Solutions of Homework 2

1 Check whether the following subsets are open

- a) the subset $\{(x, y) \in \mathbf{R}^2: x^2 + y^2 < 1\},\$
- b) the subset $\{(x, y) \in \mathbf{R}^2: x^2 + y^2 \le 1\},\$
- c) the subset $\{(x, y) \in \mathbf{R}^2: 0 < x < 1\}$
- d) the subset $\{(x, y, z) \in \mathbf{R}^3: x^2 + y^2 < 1, |z| < 1\}$
- e) the subset $\mathbf{R}^2 \setminus I_-$, where $I_- = \{(x, y): y = 0, x \le 0\}$.

(a) The domain a) is open, because every point is internal. To check it notice that for an arbitrary point (x_0, y_0) in this domain (x_0, y_0) : $x_0^2 + y_0^2 < 1$, there exists $\delta > 0$ such that $\sqrt{x_0^2 + y_0^2} \le 1 - \delta$. Hence all the points of the ball

$$B_{\frac{\delta}{2}}(x_0,y_0) \hspace{-0.1cm}:\hspace{0.5cm} \left\{ (x,y) | \hspace{0.5cm} d((x,y),(x_0.y_0)) < \frac{\delta}{2} \right\}$$

belong to this domain. Thus we prove that any point of this domain is internal. Hence the domain is open.

(b) This domain is not open: the points (x_0, y_0) such that $x_0^2 + y_0^2 = 1$ are not internal.

(c) This domain is open, because every point is internal. To check it notice that for an arbitrary point (x_0, y_0) in this domain $(x_0, y_0): 0 < x < 1$, all the points of the ball $B_{\delta}(x_0, y_0)$ with $\delta < \frac{1}{2} \min\{|1 - x|, |x|\}$ belong to this domain.

(d) The domain is open, because every point is internal. To check it notice that for an arbitrary point (x_0, y_0, z_0) in this domain (x_0, y_0, z_0) : $x_0^2 + y_0^2 < 1$, $|z_0| < 1$, there exists $\delta > 0$ such that $\begin{cases} \sqrt{x_0^2 + y_0^2} \le 1 - \delta \\ |z| \le 1 - \delta \end{cases}$. Hence all the points of the ball $B_{\frac{\delta}{2}}(x_0, y_0, z_0)$ belong to this domain. Thus we prove that any point of this domain is internal. Hence the domain is open.

(e) The domain is open. Take an arbitrary point (x_0, y_0) in this domain, i.e. $y_0 \neq 0$ or if $y_0 = 0$ then $x_0 > 0$. In the first case if $y_0 \neq 0$, then there exists $\delta > 0$ such that $|y_0| \geq \delta$, hence all the points of the ball $B_{\frac{\delta}{2}}(x_0, y_0)$ belong to the domain.

If $y_0 = 0$ and x > 0 then there exist $\delta > 0$ such that $x_0 \ge \delta$, hence all the points of the ball $B_{\frac{\delta}{2}}(x_0, 0)$. belong to this domain. Thus we prove that any point of this domain is internal. Hence the domain is open.

2 Consider the sets U_1, U_2 on \mathbb{R}^2 such that $U_1 = \mathbb{R}^2 \setminus I_-$, $U_2 = \mathbb{R}^2 \setminus I_+$, where $I_- = \{(x, y) : y = 0, x \leq 0\}$, $I_+ = \{(x, y) : y = 0, x \geq 0\}$. Using polar coordinates define charts $(U_1, \varphi_1), (U_2, \varphi_2)$. Show that these charts do not form an atlas on \mathbb{R}^2 . Consider an additional chart (U_3, φ_3) , where $U_3 = \mathbb{R}^2$, $\varphi_3 = \mathrm{id}$. Show that $\{(U_3, \varphi_3), (U_1, \varphi_1)\}$ is an atlas on \mathbb{R}^2 . Show that this atlas is smooth.

