
Homework 6. Solutions.

1. Calculate Levi-Civita connection of the metric G = a(u, v)du2 + b(u, v)dv2

a) in the case if functions a(u, v), b(u, v) are constants.

b) if a ≡ b
c) In general case

We know that for Levi-Civita connection

Γimk =
1

2
gij
(
∂gjm
∂xk

+
∂gjk
∂xm

− ∂gmk
∂xj

)
. (1)

a) We do not need to do any calculations since a and b are constants, and all partial

derivatives
∂gjm
∂xk

for metric G =

(
a 0
0 b

)
are equal to zero. Hence all Christoffel symbols

vanish.

b) In this case we have to perform calculations:

We have

G = a(u, v)du2+b(u, v)dv2, G =

(
g11 g12
g21 g22

)
=

(
a(u, v) 0

0 b(u, v)

)
, G−1 =

(
g11 g12

g21 g22

)
=

( 1
a(u,v) 0

0 1
b(u,v)

)
.

Hence according to (1)

Γ1
11 = Γuuu = 1

2g
11 (∂1g11 + ∂1g11 − ∂1g11) = 1

2g
11∂uguu = au

2a

Γ1
21 = Γ1

12 = Γuuv = Γuvu = g11

2 (∂1g12 + ∂2g11 − ∂1g12) = guu

2 ∂vguu = av
2a

Γ1
22 = Γuvv = g11

2 (∂2g12 + ∂2g12 − ∂1g22) = − g
uu

2 ∂ugvv = − bu2a

Γ2
11 = Γvuu = g22

2 (∂1g12 + ∂1g12 − ∂2g11) = − g
vv

2 ∂vguu = −av2b

Γ2
12 = Γ2

21 = Γvuv = Γvvu = g22

2 (∂2g21 + ∂1g22 − ∂2g21) = gvv

2 ∂ugvv = bu
2b

Γ2
22 = Γvvv = g22

2 (∂2g22 + ∂2g22 − ∂2g22) = gvv

2 ∂vgvv = bv
2b

(We use notations (u, v) = (x1, x2).)

2Calculate Levi-Civita connection of the Riemannian metric G = e−x
2−y2(dx2 + dy2)

at the point x = y = 0.

We see that in the formula

Γαβρ =
1

2
gαπ

(
∂gπβ
∂xρ

+
∂gπρ
∂xβ

− ∂gρβ
∂xπ

)
.
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all derivatives
∂gπβ
∂xρ vanish at origin, since

∂e−x
2−y2∂x

∣∣
x=y=0

= ∂e−x
2−y2∂y

∣∣
x=y=0

= 0 .

(Indeed: ∂e−x
2−y2∂x

∣∣
x=y=0

= −2xe−x
2−y2

∣∣
x=y=0

= 0.)

3. Calculate Levi-Civita connection of Euclidean metric of a plane in

a) Cartesian coordinates

b) polar coordinates

In Cartesian coordinates metrics coefficients are constants. All partial derivatives in

(1) equal to zero. Hence all Christoffel symbols vanish. The Levi-Civita connection is

canonical flat connection.

b) polar coordinates: G = dr2 + r2dϕ2. We have:

G =

(
grr grϕ
gϕr gϕϕ

)
=

(
1 0
0 r2

)
, G−1 =

(
grr grϕ

gϕr gϕϕ

)
=

(
1 0
0 1

r2

)
We have:

Γrϕϕ =
1

2
grr
(
−∂gϕϕ

∂r

)
=

1

2
(−2r) = −r ,

Γϕrϕ = Γϕϕr =
1

2
gϕϕ

(
∂gϕϕ
∂r

)
=

1

2r2
(2r) =

1

r
,

all other Christoffel symbols vanish. This is in accordance with calculation of Christof-

fel symbols in polar coordinates (see Lecture notes) One can calculate these Christoffel

symbols using Lagrangians (see the question 8a in this homework).

4. Calculate Levi-Civita connection of the Riemannian metric induced on the surface

of a cylinder x2 + y2 = a2 in coordinates h, ϕ:

r(h, ϕ):

{x = a cosϕ
y = a sinϕ
z = h

.

