
Solutions of homework 1

1 a) Using the stereographic projection from the north pole N = (0, 1) introduce stereographic coordinate
for the part of the circle S1 (x2 + y2 = 1) without the north pole.

b) Do the same but using the south pole S = (0,−1) instead of the north pole.
c) express the stereographic coordinates obtained in a) and b) in terms of the angle ϕ (for polar coordi-

nates in R2, x = r cos ϕ, y = r sin ϕ).
a) Consider the line which passes through the north pole (0, 1) the point (x, y) on the circle and intersects

the axis Ox at the point (u, 0); u = u(x, y) is a stereographic coordinate. Three points: north pole, the
point (x, y) on the circle and the point (u, 0) are on the same line. Hence x

u + y = 1. On the other hand
x2 + y2 = 1. Substitute y = 1− x/u in the equation of the circle we come to quadratic equation:

x2 +
(
1− x

u

)2

= 1

This equation has two solution x = 0, (y = 1)— it is the North pole (0, 1) which belongs to the line and the
circle. The second solution is x = 2u

1+u2 . Hence y = 1− x/u = 1−u2

1+u2 and u = x
1−y . We come to the relations:

{
x = 2u

1+u2

y = 1−u2

1+u2

, u =
x

1− y
(1.1)

b) Consider the line which passes through the south pole (0,−1), the point (x, y) on the circle and intersects
the axis Ox at the point (u′, 0). u′ = u(x, y) is a stereographic coordinate related with south pole. Under
the reflection with respect to the axis Ox this line will go to the line which pass through the south pole
(0,−1) and the point (x,−y) on the circle: x → x, y → −y in the equation (2).

{
x = 2u′

1+(u′)2

y = (u′)2−1
1+(u′)2

, u′ =
x

1 + y
(1.2)

The relation between coordinates u and u′ is
uu′ = 1 . (1.3)

c) If ϕ is an angle between axis Ox and the point (x, y) on the circle, then x = cos ϕ, y = sin ϕ and

u =
x

1− y
=

2 cos ϕ

1− sin ϕ
=

2 sin(π
2 − ϕ)

1− cos
(

π
2 − ϕ

) = 2 cotanh
(π

4
− ϕ

2

)
,

u′ =
x

1 + y
=

2 cos ϕ

1 + sin ϕ
=

2 sin(π
2 − ϕ)

1 + cos
(

π
2 − ϕ

) = 2 tanh
(π

4
− ϕ

2

)
. (1.4)

2 a) Using the stereographic projection from the north pole N = (0, 0, 1) introduce stereographic coordi-
nates (u, v) for the part of the sphere S2 (x2 + y2 + z2 = 1) without the north pole.

b) Do the same but introduce stereographic coordinates (u′, v′) using the south pole S = (0, 0,−1) instead
of the north pole.

c) express these stereographic coordinates via spherical coordinates θ, ϕ (for spherical coordinates in R3,
x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ).

a) In the same way as in the previous exercise consider the line which passes through the North Pole
(0, 0, 1) the point (x, y, z) on the sphere and intersects the plane Oxy at the point with coordinates (u, v, 0).
u = u(x, y, z), v = v(x, y, z) are stereographic coordinates of the sphere. We come to conditions x2 +
y2 + z2 = 1 and the condition that three points (0, 0, 1), (x, y, z) and (u, v, 0) belong to the same line, i.e.
x : y : z − 1 = u : v : −1. We have the system of equations





x
y = u

v
y

1−z = v

x2 + y2 + z2 = 1

1



Solving these equations we come to





x = 2u
1+u2+v2

y = 2v
1+u2+v2

z = 1−u2−v2

1+u2+v2

and
{

u = x
1−z

v = y
1−z

(2.1)

b) Consider the line which passes through the South Pole (0, 0,−1) the point (x, y, z) on the sphere and
intersects the plane Oxy at the point with coordinates (u′, v′, 0). u′ = u′(x, y, z), v′ = v′(x, y, z) are
stereographic coordinates of the sphere related with the South pole. Note that changing z → −z in the
previous formulae lead to these stereographic coordinates related with South Pole (0, 0,−1):





x = 2u′

1+u′2+v′2

y = 2v′
1+u′2+v′2

z = u′2+v′2−1
u2+v2+1

and
{

u′ = x
1+z

v′ = y
1+z

(2.2)

The relation between u, v and u′, v are

{
u
v = u′

v′
uu′ + vv′ = 1

,

{
u′ = u

u2+v2

v′ = v
u2+v2

(2.3)

