordinate system) if and

only if

VxY - VyX - [X,Y] =0,

for arbitrary vector fields X, Y.

¢)* Consider for an arbitrary connection the following operation on the vector fields:

S(X,Y) = VxY — VyX — [X,Y]

and find its properties.

Solution

a) Let Ti =T¢ _ We have to prove that T4, , =T%

We have

-/
7

dx’ dxk dxm ox" Ozt

v

Iy — T T T~ —_— .
kim 9zt Oxk dxm’ M T Ggk g’ dxr

Hence

-/
?

Mk dgt 9am” Oxk

o dx™ dxk oz"  Oz'

v

r e
mk Ox™ Oz* Oxr
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i i dx"  _ _ da”
But I',, =17, and 5—2F—7 = -—72—. Hence
./ -/ -/ -/
i ozt 9x™ 9x* _, oz"  Ox*  9z" 9x™ OzF _, oz  Oz' i
I — T —_ = V= —_— = ’ s
m'k ozt dz™ dxF ™E T 9’ 9xk dxr T Ozt dx™ Oz F™ T 9zF dam dxr krm

b) The relation
VxY - VyX — [X,Y] =0

holds for all fields if and only if it holds for all basic fields. One can easy check it using axioms of connection
(see the next part). Consider X = %, Y = % then since [0;,9;] = 0 we have that

VxY — VyX = [X,Y] =V,;0; = V;0; = I};0p = T80, = (T}, = T5)0 =0

We see that commutator for basic fields Vx Y — VyX — [X, Y] = 0 if and only if T'¥, — I'*; = 0.

¢) One can easy check it by straightforward calculations or using axioms for connection that S(X,Y)
is a vector-valued bilinear form on vectors. In particularly S(fX,Y) = fS(X,Y) for an arbitrary (smooth)
function. Show this just using axioms defining connection:

S(XY) =VixY = Vy(fX) - [fX, Y] = fVXY = fUy X - Oy X+ [Y, fX] =

VXY = fUyX = (v )X + 0y X+ f[Y, X] = f(VxY - VyX - [X,Y]) = fS(X,Y)

5 Let V1,V be two different connections. Let (1)F}'€m and (2)F§€m be the Christoffel symbols of connec-
tions V1 and Vg respectively.

a) Find the transformation law for the object : Tj = Tt — AT under a change of coordinates.
Show that it is (;) tensor.
b)** Consider an operation Vi — Vo on vector fields and find its properties.

Christoffel symbols of both connections transform according the law (1). The second term is the same.
Hence it vanishes for their difference:

i’ k m i’ k m
Ox* Oz" Ox ((1)Ff€m—(2)f‘i )_33: oz® oz™ _,

Ti’ _ (1)Fi’ _
kim? = ' ) km ) = gt dgk’ dgm/ kM

_ (Q)Fi'/m

m’

iy 1
We see that T}, transforms as a tensor of the type <2>

b) One can do it in invariant way. Using axioms of connection study T = V1 — Vy is a vector field.
Consider
T(X,Y)=VixY — VaxY

Show that T(fX,Y) = fT(X,Y) for an arbitrary (smooth) function, i.e. it does not possesses derivatives:

f)rw( uf:)(:, ‘i{-) =V 1'f‘Xf1§{- -V 2fX Y = ((E))((f?) Y + ”f?‘§7 1xY — ((f))(_bf') Y — hf]‘;7 oxY = tf?flj(:)ii R ‘5{-).

6 * a) Consider t,, ="t . Show that the transformation law for t,, is

3xmt 92z oz
dxm" ™ " Gz xk' dar

bty =



b) T Show that this law can be written as
t = aﬂt + 9 log det oz
N P o' ) )

Solution. Using transformation law (1) we have

y oz dxF dx™ ox" oz
tm’ :Fi’m” = e A /ka+ = 7~
Ox* Ox" Oz™ Ox"' 0x™ Oz"
We have that %J; gﬁfﬁ = 0F. Hence
o ozt dx* dxm dx" O 02 dxm Az’ Pa™ dxm Oz

bt = Vi = 507 007 9 Plem ™+

: el | el _ = O
oz dx™ Ox" L ox™ km+8z“8xm’ oz Ox™ +8z1 Ox™ Ox"

b) T When calculating

azam’ (log det ( gf, )) use very important formula:

Sdet A = det ATr (A'6A) — dlogdet A = Tr (A™16A).

