
Homework 5. Solutions

1 Calculate the Christoffel symbols of the canonical flat connection in E3 in

a) cylindrical coordinates (x = r cosϕ, y = r sinϕ, z = h),

b) spherical coordinates.

(For the case of sphere try to make calculations at least for components Γrrr,Γ
r
rθ,Γ

r
rϕ,Γ

r
θθ, . . . ,Γrϕϕ)

In cylindrical coordinates (r, ϕ, h) we have

{x = r cosϕ
y = r sinϕ
z = h

and

 r =
√
x2 + y2

ϕ = arctan yx
h = z

We know that in Cartesian coordinates all Christoffel symbols vanish. Hence in cylindrical coordinates

(see in detail lecture notes):

Γrrr =
∂2x

∂2r

∂r

∂x
+
∂2y

∂2r

∂r

∂y
+
∂2z

∂2r

∂r

∂z
= 0 ,

Γrrϕ = Γrϕr =
∂2x

∂r∂ϕ

∂r

∂x
+

∂2y

∂r∂ϕ

∂r

∂y
+

∂2z

∂r∂ϕ

∂r

∂z
= − sinϕ cosϕ+ sinϕ cosϕ = 0 .

Γrϕϕ =
∂2x

∂2ϕ

∂r

∂x
+
∂2y

∂2ϕ

∂r

∂y
+
∂2z

∂2ϕ

∂r

∂z
= −xx

r
− y y

r
= −r .

Γϕrr =
∂2x

∂2r

∂ϕ

∂x
+
∂2y

∂2r

∂ϕ

∂y
+
∂2z

∂2r

∂ϕ

∂z
= 0 .

Γϕϕr = Γϕrϕ =
∂2x

∂r∂ϕ

∂ϕ

∂x
+

∂2y

∂r∂ϕ

∂ϕ

∂y
+

∂2z

∂r∂ϕ

∂ϕ

∂z
= − sinϕ

−y
r2

+ cosϕ
x

r2
=

1

r

Γϕϕϕ =
∂2x

∂2ϕ

∂ϕ

∂x
+
∂2y

∂2ϕ

∂ϕ

∂y
+
∂2z

∂2ϕ

∂ϕ

∂z
= −x−x

r2
− y y

r2
= 0 .

All symbols Γ··h,Γ
·
h· vanish

Γrrh = Γrhr = Γrhh = Γrϕh = Γrhϕ = Γϕhr = dots = 00

since ∂2x
∂h∂... = ∂2y

∂h∂... = ∂2z
∂h∂... = 0

For all symbols Γh·· Γh·· = ∂2z
∂·∂· since ∂h

∂x = ∂h
∂y = 0 and ∂h

∂y = 1. On the other hand all ∂2z
∂·∂· vanish. Hence

all symbols Γh·· vanish.

b) spherical coordinates

{
x = r sin cosϕ
y = r sin sinϕ
z = r cos θ


r =

√
x2 + y2 + z2

θ = arccos z√
x2+y2+z2

ϕ = arctan y
x

Perform now brute force calculations only for some components ∗

Γrrr = 0 since ∂2xi

∂2r = 0.

Γrrθ = Γrθr =
∂2x

∂r∂θ

∂r

∂x
+

∂2y

∂r∂θ

∂r

∂y
+

∂2z

∂r∂θ

∂r

∂z
= cos θ cosϕ

x

r
+ cos θ sinϕ

y

r
− sin θ

z

r
= 0 ,

∗ they can be quickly calculated using Lagrangian of free particle.
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Γrθθ =
∂2x

∂2θ

∂r

∂x
+
∂2y

∂2θ

∂r

∂y
+
∂2z

∂2θ

∂r

∂z
= −r sin θ cosϕ

x

r
− r sin θ sinϕ

y

r
− r cos θ

z

r
= −r

Γrrϕ = Γrϕr =
∂2x

∂r∂ϕ

∂r

∂x
+

∂2y

∂r∂ϕ

∂r

∂y
+

∂2z

∂r∂ϕ

∂r

∂z
= − sin θ sinϕ

x

r
+ sin θ cosϕ

y

r
= 0

and so on....