The charts φ_1, φ_2 are following:

$$\varphi_1: \quad (x,y) \xrightarrow{\varphi_1} (r,\theta_1) \text{ with } -\pi < \theta_1 < \pi, \quad \varphi_1: \quad (x,y) \xrightarrow{\varphi_1} (r,\theta_2) \text{ with } 0 < \theta_2 < 2\pi \left(\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \right)$$

The map φ_1 maps the set U_1 onto the *open* domain $0 < r < \infty$, $-\pi < \theta_1 < \pi$. The map φ_2 maps the set U_2 onto the *open* domain $0 < r < \infty$, $0 < \theta_2 < 2\pi$. Both maps are bijections on the images. Hence these maps are charts.

The sets U_1, U_2 do not cover the whole \mathbb{R}^2 , because the point (0, 0) does not belong neither U_1 , nor U_2 . Hence these charts do not form an atlas.

The sets U_2, U_3 do cover the whole \mathbb{R}^2 , because the points on I_+ , which do not belong to U_2 belong to U_3 . The transition map

$$\Psi_{32} = \varphi_3 \varphi_2^{-1} \colon \quad (r, \varphi) \to (x, y) \colon \begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

is smooth: both functions $x = r \cos \theta$, $y = r \cos \theta$ are smooth.

3 a)Define an atlas on S^1 with two charts using stereographic coordinates considered in the Homework 1 and show that this atlas is smooth.

b) Do the same for S^2 .

(a)To solve this problem use the exercise 1 of Homework 1.

Define the first chart (U_1, φ_1) using stereographic coordinate related with North pole:

$$U_1 = S^1 \setminus (0, 1), \qquad \varphi_1 \colon U_1 \ni (x, y) \mapsto u = \frac{x}{1 - y}$$

and

$$U_2 = S^1 \setminus (0, -1), \qquad \varphi_2 \colon U_2 \ni (x, y) \mapsto u' = \frac{x}{1+y}$$

(see solution of exercise 1 in Homework 1) These maps are really charts because in both cases maps are bijections and an image is \mathbf{R} —open domain.

The sets U_1, U_2 cover the S^1 . Hence these two charts form an atlas.

The transition function:

$$\Psi_{21} = \varphi_2 \varphi_1^{-1} \colon u \mapsto u' = \frac{1}{u}$$

is smooth function. Hence the atlas is smooth.

(b)To solve this problem use the exercise 2 of Homework 1.

Consider S^2 as a set of points $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 .

Define the first chart (U_1, φ_1) using stereographic coordinate related with North pole:

$$U_1 = S^1 \setminus (0, 0, 1), \qquad \varphi_1 \colon U_1 \ni (x, y, z) \mapsto \begin{cases} u = \frac{x}{1-z} \\ v = \frac{y}{1-z} \end{cases}$$

and the second chart (U_2, φ_2) using stereographic coordinate related with North pole:

$$U_2 = S^1 \setminus (0, 0, -1), \qquad \varphi_2 \colon U_2 \ni (x, y, z) \mapsto \begin{cases} u' = \frac{x}{1+z} \\ v' = \frac{y}{1+z} \end{cases}$$

(see solution of exercise 2 in Homework 1) The image of map φ_1 and φ_2 is whole \mathbf{R}^2 , i.e. image is open. These maps establish one-one correspondence. Thus these maps are really charts.

The sets U_1, U_2 cover the S^1 . Hence these two charts form an atlas. The transition function:

$$\Psi_{21} = \varphi_2 \varphi_1^{-1} : (u, v) \mapsto (u', v'), \quad \begin{cases} u' = \frac{u}{u^2 + v^2} \\ v' = \frac{v}{u^2 + v^2} \end{cases}$$

(see the exercise 2 in Homework 1) is smooth function. Hence the atlas is smooth.

4 Define an atlas on $\mathbb{R}P^2$ using inhomogeneous coordinates (see Homework 1). Show that this atlas is smooth. **4b**)* Do the same for $\mathbb{R}P^n$ (n = 2, 3, 4, ...)