—a log det % = —axi/ 782:13’"
arm \ %8 ox') )  Oxr 0xV Ox™
and we come to transformation law for (1).
To deduce the formula for 6 det A notice that

Hence

det(A 4+ 6A) = det Adet(1 4+ A™15A)

and use the relation: det(1+ 5A) =1+ TrdA + O(62A)

7 Consider the surface M in the Fuclidean space E™. Calculate the induced connection in the following
cases

a) M =S in E?,

b) M — parabola y = x* in E?,

c) cylinder in E3.

d) cone in E3.

e) sphere in E3.

f) saddle z = xy in E3

Solution.

a) Consider polar coordinate on S!, = Rcosp,y = Rsinp. We have to define the connection on S!
induced by the canonical flat connection on E2. It suffices to define V 2 % =T%,0,.

Recall the general rule. Let r(u®): ' = x%(u®) is embedded surface in Euclidean space E™. The basic
9  _ Or(u)
ou> — Ou~ -’

a usual derivative of vector Y along vector X (the derivative with respect to canonical flat connection: in

vectors To take the induced covariant derivative VxY for two tangent vectors X, Y we take

Cartesian coordiantes is just usual derivatives of components) then we take the tangent component of the
answer, since in general derivative of vector Y along vector X is not tangent to surface:

0 ical) O 0?r(u)
Y _m Y _ (canomca)i _ [y
v 83& auﬂ b 8U’Y (VBO, 6’(},6 ) tangent (aua auﬁ tangent




(V canonical Ba%) is just usual derivative in Euclidean space since for canonical connection all Christoffel
symbols vanish.)
In the case of 1-dimensional manifold, curve it is just tangential acceleration!:

0 0 (canonical) 0 d2r(u)
_—= Fu _—= v —_— = = angen
% au u 6“’ < Ou 8“’ tangent du2 tangent e sent

For the circle St, (z = Rcosp,y = Rsin ), in E2. We have

\Y

r fif%ﬁJr@g——Rsin éJchos ﬁ
T 0p  O0pdx dpdy 7 ou oy’

o (canonic.) 9
— =T¥ = = do -
v 5 Op F<P¢8‘P (vaw a¢> tangent < ot rtp) tangent

0 0 0 0 0 0
— (=Rsiny) — + — (Rcosp) — = —-Rcosp— — Rsinp— =0,
(8@ ( Lp) 8CU 890 ( SO) ay)tangent ( soax <pay)tangent

since the vector —R cos gpa% — Rsin goa% is orthogonal to the tangent vector r,. In other words it means that
acceleration is centripetal: tangential acceleration equals to zero.

We see that in coordinate ¢, I'Z , = 0.

Additional work: Perform calculation of Christoffel symbol in stereographic coordinate t:

2tR? R(t? — R?)

TRV TerR

In this case )
o ord oyo 2R . D )
= _— =" 42 - - __" —t7) 5= +2tR—

"S5 T oior Totoy (R4 ((R Jor TG )

0 (canonic.) 0
V%a - Iﬂztat - (Vat at)tangent B (atrt>tangent N (rtt)tangent B

( ot 2 <zt6+233>)
2+ R " (R2+12)? Ox 9Y) ) tangent

In this case ry is not orthogonal to velocity: to calculate (rs)tangent We need to extract its orthogonal

component:

(rtt)tangent =Ty — <rtt7 nt>n

We have
r

1

n; =

where (r;,n) = 0. Hence (ry,n) = % and

(rtt)tangent =Ty — <rtt7 nt>n =

at 2R 9 ) AR 1 s s —ot
<_t2 R T m ey (_Qtax " 2R3y)> e e G0 (- R0y) =

We come to the answer:

