Homework 4.

Consider the following vector fields in \mathbf{R}^{3}
$\mathbf{T}_{x}=\frac{\partial}{\partial x}, \quad \mathbf{T}_{y}=\frac{\partial}{\partial y}, \mathbf{T}_{z}=\frac{\partial}{\partial x}, \quad \mathbf{L}_{x}=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}, \quad \mathbf{L}_{y}=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}, \quad \mathbf{L}_{z}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$
1 Calculate $\mathbf{T}_{x} f, \mathbf{L}_{x} f, \mathbf{L}_{y} f, \mathbf{L}_{z} f$ for $f=x^{2}+y^{2}+z^{2}, f=x^{2}+y^{2}-z^{2}$
2Calculate $\left(\mathbf{L}_{x} \mathbf{L}_{y}-\mathbf{L}_{y} \mathbf{L}_{x}\right) f$ and $\mathbf{L}_{z} f$ for $f=z^{n}$
$3 \mathbf{L}_{x} f=\mathbf{L}_{y} f=0$. Show that $\mathbf{L}_{z} f=0$ also.
4 Show that vector fields $\mathbf{T}_{x}, \mathbf{T}_{y}, \mathbf{T}_{z}$ commute with each other, i.e. commutators are equal to zero:

$$
\left[\mathbf{T}_{x}, \mathbf{T}_{y}\right]=\left[\mathbf{T}_{y}, \mathbf{T}_{z}\right]=\left[\mathbf{T}_{z}, \mathbf{T}_{x}\right]=0
$$

5 Calculate commutators $\left[\mathbf{L}_{x}, \mathbf{L}_{y}\right],\left[\mathbf{L}_{y}, \mathbf{L}_{z}\right],\left[\mathbf{L}_{z}, \mathbf{L}_{x}\right]$.
6 Calculate commutators $\left[\mathbf{T}_{x}, \mathbf{L}_{x}\right],\left[\mathbf{T}_{x}, \mathbf{L}_{y}\right],\left[\mathbf{T}_{x}, \mathbf{L}_{z}\right]$.
7 The linear operator D on smooth functions on \mathbf{R}^{3} obeys the following conditions:

$$
D(f g)=f\left(\mathbf{x}_{0}\right) D(g)+D(f) g\left(\mathbf{x}_{0}\right) \quad \text { for an arbitrary smooth functions } f, g
$$

$D(f)=x_{0} \cos y_{0}$ for the function $f=\sin y$
$D(f)=y_{0} \sin x_{0}$ for the function $f=\cos x$
$D(f)=0$ for the function $f=z$
Show that D is equal to the value of the vector field \mathbf{L}_{z} at the point $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$.
$\mathbf{8}^{*}$ Calculate $\exp \left(a \mathbf{T}_{x}\right) f(x, y, z)$ in the case if $f=f(x, y, z)$ is a polynomial. Is it true that $\exp \left(a \mathbf{T}_{x}\right) f(x, y, z)=f(x+a, y, z)$ for an arbitrary smooth function. (Answer: No!)
$\mathbf{9}^{*}$ Calculate $\exp \left(a \mathbf{L}_{z}\right) f(x, y, z)$ (Hint: Use polar (or spherical) coordinates)

