Homework 6.

- **1** Calculate $H_{DR}^0(M)$ in the case if manifold M is
- a) $M = \mathbf{R}$,
- b) $M = S^1$,
- c) M= \mathbf{R}^n ,
- d) $M = \mathbf{R}^n \setminus \{0\} \ (n = 1, 2, 3, ...),$
- e) M is an arbitrary topological manifold.

2 Calculate all de Rham cohomology groups $H^k_{DR}(M)$ for

- a) $M = \mathbf{R}^{1}$,
- b) $M = S^1$.

Compare answers.

3 Calculate all de Rham cohomology groups $H^k_{DR}(M)$ for manifolds

a) $N = S^1$, b) $M = \mathbf{R}^2 \setminus \{0\}$. Compare answers

4 Consider the space $M = \mathbb{R}^2 \setminus \{0\}$. Show that it is not a star-shaped domain. Consider the form

$$\omega = \frac{xdy - ydx}{x^2 + y^2}.$$
(1)

Calculate the integral of this 1-form over

- a) a unit circle $S^1 (x^2 + y^2 = 1)$,
- b) over closed curve which is a boundary of domain which contains an origin,

c) over a closed curve which is a boundary of domain which does not contain an origin.

5^{*} Let σ be an arbitrary closed 1-form on $M = \mathbb{R}^2 \setminus \{0\}$ and an integral of this form over the unit circle $x^2 + y^2 = 1$ is equal to q. Consider the form $\sigma' = \sigma - \frac{q}{2\pi}\omega$, where ω is the form defined by the equation (1). Show that this an exact form

Hint (solution????): One can see that an integral of this form over the unit circle $x^2 + y^2 = 1$ is equal to 0, hence consider the scalar function $\Phi(x)$ which is equal to the integral of σ' over the curve finishing at the point x. One can see that $d\Phi = \sigma'$

6 a) Calculate de Rham cohomology groups for \mathbf{R}^2 .

b) Show an example of closed two form non-homologous to zero on S^2 . Calculate de Rham cohomology groups for S^2 . Explain why $H^2_{DR}(S^2 \setminus N) = 0$.

7 Calculate de Rham cohomology groups for \mathbb{R}^3 . What can be said about de Rham cohomology groups of the space $\mathbb{R}^3 \setminus 0$ in comparison with \mathbb{R}^3 and S^2 ?