Now express stereographic coordinates via spherical coordinates:

u =
x

1− z
=

sin θ cos ϕ

1− cos θ
= 2 cotan

θ

2
cosϕ

v =
y

1− z
=

sin θ sin ϕ

1− cos θ
= 2 cotan

θ

2
sin ϕ (2.4)

i.e.
u + iv = 2 cotan

θ

2
eiϕ

Respectively for coordinates u′, v′

u′ =
x

1 + z
=

sin θ cos ϕ

1 + cos θ
= 2 tan

θ

2
cos ϕ

v =
y

1 + z
=

sin θ sin ϕ

1 + cos θ
= 2 tan

θ

2
sin ϕ (2.4)

i.e.
u + iv = 2 tan

θ

2
eiϕ

3∗ Introduce stereographic coordinates on n-dimensional sphere Sn.
Let x1, . . . , xn+1 be cartesian coordinates in Rn+1. The point (0, 0, . . . , 1) is the North pole of the sphere

(x1)2 + . . . + (xn+1)2 = 1. The straight line passes through the point of the sphere and the point on the
plane xn+1 = 0 with the coordinates (u1, . . . , un, 0) then u1 = u1(x1, . . . , xn+1), . . . , un = un(x1, . . . , xn+1)
are stereographic coordinates. Performing the analogous calculations we come to the answer:

xk =
2uk

1 + (u1)2 + (u2)2 + . . . + (un)2
, uk =

xk

1− xn+1
for k = 1, 2, 3, . . . , n;

xn+1 =
1− (u1)2 − (u2)2 − . . .− (un)2

1 + (u1)2 + (u2)2 + . . . + (un)2
(3.1)
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Respectively for projective coordinates related with the South Pole we have:

xk =
2u′k

1 + (u′1)2 + (u′2)2 + . . . + (u′n)2
, u′k =

xk

1 + xn+1
for k = 1, 2, 3, . . . , n;

xn+1 =
(u′1)2 + (u′2)2 + . . . + (u′n)2 − 1
(u′1)2 + (u′2)2 + . . . + (u′n)2 + 1

(3.1)

Coordinates (u1, . . . , un) and (u1, . . . , un) are related with relations

u′k =
uk

1 + (u1)2 + (u2)2 + . . . + (un)2
k = 1, 2, . . . , n

4† Show that stereographic projection is the bijection between rational points on the unit sphere (the
points on the unit sphere with rational coordinates) and rational points on the plane.

Find all rational solutions of the equations x2 + y2 = 1, x2 + y2 + z2 = 1.
Find all integer solutions of the equation x2 + y2 = z2 (Pythagoreans triples. )
The fact that it is bijection between rational points follows from explicit formulae above. On the other

hand this is easy to understand without any formula. The relation is given by intersection of straight line with
plane and points of the sphere. If coordinates of the sphere are rational then the line has rational coefficients.
We come to quadratic equation with rational coefficients. One of its solution is rational, hencethe second is
rational too. Hence the line intersects the plane at the point with rational coordinates.

The formulae (1.3), (2.3) give solutions: x, y, z ∈ Q ⇔ u, v,∈ Q
In particular x = 2u

1+u2 , y = 1−u2

1+u2 are rational iff u is rational. Hence taking u = p
q we come to

Pythagorian triples (2p, p2 − q2, p2 + q2).

5 Considering the natural bijection of the part of real projective space 1) RPn on the plane xn+1 = 1 in
Rn+1 ((x1, . . . , xn, xn+1) are cartesian coordinates on Rn+1) one can introduce ”inhomogeneous coordinates”
on the part of the RPn.

a) do this exercise for n = 1, 2; b)∗ do this exercise for an arbitrary n.
6 Find different ”inhomogeneous” coordinates on RP 2 considering natural bijections of the parts of RP 2

on the plane x3 = 1 or on the plane x2 = 1 or on the plane x1 = 1. Find relations between these coordinates.

Do the exercises 5 and 6 simultaneously.
Consider in RPn n + 1 the domains U1, U2, . . . , Un+1 such that

U1 is the set of points with homogeneous coordinates [x1 : x2 : . . . : xn+1] such that x1 6= 0
U2 is the set of points with homogeneous coordinates [x1 : x2 : . . . : xn+1] such that x2 6= 0

. . . Un+1 is the set of points with homogeneous coordinates [x1 : x2 : . . . : xn+1] such that xn+1 6= 0

We define on every set Uk the map ϕk of Uk on Rn by dividing the coordinates on the coordinate xk.
Geometrically this means that we find the coordinates of the intersection of the line [x1 : x2 : . . . : xn+1]
with the plane xk=1 Write down detailed formulae for the cases n = 1, 2

1) n = 1, RP 1 is the set of equivalence classes {[x1 : x2]}

ϕ1: [x1 : x2] 7→ u(1), u(1) =
x2

x1
, (6.1)

1) Real projective space RPn = {set of straight lines in Rn+1 which pass throug the origin}, or in other
words RPn is the set of equivalence classes of non-zero vectors in Rn+1, i.e. RPn = {[x1 : x2 : . . . : xn+1}]
where [x1 : x2 : . . . : xn+1] stands for the equivalence class of a non-zero vector (x1, . . . , xn+1) ∈ Rn+1.—Two
non-zero vectors (x1, . . . , xn+1), (x′1, . . . , x′n+1) are considered equivalent if they are proportional: x′1 = λx1,
x′2 = λx2, . . . , x′n = λxn, x′n+1 = λxn+1.
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i.e. the line [x1 : x2] intersects the plane x1 = 1 at the point
(
1, x2

x1

)
.

