Homework 2

1 Check whether the following subsets are open

- a) the subset $\{(x, y) \in \mathbf{R}^2: x^2 + y^2 < 1\},\$
- b) the subset $\{(x, y) \in \mathbf{R}^2: x^2 + y^2 \le 1\},\$
- c) the subset $\{(x, y) \in \mathbf{R}^2: 0 < x < 1\}$
- d) the subset $\{(x, y, z) \in \mathbf{R}^3: x^2 + y^2 < 1, |z| < 1\}$
- e) the subset $\mathbf{R}^2 \setminus I_-$, where $I_- = \{(x, y): y = 0, x \leq 0\}$.

2 Consider the sets U_1, U_2 on \mathbf{R}^2 such that $U_1 = \mathbf{R}^2 \setminus I_-$, $U_2 = \mathbf{R}^2 \setminus I_+$, where $I_- = \{(x, y): y = 0, x \leq 0\}$, $I_+ = \{(x, y): y = 0, x \geq 0\}$. Using polar coordinates define charts $(U_1, \varphi_1), (U_2, \varphi_2)$. Show that these charts do not form an atlas on \mathbf{R}^2 . Consider an additional chart (U_3, φ_3) , where $U_3 = \mathbf{R}^2$, $\varphi_3 = \mathbf{id}$. Show that $\{(U_3, \varphi_3), (U_1, \varphi_1)\}$ is an atlas on \mathbf{R}^2 . Show that this atlas is smooth.

3 a)Define an atlas on S^1 with two charts using stereographic coordinates considered in the Homework 1 and show that this atlas is smooth. b)Do the same for S^2 .

4 Define an atlas on $\mathbb{R}P^2$ using inhomogeneous coordinates (see Homework 1). Show that this atlas is smooth. **4b**)* Do the same for $\mathbb{R}P^n$ (n = 2, 3, 4, ...)

- **5** Define an smooth atlas on $\mathbb{C}P^1$. **5b**)* Do it for $\mathbb{C}P^n$.
- **6** Is the map φ : $\mathbf{R} \to \mathbf{R}, x \mapsto x^3$ a diffeomorphism?
- **7** Establish diffeomorphisms between $\mathbf{R}P^1$ and S^1 , and between $\mathbf{C}P^1$ and S^2 .

7 Show that the special linear group $SL(2) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{R}, \det g = 1 \right\}$ has a natural structure of a differentiable manifold of dimension 3.

 $\mathbf{8}^*$ Show that the special unitary group SU(2)

$$SU(2) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{C}, g^{-1} = g^+, \det g = 1 \right\}$$

has a natural structure of a differentiable manifold of dimension 3. Show that this manifold is diffeomorphic to S^3 . (Recall that g^+ is the matrix which is hermitian conjugate to the matrix g: if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $g^+ = \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}$)

 9^* Show that the configuration space of solid body with a fixed point can be identified with the special orthogonal group SO(3). (The group SO(3) is a group of 3×3 real orthogonal matrices with determinant 1, i.e., it is the group of matrices which preserve scalar product and orientation in \mathbb{R}^3 .)

 $\mathbf{10}^{\dagger}$ Show that the projective space $\mathbf{R}P^3$ is diffeomorphic to SO(3).