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1 On the sphere x2 + y2 + z2 = R2 in E3 consider a circle C which is the intersection

of the sphere with the plane z = R− h, 0 < h < R

Let X be an arbitrary vector tangent to the sphere at a point of C.

Find the angle between X and the result of parallel transport of X along C.

The circle C is a boundary of the sphere segment of the height H. The area of this

domain is equal to 2πRh. The Gaussian curvature of sphere iis equal to K = 1
R2 . Hence

due to Theorem we see that vector X through parallel transport rotates on the angle

KS = 2πR
h .

2 Write down components of the curvature tensor Rikmn in terms of the Christoffel

symbols Γikm and its derivatives.

Rikmn∂i = R(∂m, ∂n)∂k = ∇m (∇n∂k)− (m↔ n) = ∇m(Γrnk∂r)− (m↔ n) =(
∂mΓink + ΓimrΓ

r
nk

)
∂i − (m↔ n)

i.e.

Rikmn = ∂mΓink + ΓimrΓ
r
nk − ∂nΓimk − ΓinrΓ

r
mk .

(See also lecture notes).

3 For every of the statements below prove it or show that it is wrong considering

counterexample.

a) If there exist coordinates u, v such that Riemannian metric G at the given point p

is equal to G = du2 + dv2 in these coordinates, then the Riemann curvature tensor at the

point p vanishes.

b) If all first derivatives of components of Riemannian metric in coordinates u, v vanish

at the given point p:
∂gik(u, v)

∂u

∣∣
p

=
∂gik(u, v)

∂v

∣∣
p

= 0 ,

then the Riemann curvature tensor also vanishes at this point.

c) If all first and second derivatives of components of Riemannian metric

∂gik(u, v)

∂u

∣∣
p

=
∂gik(u, v)

∂v

∣∣
p

=
∂2gik(u, v)

∂u2
∣∣
p

=
∂2gik(u, v)

∂u∂v

∣∣
p

=
∂2gik(u, v)

∂v2
∣∣
p

= 0

vanish at the given point then the Riemann curvature tensor also vanishes at this point.

First and second statements are wrong. The thrid statement is true.
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Counterexample to the first statement: Consider on the unit sphere metric G =

dθ2 + sin2 θdϕ2.

At the points of equator (but not in their neighborhood!!!!) this metric is Euclidean

and first derivatives of components vanish, but curvature is not vanished.

Counterexample to the second statement:

again we can consider the points of equator derivatives of metric’s components vanish,

at points of equator, but curvature is not vanished (see in detail the next exercise)

One can consider another more general example:

Consider surface r = r(u, v):x = u, y = v, z = F (x, y). Induced Riemannian metric

G = gαβdu
αduβ = guudu

2 + 2guvdudv + gvvdv
2

G =

(
1 + F 2

u FuFv
FuFv 1 + F 2

v

)
One can see that at the points of extremum of function F first derivatives of Riemannian

metric vanish, this Christoffel symbols vanish at the extrema in coordinates u, v, but the

curvature in general does not vanish (It is proportional to FuuFvv − F 2
uv.)

If at the given point first and second derivatves of metric vanish then due to Levi-Civita

formula Christoffel symbols and their first derivatives vanish. This imply that curvature

vanish too.

4 Let xi, i = 1, . . . , n be local coordinates on Riemannian manifold M such that for

Riemannian metric tensor G = gik(x)dxidxk the following condition holds: first derivatives

of all components of metric tensor vanish at the given point p:

∂gik(x)

∂xm
∣∣
p

= 0 (i, k,m = 1, . . . , n) . (4.1)

Write down components Rikmn of the Riemann curvture tensor in terms of Christoffel

symbols Γikm and its derivatives at the point p in these local coordinates

Find points on the sphere of radius a in E3 such that condition (4) holds in spherical

coordinates, and calculate Riemann curvature tensor in these points of sphere

Calculate Riemann scalar curvature at arbitrary point of the sphere.

Compare results of calculations with formula for relation between the Gaussian curva-

ture and Riemann curvature tensor for surfaces in E3:

K =
R

2
=
R1212

det g
. (4.1a)

a) this condition implies that the Christoffel symbols vanish at the point p, hence

Rikmn = ∂mΓink − ∂nΓimk . (4.2)
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b) in spherical coordinates (θ, ϕ) G = a2(dθ2 + sin2 θdϕ2),

gik =

(
a2 0
0 a2 sin2 θ

)

we see that ∂(a2 sin2 θ
∂θ) = 2a2 sin θ cos θ, and all other derivatives vanish, hence at points

where cos θ = 0, i.e at points of equator Christoffel symbols vanish. Using formula (4.1)

and Levi-Civita formula for Christoffel symbols we see that

Γθϕϕ =
1

2
gθθ

(
−∂gϕϕ

∂θ

)
=

1

2a2
(
−2a2 sin θ cos θ

)
= − sin θ cos θ ,

and

Γϕθϕ = Γϕϕθ =
1

2
gϕϕ

(
∂gθϕ
∂θ

)
=

1

2a2 sin2 θ

(
2a2 sin θ cos θ

)
= cot θ, ,

all other and for components of Riemann tensor at the points where θ = π
2 (points of

equator) we have:

Rθϕθϕ
∣∣
θ=π/2

=
(
∂θΓ

θ
ϕϕ − ∂ϕΓθθϕ

) ∣∣
θ=π/2

= 1 ,⇒ Rθϕθϕ
∣∣
θ=π/2

=
1

a2
.

Rϕθϕθ
∣∣
θ=π/2

=
(
∂ϕΓϕθθ − ∂θΓ

ϕ
ϕθ

) ∣∣
θ=π/2

= 1 ,⇒ Rθϕθϕ
∣∣
θ=π/2

=
1

a2
.

We see that Riemann scalar curvature at the points of equator

R
∣∣
θ=π/2

= Riming
mn

∣∣
θ=π/2

=
(
Rθϕθϕg

ϕϕ +Rϕθϕθg
θθ
) ∣∣

θ=π/2
=

2

a2
.

(we omit all zero components)

Let p be an arbtrary point. We can choose coordinates such that at this point θ = π
2 ,

hence the scalar curvature at any point is equal to 2
a2 .

We know that the Gaussian curvature the Riemann curvature tensor for Levi-Civita

connection:

K =
R

2
=
R1212

det g
.

Scalar curvature is equal at all the points of the sphere to 2
a2 , the Gaussian curvature is

equal to 1
a2 , and det g = a4 sin2 θ, thus we see that Rθϕθϕ = a2 sin2 θ.
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