We use here the exercise 5 of Homework 1. a) First introduce atlas on $\mathbf{R}P^2$.

We consider $\mathbf{R}P^2$ as a set of equivalence classes [x : y : z] of non-zero vectors in \mathbf{R}^3 . Define charts $(U_1, \varphi_1), (U_2, \varphi_2), (U_3, \varphi_3)$ such that

$$U_{1} = \{ [x:y:z] \text{ such that } x \neq 0 \} \varphi_{1}, \ [x:y:z] \mapsto (u_{(1)}, v_{(1)}), \quad \begin{cases} u_{(1)} = \frac{y}{x} \\ v_{(1)} = \frac{z}{x} \end{cases}$$
$$U_{2} = \{ [x:y:z] \text{ such that } y \neq 0 \} \varphi_{2}, \ [x:y:z] \mapsto (u_{(2)}, v_{(2)}), \quad \begin{cases} u_{(2)} = \frac{x}{y} \\ v_{(2)} = \frac{z}{y} \end{cases}$$

$$U_{3} = \{ [x:y:z] \text{ such that } z \neq 0 \} \varphi_{3}, \ [x:y:z] \mapsto (u_{(3)}, v_{(3)}), \quad \begin{cases} u_{(3)} = \frac{x}{z} \\ v_{(3)} = \frac{y}{z} \end{cases}$$

These three maps are charts because they are bijections on \mathbb{R}^3 .

These charts form an atlas, because for an arbitrary point $[x : y : z] \in \mathbb{R}P^2$ $x \neq 0$, or $y \neq 0$ or $z \neq 0$. Transition functions are

$$\begin{split} \Psi_{21} &= \varphi_2 \varphi_1^{-1}, \ (u_{(1)}, v_{(1)}) \mapsto (u_{(2)}, v_{(2)}), \\ \begin{cases} u_{(2)} &= \frac{x}{y} = 1 : \frac{y}{x} = \frac{1}{u_{(1)}} \\ v_{(2)} &= \frac{z}{y} = \frac{z}{x} : \frac{y}{x} = \frac{v_{(1)}}{u_{(2)}} \\ \end{cases} \\ \Psi_{32} &= \varphi_3 \varphi_2^{-1}, \ (u_{(2)}, v_{(2)}) \mapsto (u_{(3)}, v_{(3)}), \\ \begin{cases} u_{(3)} &= \frac{x}{z} = \frac{x}{y} : \frac{z}{y} = \frac{u_{(2)}}{v_{(2)}} \\ v_{(3)} &= \frac{y}{z} = 1 : \frac{z}{y} = \frac{1}{v_{(2)}} \\ v_{(3)} &= \frac{y}{z} = 1 : \frac{z}{y} = \frac{1}{v_{(2)}} \\ \end{cases} \\ \Psi_{13} &= \varphi_1 \varphi_3^{-1}, \ (u_{(3)}, v_{(3)}) \mapsto (u_{(1)}, v_{(1)}), \\ \begin{cases} u_{(1)} &= \frac{y}{x} = \frac{y}{z} : \frac{x}{z} = \frac{v_{(3)}}{u_{(3)}} \\ v_{(1)} &= \frac{z}{x} = 1 : \frac{x}{z} = \frac{1}{u_{(3)}} \\ \end{cases} \end{split}$$

All transition functions are smooth, hence the atlas is smooth.

The case of $\mathbb{R}P^n$. We consider $\mathbb{R}P^n$ as a set of equivalence classes $[x^1 : x^2 : \ldots : x^n : x^{n+1}]$ of non-zero vectors in \mathbb{R}^{n+1} .

