
Solutions 8

The calculation of Weingarten (shape) operator and Gaussian curvatures see also in

Lecture notes, subsection 4.1.4

1. Find unit normal vector field, the Weingarten (shape) operator, principal curva-

tures and the Gaussian curvature for the cylinder x2 + y2 = a2.

(See also solution in lecture notes.)

We have for cylinder

r(h, ϕ)

{x = a cosϕ
y = a sinϕ
z = h

(0 ≤ ϕ < 2π,−∞ < h <∞)

rϕ
∣∣
ϕ,h

=
∂r(ϕ, h)

∂ϕ
=

−a sinϕ
a cosϕ

0

 , rh
∣∣
ϕ,h

=
∂r(ϕ, h)

∂h
=

 0
0
1

 , n(ϕ, h) =

 cosϕ
sinϕ

0


(2)

Sometimes we denote rϕ by ∂ϕ and rh by ∂h.

Check that n(ϕ, h) is indeed unit normal vector:

(n,n) = cos2 ϕ+ sin2 ϕ = 1, (n, rϕ) = a cosϕ sinϕ(−1 + 1) = 0, (n, rh) = 0

Unit normal vector is defined up to a sign; −n is unit normal vector too.

Now calculate shape operator Gaussian and mean curvatures for cylinder.

To calculate the shape operator for the cylinder we use results of calculations above

of vectors rh, rϕ and of unit normal vector n(ϕ, h) (see the equations (2) above). By the

definition the action of shape operator on any tangent vector v is given by the formula

Sv = −∂vn. Hence for basis vectors rϕ = ∂ϕ, rh = ∂h we have

Srh = −∂hn(ϕ, h) = −∂h

 cosϕ
sinϕ

0

 = 0

and

Srϕ = −∂ϕn(ϕ, h) = −∂ϕ

 cosϕ
sinϕ

0

 =

 sinϕ
− cosϕ

0

 = −rϕ
a

(Recall that n(h, ϕ) =

 cosϕ
sinϕ

0

 and rϕ =

−a sinϕ
a cosϕ

0

 (See the equations (2) above.)

For an arbitrary tangent vector X = arh + brϕ, SX = − brϕa . Shape operator trans-

forms tangent vectors to tangent vectors. Its matrix in the basis rh, rϕ equals to

−
(

0 0
0 1

a

)
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In the case if we choose the opposite direction for unit normal vector then we will come to

the same answer just with changing the signs: if n→ −n, S → −S.

We see that principal curvatures, i.e. eigenvalues of shape operator are:

κ1 = 0, κ2 = −1

a

(if we choose the opposite sign for n then κ1 = κ2 = 1
a ). Thus we can calculate Gaussian

and mean curvature: Gaussian curvature

K = κ1 · κ2 = detS = 0 .

Remark The vanishing of Gaussian curvature follows from the fact that S(rh) = 0.

This relation means that operator is degenerate (its matrix has zero column). Hence

K = detS = 0.

2. Find unit normal vector field, the Weingarten (shape) operator, principal curva-

tures and the Gaussian curvature for the sphere of the radius R: x2 + y2 + z2 = R2.

For sphere there is an elegant and short solution which works in arbitrary

parameterisation (see subsection 4.1.4 of lecture notes) Here we give straight-

forward solution, not the shortest one, however...

(See also lecture notes)

SPHERE of radius R:

r(θ, ϕ)

{
x = R sin θ cosϕ
y = R sin θ sinϕ
z = R cos θ

(0 ≤ ϕ < 2π, 0 ≤ θ ≤ π),

rθ =
∂r(ϕ, θ)

∂θ
=

R cos θ cosϕ
R cos θ sinϕ
−R sin θ

 , rϕ =
∂r(ϕ, θ)

∂ϕ
=

−R sin θ sinϕ
R sin θ cosϕ

0



n(θ, ϕ) =
r(θ, ϕ)

R
=

 sin θ cosϕ
sin θ sinϕ

cos θ

 (1)

(Sometimes we denote rθ by ∂θ and rϕ by ∂ϕ.)

Check that n(θ, ϕ) is indeed unit normal vector (in fact this is obvious from geometric

considerations):

(n,n) = sin2 θ(cos2 ϕ+ sin2 ϕ) + cos2 θ = 1 ,
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(n, rθ) = R sin θ cos θ(cos2 ϕ+sin2 ϕ)−R sin θ cos θ = 0, (n, rϕ) = R sin2 θ(− cosϕ sinϕ+cosϕ sinϕ) = 0 .

