Homework 3.

1 Find transformations of components of velocity vector in \mathbf{R}^{2} if we change cartesian coordinates on polar coordinates, and vice versa .
$\mathbf{2}^{*}$ Let $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$ be a basis in the tangent space to \mathbf{R}^{3} at the given point \mathbf{x} corresponding to the cartesian coordinates (x, y, z) and $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}, \mathbf{e}_{\varphi}\right\}$ be a basis at this point corresponding to the spherical coordinates $(x=r \sin \theta \cos \varphi, y=r \sin \theta \sin \varphi, z=r \cos \varphi)$.

Show that $r \mathbf{e}_{r}=x \mathbf{e}_{x}+y \mathbf{e}_{y}+z \mathbf{e}_{z}$.
${ }^{*}$ Find transformation from the basis $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$ to the basis $\left\{\mathbf{e}_{r}, \mathbf{e}_{\theta}, \mathbf{e}_{\varphi}\right\}$.
3 For a tangent space to an arbitrary point on the circle S^{1} find the transformation from the basis \mathbf{e}_{φ} (corresponding to the polar angle φ) to the basis \mathbf{e}_{u} (corresponding to the "stereographic coordinate" u).

4 Consider the vector $2 \mathbf{e}_{x}-\mathbf{e}_{y}$ at the point $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.
a) Show that this vector is tangent to the sphere $x^{2}+y^{2}+z^{2}=1$.
b) Write down the expression for this vector in spherical coordinates
c) Write down the expression for this vector in stereographic coordinates.
$\mathbf{5}$ Consider a set M in \mathbf{R}^{3} given by the equation $x^{2}+y^{2}+z^{2}-4 x=0$. One can see that origin (the point $O=(0,0,0)$) belongs to this set. Show that M is a manifold. Find all vectors at the origin which are tangent to this manifold, i.e., belong to the space $T_{O} M$.

6 A two-dimensional manifold M is specified as a surface in \mathbf{R}^{3} by the equation $z=f(x, y)$. Considering $x=u, y=v$ as coordinates on M, express the basis vectors $\left\{\mathbf{e}_{u}, \mathbf{e}_{v}\right\} \in T_{\mathbf{x}} M$ for an arbitrary point $\mathbf{x} \in M$ as vectors in ambient space \mathbf{R}^{3}.

For manifolds specified in the space of matrices we identify tangent vectors with matrices. The identity matrix is denoted by E.

7 Describe the tangent space $T_{E} S L(2)$. (See exercise 7 in Homework 2)
8a) For the matrix $A=\left(\begin{array}{cc}a & b \\ 0 & -a\end{array}\right)$ calculate $\exp A$ and show that $\exp A \in S L(2)$.
b) $\left.{ }^{*}\right)$ Let $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an arbitrary 2×2 matrix. Show that

$$
\exp X \in S L(2) \Leftrightarrow \operatorname{TrX}=a+d=0
$$

Recall that matrix exponent $\exp X$ is defined as the sum of absolutely convergent series $\exp X=E+X+\frac{X^{2}}{2}+\frac{X^{3}}{3!}+\frac{X^{4}}{4!}+\ldots$

