Homework 5.

1 Consider function f = xy and differential forms $\sigma = xdy + ydx$ and $\omega = zdx + xdy$. Calculate differential forms $d(f\omega)$, $\sigma \wedge \omega$ and $d(\sigma \wedge \omega)$.

2 Consider embedding $\iota: S^2 \to \mathbf{R}^3$ of the sphere to \mathbf{R}^3 given by the equation $x = a \sin \theta \cos \varphi$, $y = a \sin \theta \sin \varphi$, $z = a \cos \theta$. Calculate pull-backs

$$\begin{split} \iota^*(f), \\ \iota^*(\sigma), \\ \iota^*(\omega), \\ \iota^*(\sigma \wedge \omega), \\ \iota^*(d(\sigma \wedge \omega)). \end{split}$$

3 Consider the embedding $\iota: M \to \mathbf{R}^2$ of the circle S^1 in \mathbf{R}^2 given by the equation $x = a \cos \theta, y = a \sin \theta$. Find the pull-backs $\iota^*(\sigma)$ and $\iota^*(d\sigma)$ if $\sigma = \frac{xdy - ydx}{x^2 + y^2}$.

4 Consider the embedding $\iota: M \to \mathbf{R}^3$ of the cylinder M in \mathbf{R}^3 given by the equation $x = a \cos \theta, y = a \sin \theta, z = h$. Find the pull-backs $\iota^*(\sigma)$ and $\iota^*(d\sigma)$ for the following forms:

 $\sigma = zdy$ $\sigma = xdy + ydx$ $\sigma = \frac{xdy - ydx}{x^2 + y^2},$ $\sigma = xdy - ydx$

5^{*} Show that $\iota^*(\sigma) = \sin \theta d\theta \wedge d\varphi$, where ι is embedding of the sphere in \mathbb{R}^3 considered in the exercise 2, and the 2-form σ is defined by the formula

$$\sigma = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

6 Calculate differential of 1-form $\alpha = p_1 dq^1 + p_2 dq^2 - dp_2 q^2$

7 Consider in \mathbb{R}^2 a triangle $\triangle ABC$ with vertices at the points A = (5, -1), B = (-1, 6), C = (-5, -1) and differential one-form $\omega = xdy - ydx$. By using Stokes' theorem or directly calculate the integral of 1-form ω over the boundary of the $\triangle ABC$.

8 Consider in \mathbb{R}^3 the surface defined by the equation $x^2 + y^2 + z^2 = 4z$. Show that this surface is the sphere.

Using Stokes Theorem calculate the integrals of the 2-forms $\omega_1 = z dx \wedge dy$ and $\omega_2 = dx \wedge dy$