2 Let ∇ be an affine connection on a 2-dimensional manifold M such that in local coordinates (u, v) it

is given that Γuuv = v, Γvuv = 0.

Calculate the vector field ∇ ∂
∂u

(
u ∂
∂v

)
.

Using the properties of connection and definition of Christoffel symbols have

∇ ∂
∂u

(
u
∂

∂v

)
= ∂ ∂

∂u
(u)

∂

∂v
+ u∇ ∂

∂u

(
∂

∂v

)
=

∂

∂v
+ u

(
Γuuv

∂

∂u
+ Γvuv

∂

∂v

)
=

∂

∂v
+ u

(
v
∂

∂u
+ 0

)
=

∂

∂v
+ uv

∂

∂u
.

3 Let ∇ be an affine connection on the 2-dimensional manifold M such that in local coordinates (u, v)

∇ ∂
∂u

(
u
∂

∂v

)
= (1 + u2)

∂

∂v
+ u

∂

∂u
.

Calculate the Christoffel symbols Γuuv and Γvuv of this connection.

Using the properties of connection we have ∇ ∂
∂u

(
u ∂
∂v

)
= u∇ ∂

∂u

(
∂
∂v

)
+

∂ ∂
∂u

(u)
∂

∂v
= u

(
Γuuv

∂

∂u
+ Γvuv

∂

∂v

)
+ 1 · ∂

∂v
= (1 + uΓvuv)

∂

∂v
+ uΓuuv

∂

∂u
=
(
1 + u2

) ∂
∂v

+ u
∂

∂u
.

Hence 1 + u2 = 1 + uΓvuv and uΓvuv = u, i.e. Γvuv = u and Γuuv = 1.

4 a) Consider a connection such that its Christoffel symbols are symmetric in a given coordinate system:

Γikm = Γimk.

Show that they are symmetric in an arbitrary coordinate system.

b∗) Show that the Christoffel symbols of connection ∇ are symmetric (in any coordinate system) if and

only if

∇XY −∇YX− [X,Y] = 0 ,

for arbitrary vector fields X,Y.

c)∗ Consider for an arbitrary connection the following operation on the vector fields:

S(X,Y) = ∇XY −∇YX− [X,Y]

and find its properties.

Solution

a) Let Γikm = Γimk. We have to prove that Γi
′

k′m′ = Γi
′

m′k′

We have

Γi
′

k′m′ =
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′ Γikm +
∂xr

∂xk′∂xm′

∂xi
′

∂xr
. (1)

Hence

Γi
′

m′k′ =
∂xi

′

∂xi
∂xm

∂xm′

∂xk

∂xk′
Γimk +

∂xr

∂xm′∂xk′
∂xi

′

∂xr
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But Γikm = Γimk and ∂xr

∂xm′∂xk′
= ∂xr

∂xk′∂xm′ . Hence

Γi
′

m′k′ =
∂xi

′

∂xi
∂xm

∂xm′

∂xk

∂xk′
Γimk +

∂xr

∂xm′∂xk′
∂xi

′

∂xr
=
∂xi

′

∂xi
∂xm

∂xm′

∂xk

∂xk′
Γikm +

∂xr

∂xk′∂xm′

∂xi
′

∂xr
= Γi

′

k′m′ .

b) The relation

∇XY −∇YX− [X,Y] = 0

holds for all fields if and only if it holds for all basic fields. One can easy check it using axioms of connection

(see the next part). Consider X = ∂
∂xi ,Y = ∂

∂xj then since [∂i, ∂j ] = 0 we have that

∇XY −∇YX− [X,Y] = ∇i∂j −∇j∂i = Γkij∂k − Γkji∂k = (Γkij − Γkji)∂k = 0

We see that commutator for basic fields ∇XY −∇YX− [X,Y] = 0 if and only if Γkij − Γkji = 0.

