Homework 2

1 Check whether the following subsets are open
a) the subset $\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}<1\right\}$,
b) the subset $\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2} \leq 1\right\}$,
c) the subset $\left\{(x, y) \in \mathbf{R}^{2}: 0<x<1\right\}$
d) the subset $\left\{(x, y, z) \in \mathbf{R}^{3}: x^{2}+y^{2}<1,|z|<1\right\}$
e) the subset $\mathbf{R}^{2} \backslash I_{-}$, where $I_{-}=\{(x, y): y=0, x \leq 0\}$.

2 Consider the sets U_{1}, U_{2} on \mathbf{R}^{2} such that $U_{1}=\mathbf{R}^{2} \backslash I_{-}, U_{2}=\mathbf{R}^{2} \backslash I_{+}$, where $I_{-}=$ $\{(x, y): y=0, x \leq 0\}, I_{+}=\{(x, y): y=0, x \geq 0\}$. Using polar coordinates define charts $\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right)$. Show that these charts do not form an atlas on \mathbf{R}^{2}. Consider an additional chart $\left(U_{3}, \varphi_{3}\right)$, where $U_{3}=\mathbf{R}^{2}, \varphi_{3}=\mathbf{i d}$. Show that $\left\{\left(U_{3}, \varphi_{3}\right),\left(U_{1}, \varphi_{1}\right)\right\}$ is an atlas on \mathbf{R}^{2}. Show that this atlas is smooth.

3 a)Define an atlas on S^{1} with two charts using stereographic coordinates considered in the Homework 1 and show that this atlas is smooth.
b)Do the same for S^{2}.

4 Define an atlas on $\mathbf{R} P^{2}$ using inhomogeneous coordinates (see Homework 1). Show that this atlas is smooth. $\mathbf{4 b})^{*}$ Do the same for $\mathbf{R} P^{n}(n=2,3,4, \ldots)$

5 Define an smooth atlas on $\mathbf{C} P^{1}$. $\left.\mathbf{5 b}\right)^{*}$ Do it for $\mathbf{C} P^{n}$.
$\mathbf{6}$ Is the map $\varphi: \mathbf{R} \rightarrow \mathbf{R}, x \mapsto x^{3}$ a diffeomorphism?
7 Establish diffeomorphisms between $\mathbf{R} P^{1}$ and S^{1}, and between $\mathbf{C} P^{1}$ and S^{2}.
7 Show that the special linear group $S L(2)=\left\{g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbf{R}, \operatorname{det} g=1\right\}$ has a natural structure of a differentiable manifold of dimension 3 .

8* Show that the special unitary group $S U(2)$

$$
S U(2)=\left\{g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbf{C}, g^{-1}=g^{+}, \operatorname{det} g=1\right\}
$$

has a natural structure of a differentiable manifold of dimension 3. Show that this manifold is diffeomorphic to S^{3}. (Recall that g^{+}is the matrix which is hermitian conjugate to the matrix g : if $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$, then $g^{+}=\left(\begin{array}{cc}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right)$)

9* Show that the configuration space of solid body with a fixed point can be identified with the special orthogonal group $S O(3)$. (The group $S O(3)$ is a group of 3×3 real orthogonal matrices with determinant 1, i.e., it is the group of matrices which preserve scalar product and orientation in \mathbf{R}^{3}.)
$\mathbf{1 0}^{\dagger}$ Show that the projective space $\mathbf{R} P^{3}$ is diffeomorphic to $S O(3)$.