—2t

at7 le].—‘gt = m



Of course we could calculate the Christoffel symbol in stereographic coordinates just using the fact that we
already know the Christoffel symbol in polar coordinates: I'Z , = 0, hence

It _ﬁdﬁdﬁ »

n d?p dt B d?p dt
B dodr de” 9% dt2 de  di? dy
It is easy to see that ¢ = Rtan (% + %), i.e. p = 2arctan % —

™

3 and

o P dt

_ a2z 2t
tt = o = e T "B p3-
dt? dy de t2 + R?

b) For parabola z = t,y = t2
g2 _ 020 Oyo 9 0
YT ot otox  otdy oz oy’

0 canonic.
Vg g = Thdh = (v< )

O

B 0
0 ) = (I‘ ) =r angent (2>
¢ tangent ot ¢ tangent ( tt)t gent tangent

oy
To calculate (r¢)tangent We need to extract its orthogonal component: (rtt)tangent =ry — (ry, ng)n, where n
is an orthogonal unit vector: (n,r;) =0, (n,n) = 1:

1

= — (=2t0, + 0,) .
T + 42 ( 2
We have

1 1

(rtt)tangem =Ty — <rtt7 nt>n = 26y — < s

4t 8t2 4t

8 pu—
14 4¢2 ””+1+4t2 Vo412
We come to the answer:

4t
0y +2t0y) = ——— 90,
(0 + 2t0y) 1+427"
4t . 4t
Vat&g = wat, 1.e.F§t =

14 4t2

Remark Do not be surprised by resemblance of the answer to the answer for circle in stereographic coordi-
nates.

¢) Cylinder

T = acosy
r(h,p): {

y=asiny .
z=nh
0 —asing
Oh=1rp,=10],0,=r,=| acosyp
1 0
Calculate

h © 32r
Vahah - thah + F}Lhaﬁﬂ =

oh?

> = Osince rp, = 0.
tangent

h _TY _
Hence I'y, =T, =0

h 1z 821'
vf’ha@ = Vakp On = thpah + thpaso =

= 0Osince rp, =0
8ha@>tangcnt ’
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Hence FZ% =Th = I‘f@ = Fih =0.

©wh
92r —acosp
Vo,0p =T0,0n +T%,0, = () = —asin =0
’ e o 8@890 tangent 0
tangent
—acosp
since the vector r,, = | —asing | is orthogonal to the surface of cylinder. Hence FZ@ = th = Ff@ =
0

Y, =0
wh
We see that for cylinder all Christoffel symbols in cylindrical coordinates vanish. This is not big surprise:
in cylindrical coordinates metric equals dh? = a?d?. This due to Levi-Civita theorem one can see that Levi-
Civita connection which is equal to induced connection vanishes since all coefficients are constants.

d) Cone
x = khcos ¢
For cone: 2% + y? = k?2? we have r(h, o) =< y = khsingp
z=nh
o kcos g o —khsinp 1 cos
— =rp = | ksin ,— =r,=| khcos ,n=———— | sin
on ~ ™ A PR oY Vize (T

We have r;, = 0, hence Vg, 0, = 0. ie. T}, =T, =0.

—ksingp
We have that rj, =1, = | kcosp | =52, 1e. Vy,0, = Vo 0 = 52
0
o _pe _ h _ ph
Fiup - Fap,h - E ’ Fhap - Faph
—khcosp
Now calculate r,,: ry, = [ —khsing |. This vector is neither tangent to the cone nor orthogonal to the
0
cone: 0 # (ry,,n) = — \/% Hence we have consider its decomposition:
Top = Tpp — (Fpp, ) + (rop, n)n
—_— ———

tangent component orthogonal component

Hence we have

kh
V0, = ( Wp)tangent =Tpp — (Fpp, )N =Ty + V1+k2 -
_kh cos @ ]Ch COS @ th kCOSSD hk2
_khoSln@ e (2 T2 | Fne | = et
ie. 2
hk
Fh _— = 0

e) Sphere



x = Rsinfcosp
For the sphere r(0, ¢): y = Rsinfsin ¢ , we have

z = Rcosf
9 Rcosfcosp o —Rsinfsin ¢ sin 6 cos ¢
90— Y0 = Rcosfsing ' g = T = Rsinfcosy | ,n= | sinfsing
—Rsin6 v 0 cos 6
Calculate
0 © 821‘
Vaeag == F%.ag + F%aw - 72 = O
062 J, "
angen
since % = —Rn is orthogonal to the sphere. Hence I‘Ze =Ty, =0.