c) One can easy check it by straightforward calculations or using axioms for connection that S(X,Y)

is a vector-valued bilinear form on vectors. In particularly S(fX, Y ) = fS(X,Y) for an arbitrary (smooth)

function. Show this just using axioms defining connection:

S(fX, Y ) = ∇fXY −∇Y(fX)− [fX,Y] = f∇XY − f∇YX− ∂YfX + [Y, fX] =

f∇XY − f∇YX− (∂Yf)X + ∂YfX + f [Y,X] = f(∇XY −∇YX− [X,Y]) = fS(X,Y)

5 Let ∇1,∇2 be two different connections. Let (1)Γikm and (2)Γikm be the Christoffel symbols of connec-

tions ∇1 and ∇2 respectively.

a) Find the transformation law for the object : T ikm = (1)Γikm − (2)Γikm under a change of coordinates.

Show that it is

(
1
2

)
tensor.

b)∗? Consider an operation ∇1 −∇2 on vector fields and find its properties.

Christoffel symbols of both connections transform according the law (1). The second term is the same.

Hence it vanishes for their difference:

T i
′

k′m′ = (1)Γi
′

k′m′ − (2)Γi
′

k′m′ =
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′

(
(1)Γikm −(2) Γikm

)
=
∂xi

′

∂xi
∂xk

∂xk′
∂xm

∂xm′ T
i
km

We see that T i
′

′km′ transforms as a tensor of the type

(
1
2

)
.

b) One can do it in invariant way. Using axioms of connection study T = ∇1 − ∇2 is a vector field.

Consider

T (X,Y) = ∇1XY −∇2XY

Show that T (fX,Y) = fT (X,Y) for an arbitrary (smooth) function, i.e. it does not possesses derivatives:

T (fX,Y) = ∇1fXY −∇2fXY = (∂Xf)Y + f∇1XY − (∂Xf)Y − f∇2XY = fT (X,Y).

6 ∗ a) Consider tm = Γiim. Show that the transformation law for tm is

tm′ =
∂ xm

∂xm′ tm +
∂2xr

∂xm′∂xk′
∂xk

′

∂xr
.
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b) † Show that this law can be written as

tm′ =
∂ xm

∂xm′ tm +
∂

∂xm′

(
log det

(
∂x

∂x′

))
.

Solution. Using transformation law (1) we have

tm′ = Γi
′

i′m′′ =
∂xi

′

∂xi
∂xk

∂xi′
∂xm

∂xm′ Γikm +
∂xr

∂xi′∂xm′

∂xi
′

∂xr

We have that ∂xi
′

∂xi
∂xk

∂xi′
= δki . Hence

tm′ = Γi
′

i′m′′ =
∂xi

′

∂xi
∂xk

∂xi′
∂xm

∂xm′ Γikm+
∂xr

∂xi′∂xm′

∂xi
′

∂xr
= δki

∂xm

∂xm′ Γikm+
∂xr

∂xi′∂xm′

∂xi
′

∂xr
=

∂xm

∂xm′ tm+
∂xr

∂xi′∂xm′

∂xi
′

∂xr
.

b) † When calculating ∂
∂xm′

(
log det

(
∂x
∂x′

))
use very important formula:

δ detA = detATr (A−1δA)→ δ log detA = Tr (A−1δA) .

Hence
∂

∂xm′

(
log det

(
∂x

∂x′

))
=
∂xi

′

∂xr
∂2xr

∂xi′∂xm′

and we come to transformation law for (1).