For surface of cylinder r(h, ϕ):

{x = a cosϕ
y = a sinϕ
z = h

the induced Riemannian metric is equal

to G = dh2 + a2dϕ2 (see previous exercises). We see that coefficeints are constants (as in

Cartesina coordinates for Euclidean case). Hence Chrsitoffel symbols vanish in coordinates

h, ϕ.

5. Calculate Levi-Civita connection of the Riemannian metric induced on the surface

of the cone x2 + y2 − k2z2 = 0. in coordinates h, ϕ:

r(h, ϕ):

{
x = kh cosϕ
y = kh sinϕ
z = h

.
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Do there exist coordinates on the cone such that Christoffel symbols of Levi-Civita connec-

tion of induced metric vanish in these coordinates?

We have

G = (dx2+dy2+dz2)
∣∣
x=kh cosϕ,y=kh sinϕ,z=h

= (kdh cosϕ−kh sinϕdϕ)2+(kdh sinϕ+kh cosϕdϕ)2+dh2 =

(k2 + 1)dh2 + k2h2dϕ2 , ||gαβ || =
(

1 + k2

0 k2h2

)
, ||gαβ || =

( 1
1+k2

0 1
k2h2

)
.

Now calculate Levi-Civita connection using the formula

Γαβρ =
1

2
gαπ

(
∂gπβ
∂xρ

+
∂gπρ
∂xβ

− ∂gρβ
∂xπ

)
.

Hence

Γhhh =
1

2
ghh

(
∂ghh
∂h

)
= 0 ,Γhhϕ = Γhϕh =

1

2
ghh

(
∂ghh
∂ϕ

)
= 0 ,Γhϕϕ =

1

2
ghh

(
−∂gϕϕ

∂h

)
=

1

2(1 + k2)
2k2h = − k2h

1 + k2
,

Γϕhh =
1

2
gϕ
(
−∂ghh
∂ϕ

)
= 0 ,Γϕhϕ = Γϕϕh =

1

2
gϕ
(
∂gϕϕ
∂h

)
=

1

2k2h2
2k2h =

1

h
,Γϕϕϕ =

1

2
gϕϕ

(
−∂gϕϕ

∂ϕ

)
= 0 ,

Hence we have that in coordinates h, ϕ non-vanishing components of Christoffel symbols

are

Γhϕϕ = − k2h

1 + k2
,Γϕhϕ = Γϕϕh =

1

h
.

Yes these coordinates exist. We know that on cone x2 + y2 − k2z2 = 0 one can find

new local coordinates {
u =
√
k2 + 1h cos k√

k2+1
ϕ

v =
√
k2 + 1h sin k√

k2+1
ϕ

such that induced metric on the cone becomes G|c = du2+dv2, i.e. cone locally is isometric

to the Euclidean plane (see homework 3). In these coordinates according to formula (1)

all Christoffel symbols vanish.

6. Calculate Levi-Civita connection of the metric G = R2(dθ2 + sin2 θdϕ2) on the

sphere.

We have

G =

(
gθθ gθϕ
gϕθ gϕϕ

)
=

(
R2 0
0 R2 sin2 θ

)
, G−1 =

(
gθθ gθϕ

gϕθ gϕϕ

)
=

(
1
R2 0
0 1

R2 sin2 θ

)
We have:

Γθϕϕ =
1

2
gθθ
(
−∂gϕϕ

∂θ

)
=

1

2
(−2 sin θ cos θ) = − sin θ cos θ ,
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Γϕθϕ = Γϕϕθ =
1

2
gϕϕ

(
∂gϕϕ
∂θ

)
=

1

2sin2θ
(2 sin θ cos θ) = cotan θ.

all other Christoffel symbols vanish. This is in accordance with calculation of Christoffel

symbols of the induced connection on the sphere (see Lecture notes the subsubsection

2.2.1)

7 Let E2 be the Euclidean plane with the standard Euclidean metric G
Eucl.

= dx2+dy2.

You know that for the Levi-Civita connection of this metric the Christoffel symbols

vanish in the Cartesian coordinates x, y. (Why?)