Now calculate

0 ® 621'
Vaeap - Fgwag + Fewaw - % .
tangent

We have
0%r
000y

= cotan fr,,

hence )

Vo, 0, =10 99 +T% 0, = O = cotanfry,i.e
09 Y 00 0p~P 8964)0 @y U-E.
tangent

I’z@ =0,T, = cotan

Now calculate

Vo, =T%,05 + T%,0 (a%)
9,90 = o0 =\ 3 an .
v w0 8¢60 tangent

We have
9%r
00l

= cotan fr,,

hence

2
Vo,0, =15 09 +T¢ 0, = O = cotanfr,,i.e
99 Yo 00 0p~P 898(,0 2R
tangent

Fig = O,Fig = cotanf. Of course we did not need to perform these calculations: since V is symmetric
connection and Vy_0p = V,0,, i.e.

F?p@ = sz =0T7, =T}, =cotand.

and finally
0%r
¥ tangent
We have
or —Rsinf cos ¢
907 = ro, = | —Rsinfsingp
14 0

The vector ry,, is not proportional to normal vector n, i.e. it is not orthogonal to the sphere; the vector r,,
is not tangent to sphere, i.e. it is not orthogonal to vector n: 0 # (r,,,n) = —R sin? 0. We decompose the
vector ry, on the sum of tangent vector and orthogonal vector:

T n(rsw, Il> +n<r¢¢7 n>7
—

tangent vector
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We see that

9r —Rsinfcos ¢ sin 6 cos ¢
(32) =1y, — 0(ryy,n) =Ty, + Rsin?fn = | —Rsinfsing | + Rsin®0 | sinfsingp | =
¥ tangent 0 cos 6
—Rcos?0sinf cos cosfcosp
—Rcos?fsinfsing | = —sinfcosf | cosfsing | = —sinfcosfry.
Rsin? 0 cos 0 —sinf
We have
Vs, 0 I 9 +T%.0 ( O°x ) sinf cos Ory, i.e
8,00 = () = = - 9, i.c.
’ e peme 8Q0890 tangent
0 _ _ _
I, =—sinfcosf, I'7, = 0.
f) Saddle
T=u 1 0
For saddle z = zy: We have r(u,v): {y =v ,0,=1r,=1(0],0,=r, =1 1| It will be useful also
z=uv v u
—v

1

to use the normal unit vector n = T —lu

Calculate:

U v 821. :
Vo,0u =1%,0,+T%,0, = <8u2> = (Tuu)tangens = Osince ryy = 0.
tangent

Hence I't, =T, = 0.
Analogously I', =T'V, = 0 since r,, = 0.

u v U v .
Now calculate I'y,,, 'y, Ty, T'h

u
vU

0
Vau 811 = Vav 8u = ngau + sza'u = (ruv)tangent = 0

tangent

Using normal unit vector n we have: (ryy)tangent = Fuv — (Fyo, m)yn =T% 0, + 17,0, =

0 0 0 1 v 1 —v
0 =10 _< 0 Arzrz | Y >/ﬁ I
1 rangent 1 1 1+u+v 1 1+u”+v 1
1 v v (1) n U 0 Ty, + ur,
—_— u = —_— u = ————:
Ltu? o2\ o 0 T+u? 402 | | L+u?+0% | 1+ u? + 02

u — U . v v — v . u
Hence I't, =T%, = T To? and I}, =17, = T i
Sure one may calculate this connection as Levi-Civita connction of the induced Riemannian metric using
explicit Levi-Civita formula or using method of Lagrangian of free particle.