To deduce the formula for δ detA notice that

det(A+ δA) = detAdet(1 +A−1δA)

and use the relation: det(1 + δA) = 1 + Tr δA+O(δ2A)

7 Consider the surface M in the Euclidean space En. Calculate the induced connection in the following

cases

a) M = S1 in E2,

b) M— parabola y = x2 in E2,

c) cylinder in E3.

d) cone in E3.

e) sphere in E3.

f) saddle z = xy in E3

Solution.

a) Consider polar coordinate on S1, x = R cosϕ, y = R sinϕ. We have to define the connection on S1

induced by the canonical flat connection on E2. It suffices to define ∇ ∂
∂ϕ

∂
∂ϕ = Γϕϕϕ∂ϕ.

Recall the general rule. Let r(uα): xi = xi(uα) is embedded surface in Euclidean space En. The basic

vectors ∂
∂uα = ∂r(u)

∂uα . To take the induced covariant derivative ∇XY for two tangent vectors X,Y we take

a usual derivative of vector Y along vector X (the derivative with respect to canonical flat connection: in

Cartesian coordiantes is just usual derivatives of components) then we take the tangent component of the

answer, since in general derivative of vector Y along vector X is not tangent to surface:

∇ ∂
∂uα

∂

∂uβ
= Γγαβ

∂

∂uγ
=

(
∇(canonical)
∂α

∂

∂uβ

)
tangent

=

(
∂2r(u)

∂uα∂uβ

)
tangent
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(∇canonical ∂α
∂
∂uβ

) is just usual derivative in Euclidean space since for canonical connection all Christoffel

symbols vanish.)

In the case of 1-dimensional manifold, curve it is just tangential acceleration!:

∇ ∂
∂u

∂

∂u
= Γuuu

∂

∂u
=

(
∇(canonical)
∂u

∂

∂u

)
tangent

=

(
d2r(u)

du2

)
tangent

= atangent

For the circle S1, (x = R cosϕ, y = R sinϕ), in E2. We have

rϕ =
∂

∂ϕ
=
∂x

∂ϕ

∂

∂x
+
∂y

∂ϕ

∂

∂y
= −R sinϕ

∂

∂x
+R cosϕ

∂

∂y
,

∇ ∂
∂ϕ

∂

∂ϕ
= Γϕϕϕ∂ϕ =

(
∇(canonic.)
∂ϕ

∂ϕ

)
tangent

=

(
∂

∂ϕ
rϕ

)
tangent

=

(
∂

∂ϕ
(−R sinϕ)

∂

∂x
+

∂

∂ϕ
(R cosϕ)

∂

∂y

)
tangent

=

(
−R cosϕ

∂

∂x
−R sinϕ

∂

∂y

)
tangent

= 0,

since the vector −R cosϕ ∂
∂x −R sinϕ ∂

∂y is orthogonal to the tangent vector rϕ. In other words it means that

acceleration is centripetal: tangential acceleration equals to zero.

We see that in coordinate ϕ, Γϕϕϕ = 0.

Additional work: Perform calculation of Christoffel symbol in stereographic coordinate t:

x =
2tR2

R2 + t2
, y =

R(t2 −R2)

t2 +R2
.

In this case

rt =
∂

∂t
=
∂x

∂t

∂

∂x
+
∂y

∂t

∂

∂y
=

2R2

(R2 + t2)2

(
(R2 − t2)

∂

∂x
+ 2tR

∂

∂x

)
,

∇ ∂
∂t

∂

∂t
= Γttt∂t =

(
∇(canonic.)
∂t

∂t

)
tangent

=

(
∂

∂t
rt

)
tangent

= (rtt)tangent =

(
− 4t

t2 +R2
rt +

2R2

(R2 + t2)2

(
−2t

∂

∂x
+ 2R

∂

∂y

))
tangent

In this case rtt is not orthogonal to velocity: to calculate (rtt)tangent we need to extract its orthogonal

component:

(rtt)tangent = rtt − 〈rtt,nt〉n

We have

nt =
r

|r|
=

1

R2 + t2
(
2tR∂x + (t2 −R2)∂y

)
,

where 〈rt,n〉 = 0. Hence 〈rtt,nt〉 = −4R3

(t2+R2)2 and

(rtt)tangent = rtt − 〈rtt,nt〉n =

(
− 4t

t2 +R2
rt +

2R2

(R2 + t2)2

(
−2t

∂

∂x
+ 2R

∂

∂y

))
+

4R3

(t2 +R2)2
· 1

R2 + t2
(
2tR∂x + (t2 −R2)∂y

)
=
−2t

t2 +R2
rt

We come to the answer:

∇∂t∂t =
−2t

t2 +R2
∂t, i.e.Γt

tt =
−2t

t2 + R2
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Of course we could calculate the Christoffel symbol in stereographic coordinates just using the fact that we

already know the Christoffel symbol in polar coordinates: Γϕϕϕ = 0, hence

Γttt =
dt

dϕ

dϕ

dx

dϕ

dx
Γϕϕϕ +

d2ϕ

dt2
dt

dϕ
=
d2ϕ

dt2
dt

dϕ

It is easy to see that t = R tan
(
π
4 + ϕ

2

)
, i.e. ϕ = 2 arctan t

R −
π
2 and

Γttt =
d2ϕ

dt2
dt

dϕ
=

d2ϕ
dt2

dϕ
dt

= − 2t

t2 +R2
.

b) For parabola x = t, y = t2

rt =
∂

∂t
=
∂x

∂t

∂

∂x
+
∂y

∂t

∂

∂y
=

∂

∂x
+ 2t

∂

∂y
,

∇ ∂
∂t

∂

∂t
= Γttt∂t =

(
∇(canonic.)
∂t

∂t

)
tangent

=

(
∂

∂t
rt

)
tangent

= (rtt)tangent =

(
2
∂

∂y

)
tangent

To calculate (rtt)tangent we need to extract its orthogonal component: (rtt)tangent = rtt− 〈rtt,nt〉n, where n

is an orthogonal unit vector: 〈n, rt〉 = 0, 〈n,n〉 = 1:

nt =
1√

1 + 4t2
(−2t∂x + ∂y) .

We have

(rtt)tangent = rtt − 〈rtt,nt〉n = 2∂y −
〈

2∂y,
1√

1 + 4t2
(−2t∂x + ∂y)

〉
1√

1 + 4t2
(−2t∂x + ∂y) =

4t

1 + 4t2
∂x +

8t2

1 + 4t2
∂y =

4t

1 + 4t2
(∂x + 2t∂y) =

4t

1 + 4t2
∂t

We come to the answer:

∇∂t∂t =
4t

1 + 4t2
∂t, i.e.Γt

tt =
4t

1 + 4t2

Remark Do not be surprised by resemblance of the answer to the answer for circle in stereographic coordi-

nates.

c) Cylinder

r(h, ϕ):

{x = a cosϕ
y = a sinϕ
z = h

.

∂h = rh =

 0
0
1

, ∂ϕ = rϕ =

−a sinϕ
a cosϕ

0


Calculate

∇∂h∂h = Γhhh∂h + Γϕhh∂ϕ =

(
∂2r

∂h2

)
tangent

= 0 since rhh = 0.

Hence Γhhh = Γϕhh = 0

∇∂h∂ϕ = ∇∂ϕ∂h = Γhhϕ∂h + Γϕhϕ∂ϕ =

(
∂2r

∂h∂ϕ

)
tangent

= 0 since rhϕ = 0
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Hence Γhhϕ = Γhϕh = Γϕhϕ = Γϕϕh = 0.