One can check it in a more elegant way: The equation of sphere (r, r) = 1. Differentiating

this relation by θ and by ϕ we will come to condition that vectors rθ and rϕ are orthogonal

to radius-vector r:

∂

∂θ
(r, r) = 0 = 2(rθ, r)

∂

∂ϕ
(r, r) = 0 = 2(rϕ, r) .

Vector r has a length R. Hence n = ± r
R . (See also these calculations in lecture notes).

Unit normal vector is defined up to a sign; −n is unit normal vector too.

Now calculate shape operator and Gaussian and mean curvatures for sphere:

By the definition (see lecture notes) the action of shape operator on any tangent vector

v is given by the formula Sv = −∂vn. We know that for sphere n = r
R (see the equations

(1) above). Hence for basis vectors rθ = ∂θ, rϕ = ∂ϕ we have

Srθ = −∂θn(θ, ϕ) = −∂θ
(
r(θ, ϕ)

R

)
= −

(
∂θr(θ, ϕ)

R

)
= −rθ

R

and

Srϕ = −∂ϕn(θ, ϕ) = −∂ϕ
(
r(θ, ϕ)

R

)
= −

(
∂ϕr(θ, ϕ)

R

)
= −rϕ

R

We see that shape operator is equal to S = − I
R , where I is an identity operator. Its matrix

in the basis ∂θ, ∂ϕ is equal to

−
(

1
R 0
0 1

R

)
.

In the case if we choose the opposite direction for unit normal vector then we will come to

the same answer just with changing the signs: if n→ −n, S → −S.

We see that principal curvatures, i.e. eigenvalues of shape operator are the same:

λ1 = λ2 = − 1

R
, i.e. κ1 = κ2 = − 1

R

(if we choose the opposite sign for n then κ1 = κ2 = 1
R ). Thus we can calculate Gaussian

and mean curvature: Gaussian curvature

K = κ1 · κ2 = detS =
1

R2
.

3 Find the Weingarten (shape) operator and the Gaussian curvature for the saddle

z = xy at the point x = y = 0.
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Do calculations for the GRAPH OF THE FUNCTION z = Ax2 + 2Bxy + Cy2:

r(u, v)

{x = u
y = v
z = F (u, v)

(−∞ < u <∞,−∞ < v <∞) (4)

in the case if F (u, v) = Au2 + 2Buv + Cv2

ru
∣∣
u,v

=
∂r(u, v)

∂u
=

 1
0
Fu

 =

 1
0

2Au+ 2Bv

 , ru
∣∣
u=v=0

=

 1
0
0

 ,

rv
∣∣
u,v

=
∂r(u, v)

∂v
=

 0
1
Fv

 =

 0
1

2Bu+ 2Cv

 , rv
∣∣
u=v=0

=

 0
1
0

 ,

n(u, v) =
1√

1 + F 2
u + F 2

v

−Fu−Fv
1

 , n(u, v)
∣∣
u=v=0

=

 0
0
1

 .

Sometimes we denote ru by ∂u and rv by ∂v.

Check that n(u, v) is indeed unit normal vector: (n,n) = 1
1+F 2

u+F
2
v

(F 2
u +F 2

v + 1) = 1,

(n, ru) = 1√
1+F 2

u+F
2
v

(Fu−Fu) = 0, (n, rv) = 1√
1+F 2

u+F
2
v

(Fv−Fv) = 0. To calculate shape

operator we use results of calculations vectors ru, rv and for unit normal vector n(u, v).

We do calculations only at origin. For basic vectors ru = ∂u, rv = ∂v we have

Sru = −∂n(u, v)

∂u |u=v=0

= −∂u

 1√
1 + F 2

u + F 2
v

−Fu−Fv
1


|u=v=0

=

(
1√

1 + F 2
u + F 2

v

)
|u=v=0

Fuu
Fuv
1


|u=v=0

=

 2A
2B
0

 = 2Aru + 2Brv

and Srv = −∂v (n(u, v))|u=v=0
=

−∂v

 1√
1 + F 2

u + F 2
v

−Fu−Fv
1


|u=v=0

=

(
1√

1 + F 2
u + F 2

v

)
|u=v=0

Fvu
Fvv
1


|u=v=0

=

 2B
2C
0

 = 2Bru+2Crv

The matrix of the shape operator in the basis ru, rv is

(
2A 2B
2B 2C

)
. Gaussian curvature

at origin is equal to detS = 4AC − 4B2

For the saddle we have to put A = C = 0 and B = 1
2 . In particular for saddle K = −1.

