Homework 5.

1 Consider function $f=x y$ and differential forms $\sigma=x d y+y d x$ and $\omega=z d x+x d y$. Calculate differential forms $d(f \omega), \sigma \wedge \omega$ and $d(\sigma \wedge \omega)$.
2 Consider embedding $\iota: S^{2} \rightarrow \mathbf{R}^{3}$ of the sphere to \mathbf{R}^{3} given by the equation $x=$ $a \sin \theta \cos \varphi, y=a \sin \theta \sin \varphi, z=a \cos \theta$. Calculate pull-backs
$\iota^{*}(f)$,
$\iota^{*}(\sigma)$,
$\iota^{*}(\omega)$,
$\iota^{*}(\sigma \wedge \omega)$,
$\iota^{*}(d(\sigma \wedge \omega))$.
$\mathbf{3}$ Consider the embedding $\iota: M \rightarrow \mathbf{R}^{2}$ of the circle S^{1} in \mathbf{R}^{2} given by the equation $x=a \cos \theta, y=a \sin \theta$. Find the pull-backs $\iota^{*}(\sigma)$ and $\iota^{*}(d \sigma)$ if $\sigma=\frac{x d y-y d x}{x^{2}+y^{2}}$.

4 Consider the embedding $\iota: M \rightarrow \mathbf{R}^{3}$ of the cylinder M in \mathbf{R}^{3} given by the equation $x=a \cos \theta, y=a \sin \theta, z=h$. Find the pull-backs $\iota^{*}(\sigma)$ and $\iota^{*}(d \sigma)$ for the following forms:
$\sigma=z d y$
$\sigma=x d y+y d x$
$\sigma=\frac{x d y-y d x}{x^{2}+y^{2}}$,
$\sigma=x d y-y d x$
$\mathbf{5}^{*}$ Show that $\iota^{*}(\sigma)=\sin \theta d \theta \wedge d \varphi$, where ι is embedding of the sphere in \mathbf{R}^{3} considered in the exercise 2 , and the 2 -form σ is defined by the formula

$$
\sigma=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

6 Calculate differential of 1-form $\alpha=p_{1} d q^{1}+p_{2} d q^{2}-d p_{2} q^{2}$
7 Consider in \mathbf{R}^{2} a triangle $\triangle A B C$ with vertices at the points $A=(5,-1), B=$ $(-1,6), C=(-5,-1)$ and differential one-form $\omega=x d y-y d x$. By using Stokes' theorem or directly calculate the integral of 1-form ω over the boundary of the $\triangle A B C$.

8 Consider in \mathbf{R}^{3} the surface defined by the equation $x^{2}+y^{2}+z^{2}=4 z$. Show that this surface is the sphere.

Using Stokes Theorem calculate the integrals of the 2-forms $\omega_{1}=z d x \wedge d y$ and $\omega_{2}=$ $d x \wedge d y$

