Homework 6.

1 Calculate $H_{D R}^{0}(M)$ in the case if manifold M is
a) $M=\mathbf{R}$,
b) $M=S^{1}$,
c) $\mathrm{M}=\mathbf{R}^{n}$,
d) $M=\mathbf{R}^{n} \backslash\{0\}(n=1,2,3, \ldots)$,
e) M is an arbitrary topological manifold.

2 Calculate all de Rham cohomology groups $H_{D R}^{k}(M)$ for
a) $M=\mathbf{R}^{1}$,
b) $M=S^{1}$.

Compare answers.
3 Calculate all de Rham cohomology groups $H_{D R}^{k}(M)$ for manifolds
a) $N=S^{1}$,
b) $M=\mathbf{R}^{2} \backslash\{0\}$.

Compare answers
4 Consider the space $M=\mathbf{R}^{2} \backslash\{0\}$. Show that it is not a star-shaped domain.
Consider the form

$$
\begin{equation*}
\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . \tag{1}
\end{equation*}
$$

Calculate the integral of this 1-form over
a) a unit circle $S^{1}\left(x^{2}+y^{2}=1\right)$,
b) over closed curve which is a boundary of domain which contains an origin,
c) over a closed curve which is a boundary of domain which does not contain an origin.
5^{*} Let σ be an arbitrary closed 1-form on $M=\mathbf{R}^{2} \backslash\{0\}$ and an integral of this form over the unit circle $x^{2}+y^{2}=1$ is equal to q. Consider the form $\sigma^{\prime}=\sigma-\frac{q}{2 \pi} \omega$, where ω is the form defined by the equation (1). Show that this an exact form

Hint (solution????): One can see that an integral of this form over the unit circle $x^{2}+y^{2}=1$ is equal to 0 , hence consider the scalar function $\Phi(x)$ which is equal to the integral of σ^{\prime} over the curve finishing at the point x. One can see that $d \Phi=\sigma^{\prime}$

6 a) Calculate de Rham cohomology groups for \mathbf{R}^{2}.
b) Show an example of closed two form non-homologous to zero on S^{2}. Calculate de Rham cohomology groups for S^{2}. Explain why $H_{D R}^{2}\left(S^{2} \backslash N\right)=0$.

7 Calculate de Rham cohomology groups for \mathbf{R}^{3}. What can be said about de Rham cohomology groups of the space $\mathbf{R}^{3} \backslash 0$ in comparison with \mathbf{R}^{3} and S^{2} ?