ϕ2: [x1 : x2] 7→ u(2), u(2) =
x1

x2
(6.2)

i.e. the line [x1 : x2] intersects the plane x2 = 1 at the point
(

x1

x2 , 1
)

We define two charts on RP 1: coordinate
u(1) on the domain U1 (x1 6= 0), and the coordinate u(2) on the domain U2 (x2 6= 0). These charts form the
atlas. Transition function is:

u(2) =
1

u(1)

2) n = 2, RPn is the set of equivalence classes {[x1 : x2 : x3]}

ϕ1: [x1 : x2 : x3] 7→ (u1
(1), u

2
(1)), u1

(1) =
x2

x1
, , u2

(1) =
x3

x1
, (6.1)

i.e. the line [x1 : x2 : x3] intersects the plane x1 = 1 at the point
(
1, x2

x1 , x3

x1

)
.

ϕ2: [x1 : x2 : x3] 7→ (u1
(2), u

2
(2)), u1

(2) =
x1

x2
, , u2

(2) =
x3

x2
, (6.2)

i.e. the line [x1 : x2 : x3] intersects the plane x2 = 1 at the point
(

x1

x2 , 1, x3

x2

)
and

ϕ3: [x1 : x2 : x3] 7→ (u1
(3), u

2
(3)), u1

(3) =
x1

x3
, , u2

(3) =
x2

x3
, (6.3)

i.e. the line [x1 : x2 : x3] intersects the plane x3 = 1 at the point
(

x1

x3 , x2

x3 , 1
)
.

We define three charts on RPn: coordinates (u1
(1), u

2
(1)) on the domain U1 (x1 6= 0), coordinates

(u1
(2), u

2
(2)) on the domain U2 (x2 6= 0) and coordinates (u1

(3), u
2
(3)) on the domain U3 (x3 6= 0). These

charts form the atlas. Transition functions are the following:

between (u1
(1), u

2
(1)) and (u1

(2), u
2
(2)): u1

(2) =
1

u1
(1)

, u2
(2) =

u2
(1)

u1
(1)

between (u1
(1), u

2
(1)) and (u1

(3), u
2
(3)): u1

(3) =
1

u2
(1)

, u2
(3) =

u1
(1)

u2
(1)

between (u1
(2), u

2
(2)) and (u1

(3), u
2
(3)): u1

(3) =
u1

(2)

u2
(2)

, u2
(3) =

1
u2

(2)

7 Do the previous exercise for complex projective spaces CP 1 and CP 2. Our formulae formally have
the same appearance:

1) CP 1 is a set of complex lines [z1 : z2] (real planes: (z1, z2) ≈ (λz1, λz2 for complex λ). Consider two
charts.

First chart: the set U1 of the equivalence classes [z1 : z2] such that z1 6= 0 and the map

ϕ1: U1 → C: u =
z2

z1
, (u ∈ C)

Second chart: the set U2 of the equivalence classes [z1 : z2] such that z2 6= 0 and the map

ϕ2: U1 → C: w =
z1

z2
, (w ∈ C)
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We see that u = 1
w . In terms of real coordinates

u = x + iy =
1
w

=
1

v + it
, i.e., , x =

v

v2 + t2
, y = − t

v2 + t2

it is a composition of inversion and reflection with respect to x axis.

2) CP 2 is a set of complex lines [z1 : z2 : z3] (real planes: (z1, z2) ≈ (λz1, λz2 for complex λ). Consider
three charts.

First chart: the set U1 of the equivalence classes [z1 : z2 : z3] such that z1 6= 0 and the map

ϕ1: U1 → C2: u =
z2

z1
, v =

z3

z1

Second chart: the set U2 of the equivalence classes [z1 : z2 : z3] such that z2 6= 0 and the map

ϕ2: U1 → C2: u′ =
z1

z2
, v′ =

z3

z2

and third chart: the set U3 of the equivalence classes [z1 : z2 : z3] such that z3 6= 0 and the map

ϕ3: U1 → C2: ũ =
z1

z3
, ṽ =

z2

z3

These charts form atlas.
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