∇∂ϕ∂ϕ = Γhϕϕ∂h + Γϕϕϕ∂ϕ =

(
∂2r

∂ϕ∂ϕ

)
tangent

=

−a cosϕ
−a sinϕ

0


tangent

= 0

since the vector rϕϕ =

−a cosϕ
−a sinϕ

0

 is orthogonal to the surface of cylinder. Hence Γhhϕ = Γhϕh = Γϕhϕ =

Γϕϕh = 0

We see that for cylinder all Christoffel symbols in cylindrical coordinates vanish. This is not big surprise:

in cylindrical coordinates metric equals dh2 = a2dϕ2. This due to Levi-Civita theorem one can see that Levi-

Civita connection which is equal to induced connection vanishes since all coefficients are constants.

d) Cone

For cone: x2 + y2 = k2z2 we have r(h, ϕ) =

{
x = kh cos ϕ
y = kh sinϕ
z = h

∂

∂h
= rh =

 k cosϕ
k sinϕ

1

 ,
∂

∂ϕ
= rϕ =

−kh sinϕ
kh cosϕ

0

 , n =
1√

1 + k2

 cosϕ
sinϕ
−k


We have rhh = 0, hence ∇∂h∂h = 0. i.e. Γhhh = Γϕhh = 0.

We have that rhϕ = rϕh =

−k sinϕ
k cosϕ

0

 =
rϕ
h , i.e. ∇∂h∂ϕ = ∇∂ϕ∂h =

rϕ
h :

Γϕhϕ = Γϕϕ,h =
1

h
, Γhhϕ = Γhϕh.

Now calculate rϕϕ: rϕϕ =

−kh cosϕ
−kh sinϕ

0

. This vector is neither tangent to the cone nor orthogonal to the

cone: 0 6= 〈rϕϕ,n〉 = − kh√
1+k2

. Hence we have consider its decomposition:

rϕϕ = rϕϕ − 〈rϕϕ,n〉n︸ ︷︷ ︸
tangent component

+ 〈rϕϕ,n〉n︸ ︷︷ ︸
orthogonal component

Hence we have

∇ϕ∂ϕ = (rϕϕ)tangent = rϕϕ − 〈rϕϕ,n〉n = rϕϕ +
kh√

1 + k2
n =−kh cosϕ

−kh sinϕ
0

+
kh

1 + k2

 cosϕ
sinϕ
−k

 = − hk2

1 + k2

 k cosϕ
k sinϕ

1

 = − hk2

1 + k2
rh,

i.e.

Γhϕϕ = − hk2

1 + k2
, Γϕϕϕ = 0 .

e) Sphere
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For the sphere r(θ, ϕ):

{
x = R sin θ cosϕ
y = R sin θ sinϕ
z = R cos θ

, we have

∂

∂θ
= rθ =

R cos θ cosϕ
R cos θ sinϕ
−R sin θ

 ,
∂

∂ϕ
= rϕ =

−R sin θ sinϕ
R sin θ cosϕ

0

 , n =

 sin θ cosϕ
sin θ sinϕ

cos θ


Calculate

∇∂θ∂θ = Γθθθ∂θ + Γϕθθ∂ϕ =

(
∂2r

∂θ2

)
tangent

= 0

since ∂2r
∂θ2 = −Rn is orthogonal to the sphere. Hence Γθθθ = Γϕθθ = 0.

Now calculate

∇∂θ∂ϕ = Γθθϕ∂θ + Γϕθϕ∂ϕ =

(
∂2r

∂θ∂ϕ

)
tangent

.

We have
∂2r

∂θ∂ϕ
= cotan θrϕ,

hence

∇∂θ∂ϕ = Γθθϕ∂θ + Γϕθϕ∂ϕ =

(
∂2r

∂θ∂ϕ

)
tangent

= cotan θrϕ, i.e.

Γθθϕ = 0,Γϕθϕ = cotan θ

Now calculate

∇∂ϕ∂θ = Γθϕθ∂θ + Γϕϕθ∂ϕ =

(
∂2r

∂ϕ∂θ

)
tangent

.