Let ∇ be a symmetric connection on the Euclidean plane E2 such that its Christoffel

symbols satisfy the condition Γyxy = Γyyx 6= 0.

Show that for vector fields A = ∂x and B = ∂y, ∂A 〈B,B〉 6= 2〈∇AB,B〉, i.e. the

connection ∇ does not preserve the Euclidean scalar product 〈 , 〉.
For Euclidean metric all componets of metric G = dx2 + dy2 are constants: ||gik|| =(

1 0
0 1

)
Due to the formula above all derivatives vanish. Hence all Christoffel symbols

vanish.

Consider vector field A = ∂x and vector field B = ∂y. Scalar product of the vector

field B on itself is equal to 1 and ∇A(B,B) = ∂A1 = 0. On the other hand ∇AB =

∇∂x∂y = Γxxy∂x + Γyxy∂y and the scalar product 〈∇AB,Y〉 is equal to

〈∇AB,B〉 = 〈Γxxy∂x + Γyxy∂y, ∂y〉 = Γyxy 6= 0 .

Hence we see that ∇A〈B,B〉 = 0 6= 2〈∇AB,B〉.
8 † Consider the Lagrangian of ”free” particle L = 1

2gikẋ
iẋk for Riemannian manifold

with a metric G = gikdx
idxk.

Write down Euler-Lagrange equations of motion for this Lagrangian and compare them

with differential equations for geodesics on this Riemannian manifold.

In fact show that

∂L

∂xi
=

d

dt

∂L

∂ẋi︸ ︷︷ ︸
Euler-Lagrange equations

⇔ d2xi

dt2
+ Γikmẋ

kẋm = 0︸ ︷︷ ︸
Equations for geodesics

, (1)

where

Γikm =
1

2
gij
(
∂gjk
∂xm

+
∂gjm
∂xk

− ∂gkm
∂xj

)
. (2)

Solution: see the lecture notes.
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Write down the Lagrangian of free particle L = 1
2gikẋ

iẋk and using Euler-Lagrange

equations for this Lagrangian calculate Christoffel symbols (Christoffel symbols of Levi-

Civita connection) for

a) Eulcidean plane in polar coordinates

b) for the sphere of radius R

c) for Lobachevsky plane

Compare with the results that you obtained using straightforwardly the formula (1) or

using formulae for induced connection.

Solution.

a) for Euclidean plane in polar coordinates

Riemannian metric on the plane E2 in polar spherical coordinates is G = dr2 +r2dϕ2.

Hence the Lagrangian of the free particle is

L =
ṙ2 + r2ϕ̇2

2

Euler-Lagrange equations for r:

∂L

∂r
= rϕ̇2 ,

d

dt

(
∂L

∂ḣ

)
=

d

dt
ṙ =

··
r , i.e.

··
r − rϕ̇2 = 0 ,

Comparing with equation for geodesic

··
r + Γrrr ṙṙ + Γrrϕṙϕ̇+ Γrϕrϕ̇θ̇ + Γrϕϕϕ̇ϕ̇ =

··
r + Γrrr ṙṙ + 2Γrrϕṙϕ̇+ Γrϕϕϕ̇ϕ̇ = 0

we see that

Γrrr = Γrrϕ = Γrϕr = 0, Γrϕϕ = −r ,

Analogously Euler-Lagrange equations for ϕ:

∂L

∂ϕ
=

d

dt

(
∂L

∂ϕ̇

)
,

∂L

∂ϕ
= 0,

∂L

∂ϕ̇
= r2ϕ̇ ,hence

d

dt

(
∂L

∂ϕ̇

)
=

d

dt

(
r2ϕ̇
)

= r2
··
ϕ+ 2rṙϕ̇ = 0 ,

i.e.
··
ϕ+ 2

1

r
ṙϕ̇ = 0 .

Comparing with equation for geodesic

··
ϕ+ Γϕrr ṙṙ + Γϕrϕṙϕ̇+ Γϕϕrϕ̇ṙ + Γϕϕϕϕ̇ϕ̇ =

··
θ + Γϕrr ṙṙ + 2Γϕrϕṙϕ̇+ Γϕϕϕϕ̇ϕ̇ = 0 .