See also this example in lecture notes, subsection 4.1.4
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4 Let D be a domain on a sphere of radius R such that its area is equal to one eighth

of the area of the sphere. Calculate the integral of Gaussian curvature of the sphere over

the domain D.

What is a result of parallel transport of the vector, tangent to the sphere, along the

curve C = ∂D?

The Gaussian curvature K = 1
R2 , it is constant. Hence∫

D

Kdσ = K·
∫
D

dσ = K·area of the domain D =
1

8
K·area of the domain sphere =

1

8
· 1

R2
·4πR2 =

π

2
.

Thus the result of parallel transport if the vector along the curve is the rotation on the

angle

6 Φ =

∫
D

Kdσ =
π

2
,

i.e. vector will rotate to the orthogonal vector.

5 Assume that the action of the shape operator at the tangent coordinate vectors ru =

∂u, rv = ∂v at the given point p of the surface r = r(u, v) is defined by the relations:

S(∂u) = 2∂u + 2∂v and S(∂v) = −∂u + 5∂v. Calculate principal curvatures and Gaussian

of the surface at this point.

We see that the matrix of the shape operator in the basis ∂u, ∂v is equal to

S =

(
2 −1
2 5

)
Hence Gaussian curvature K = detS = 12 and mean curvature H = TrS = 7. To

calculate principal curvatures k1, k2 note that{
k1 + k2 = H = 7
k1 · k2 = K = 12

Hence k1 = 3, k2 = 4; k1, k2 are eigenvalues of the shape operator.

Question Shape operator has to be the symmetrical operator. Does this condition

obey?

6 Consider a surface M , the upper sheet of the cone in E3

r(h, ϕ):

{
x = 3h cosϕ
y = 3h sinϕ
z = 4h

, h > 0 , 0 ≤ ϕ < 2π .

Calculate Weingarten operator at points of this cone and show that Gaussian curvature

vanishes at all the points of this surface.
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Let C1 be a closed curve on this surface which is the boundary of a compact oriented

domain D ⊂M .

Let C2 be a circle which is the intersection of the plane z = h0 (h0 > 0) with the

surface M .

Show that the parallel transport along the closed curve C1 is the identical transforma-

tion.

Show that the parallel transport along the closed curve C2 is the rotation through a

non-zero angle.

Calculate this angle and explain why the fact that the angle is not equal to zero does

not contadict to the Theorem on parallel transport.

First calculate explicitly Weingarten operator and show that in all the points of the

surface M , the Gaussian curvature vanishes. We have for coordinate tangent vectors:

rh =
∂r

∂h
=

 3 cosϕ
3 sinϕ

4

 , rϕ =
∂r

∂ϕ
=

−3h sinϕ
3h cosϕ

0

 ,

One can see that vector N =

 4 cosϕ
4 sinϕ
−3

 is orthogonal two vectors rh and rϕ, and its

length is equal to
√

42 + 32 = 5. Hence the vector field

n(h, ϕ) =
1

5

 4 cosϕ
4 sinϕ
−3


is unit normal vector field for the conical surface M .

Now consider action of shape operator on tangent vectors. We see that

S(rh) = −∂rhn(h, ϕ) = −∂n(h, ϕ

∂h
= 0 ,

It is enough: we do not need to calculate the action of shape oeprator on the second basic

vector. It follows from this equation that shape operator is degenerate, and detS = 0.

Hence the Gaussian curvature of the conical surface M vanishes.

The fact that the Gaussian curvature of the conical surface vanishes follows also from

the Theorema Egregium

The point that answer differens fro the curves C1 and C2 is that the vertex of conical

surface (which does not belong to upper-sheet) is a singular point. The curve C2 is nto

the boundary of the compact domain.

Up-rolling the conical surface we see that the angle of rotation is equal to

Θ =
2π · 3h√

16h2 + 9h2
=

6πh

5h
=

6

5
π .
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