We have
∂2r

∂ϕ∂θ
= cotan θrϕ,

hence

∇∂θ∂ϕ = Γθθϕ∂θ + Γϕθϕ∂ϕ =

(
∂2r

∂θ∂ϕ

)
tangent

= cotan θrϕ, i.e.

Γθϕθ = 0,Γϕϕθ = cotan θ. Of course we did not need to perform these calculations: since ∇ is symmetric

connection and ∇∂ϕ∂θ = ∇∂θ∂ϕ, i.e.

Γθϕθ = Γθθϕ = 0 Γϕϕθ = Γϕθϕ = cotan θ .

and finally

∇∂ϕ∂ϕ = Γθϕϕ∂θ + Γϕϕϕ∂ϕ =

(
∂2r

∂ϕ2

)
tangent

.

We have

∂2r

∂ϕ2
= rϕϕ =

−R sin θ cosϕ
−R sin θ sinϕ

0

 .

The vector rϕϕ is not proportional to normal vector n, i.e. it is not orthogonal to the sphere; the vector rϕϕ

is not tangent to sphere, i.e. it is not orthogonal to vector n: 0 6= 〈rϕϕ,n〉 = −R sin2 θ. We decompose the

vector rϕϕ on the sum of tangent vector and orthogonal vector:

rϕϕ = rϕϕ − n〈rϕϕ,n〉︸ ︷︷ ︸
tangent vector

+n〈rϕϕ,n〉,

8



We see that

(
∂2r

∂ϕ2

)
tangent

= rϕϕ − n〈rϕϕ,n〉 = rϕϕ +R sin2 θn =

−R sin θ cosϕ
−R sin θ sinϕ

0

+R sin2 θ

 sin θ cosϕ
sin θ sinϕ

cos θ

 =

−R cos2 θ sin θ cosϕ
−R cos2 θ sin θ sinϕ

R sin2 θ cos θ

 = − sin θ cos θ

 cos θ cosϕ
cos θ sinϕ
− sin θ

 = − sin θ cos θrθ .

We have

∇∂ϕ∂ϕ = Γθϕϕ∂θ + Γϕϕϕ∂ϕ =

(
∂2r

∂ϕ∂ϕ

)
tangent

= − sin θ cos θrθ, i.e.

Γθϕϕ = − sin θ cos θ,Γϕϕϕ = 0.

f) Saddle

For saddle z = xy: We have r(u, v):

{x = u
y = v
z = uv

, ∂u = ru =

 1
0
v

, ∂v = rv =

 0
1
u

 It will be useful also

to use the normal unit vector n = 1√
1+u2+v2

−v−u
1

.

Calculate:

∇∂u∂u = Γuuu∂u + Γvuu∂v =

(
∂2r

∂u2

)
tangent

= (ruu)tangent = 0 since ruu = 0.

Hence Γuuu = Γvuu = 0.

Analogously Γuvv = Γvvv = 0 since rvv = 0.

Now calculate Γuuv,Γ
v
uv,Γ

u
vu,Γ

v
vu:

∇∂u∂v = ∇∂v∂u = Γuuv∂u + Γvuv∂v = (ruv)tangent =

 0
0
1


tangent

Using normal unit vector n we have: (ruv)tangent = ruv − 〈ruv,n〉n = Γuuv∂u + Γvuv∂v = 0
0
1


tangent

=

 0
0
1

−〈
 0

0
1

 ,
1√

1 + u2 + v2

−v−u
1

〉 1√
1 + u2 + v2

−v−u
1

 =

1

1 + u2 + v2

 v
u

u2 + v2

 =
v

1 + u2 + v2

 1
0
v

+
u

1 + u2 + v2

 0
u
u

 =
vru + urv

1 + u2 + v2
.

Hence Γuuv = Γuvu = v
1+u2+v2 and Γvuv = Γvvu = u

1+u2+v2 .

Sure one may calculate this connection as Levi-Civita connction of the induced Riemannian metric using

explicit Levi-Civita formula or using method of Lagrangian of free particle.
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