Comparing with Euler-Lagrange equations for geodesics we see that

Γϕrr = Γϕϕϕ = 0 ,Γϕϕr = Γϕrϕ =
1

r
.
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Hence we see that Christoffel symbols of Euclidean plane in polar coordinates all vanish

except

Γrϕϕ = −r , Γϕϕr = Γϕrϕ =
1

r
.

b) For the sphere:

Riemannian metric on sphere in spherical coordinates is G = R2dθ2 + R2 sin2 θdϕ2.

Hence the Lagrangian of the free particle is

L =
R2θ̇2 +R2 sin2 θϕ̇2

2

Euler-Lagrange equations for θ:

∂L

∂θ
=

d

dt

(
∂L

∂θ̇

)
,

∂L

∂θ
= R2 sin θ cos θϕ̇2,

∂L

∂θ̇
= R2θ̇

Hence
d

dt

(
R2θ̇

)
= R2 sin θ cos θϕ̇2, R2

··
θ = R2 sin θ cos θϕ̇2,

hence
··
θ − sin θ cos θϕ̇2 = 0 .

Comparing with equation for geodesic

··
θ + Γθθθ θ̇θ̇ + Γθθϕθ̇ϕ̇+ Γθϕθϕ̇θ̇ + Γθϕϕϕ̇ϕ̇ =

··
θ + Γθθθ θ̇θ̇ + 2Γθθϕθ̇ϕ̇+ Γθϕϕϕ̇ϕ̇ = 0

we see that

Γθθθ = Γθθϕ = Γθϕθ = 0, Γθϕϕ = − sin θ cos θ

Analogously Euler-Lagrange equations for ϕ:

∂L

∂ϕ
=

d

dt

(
∂L

∂ϕ̇

)
,

∂L

∂ϕ
= 0,

∂L

∂ϕ̇
= R2 sin2 θϕ̇ .

Hence
d

dt

(
R2 sin2 θϕ̇

)
= 0, R2 sin2 θ

··
ϕ+ 2R2 sin θ cos θθ̇ϕ̇ = 0,

hence
··
θ + cotan θθ̇ϕ̇ = 0,

Comparing with equation for geodesic

··
ϕ+ Γϕθθ θ̇θ̇ + Γϕθϕθ̇ϕ̇+ Γϕϕθϕ̇θ̇ + Γϕϕϕϕ̇ϕ̇ =

··
θ + Γϕθθ θ̇θ̇ + 2Γϕθϕθ̇ϕ̇+ Γϕϕϕϕ̇ϕ̇ = 0

we see that
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Γϕθθ = Γϕϕϕ = 0 ,Γϕϕθ = Γϕθϕ = cotan θ .

c) For Lobachevsky plane:

Lagrangian of ”free” particle on the Lobachevsky plane with metric G = dx2+dy2

y2 is

L =
1

2

ẋ2 + ẏ2

y2
.

Euler-Lagrange equations are

∂L

∂x
= 0 =

d

dt

∂L

∂ẋ
=

d

dt

(
ẋ

y2

)
=

··
x

y2
− 2ẋẏ

y3
, i.e.

··
x− 2ẋẏ

y
= 0 ,

∂L

∂y
= − ẋ

2 + ẏ2

y3
=

d

dt

∂L

∂ẏ
=

d

dt

(
ẏ

y2

)
=

··
y

y2
− 2ẏ2

y3
, i.e.

··
y +

ẋ2

y
− ẏ2

y
= 0 .

Comparing these equations with equations for geodesics:
··
x
i
− ẋkΓikmẋ

m = 0 (i = 1, 2,

x = x1, y = x2) we come to

Γxxx = 0,Γxxy = Γxyx = −1

y
, Γxyy = 0, Γyxx =

1

y
,Γyxy = Γyyx = 0,Γyyy = −1

y
.

The answers are the same as calculated with other methods. We see that Lagrangians

give us the nice and quick way to calculate Christoffel symbols.
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