In this case we have n + 1-charts (U_k, φ_k) (k=1,2,3,...,n+1), where

$$U_k = \{ [x^1 : x^2 : \ldots : x^n : x^{n+1}] \text{ such that } x^k \neq 0 \}$$

and $\varphi_k, \ [x^1:x^2:\ldots:x^n:x^{n+1}] \mapsto (u^1_{_{(1)}},\ldots,u^1_{_{(1)}})$ are

$$\varphi_{1}: \quad \begin{cases} u_{(1)}^{1} = \frac{x^{2}}{x^{1}} \\ u_{(1)}^{2} = \frac{x^{3}}{x^{1}} \\ u_{(1)}^{3} = \frac{x^{4}}{x^{1}} \\ \cdots \\ u_{(1)}^{k} = \frac{x^{n+1}}{x^{1}} \end{cases}, \quad \varphi_{2}: \quad \begin{cases} u_{(2)}^{1} = \frac{x^{1}}{x^{2}} \\ u_{(2)}^{2} = \frac{x^{3}}{x^{2}} \\ \cdots \\ u_{(2)}^{k} = \frac{x^{4}}{x^{2}} \\ \cdots \\ u^{k}_{(2)} = \frac{x^{n+1}}{x^{2}} \end{cases}, \quad \cdots \\ u^{k}_{(2)} = \frac{x^{n+1}}{x^{2}} \end{cases}, \quad \psi_{n+1}: \quad \begin{cases} u_{(n+1)}^{1} = \frac{x^{1}}{x^{n+1}} \\ u_{(n+1)}^{2} = \frac{x^{2}}{x^{n+1}} \\ u_{(n+1)}^{3} = \frac{x^{3}}{x^{n+1}} \\ \cdots \\ u^{k}_{(n+1)} = \frac{x^{n}}{x^{n+1}} \end{cases}$$

This collection of charts is an atlas because for an arbitrary point $[x^1 : x^2 : \ldots : x^n : x^{n+1}] \in \mathbf{R}P^n$ one of components is not equal to zero. One can see that all transition functions are smooth. E.g.

$$\Psi_{21} = \varphi_2 \circ \varphi_1^{-1} (u_{(1)}^1, \dots, u_{(1)}^1) \mapsto (u_{(2)}^1, \dots, u_{(2)}^1), \begin{cases} u_{(2)}^1 = \frac{x^1}{x^2} = 1 : \frac{x^2}{x^1} = \frac{1}{u_{(1)}^2} \\ u_{(2)}^2 = \frac{x^3}{x^2} = \frac{x^3}{x^1} : \frac{x^2}{x^1} = \frac{u_{(1)}^2}{u_{(1)}^1} \\ u_{(2)}^3 = \frac{x^4}{x^2} = \frac{x^4}{x^1} : \frac{x^2}{x^1} = \frac{u_{(1)}^3}{u_{(1)}^1} \end{cases}$$

and all components are smooth functions.

5 Define an smooth atlas on $\mathbb{C}P^1$. **5b**)* Do it for $\mathbb{C}P^n$.

 $\mathbb{C}P^1$ is the set of equivalence classes of pairs of complex numbers $[z^1 : z^2]$, such that $z^1 \neq 0$ or $z^2 \neq 0$. For $\mathbb{C}P^1$ we have an atlas with two charts:

First chart (U_1, φ_1) : the set U_1 of the equivalence classes $[z^1 : z^2]$ such that $z^1 \neq 0$ and the map

$$\varphi_1: \quad U_1 \to \mathbf{C}: \ u = \frac{z^2}{z^1}, \quad (u \in \mathbf{C})$$

of U_1 in \mathbf{R}^2 (complex plane)

Second chart: the set U_2 of the equivalence classes $[z^1:z^2]$ such that $z^2 \neq 0$ and the map

$$\varphi_2$$
: $U_2 \to \mathbf{C}$: $w = \frac{z^1}{z^2}$, $(w \in \mathbf{C})$

These two maps φ_1, φ_2 are bijections of sphere without a point on the whole plane \mathbb{R}^2 . Hence they are charts. These two charts form an atlas.

Consider transition function $\Psi_{21} = \varphi_2 \varphi_1^{-1}$, $w = \frac{1}{u}$. In terms of real coordinates it will be

$$w = v + it = \frac{1}{u} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2}, \quad \begin{cases} v = \frac{x}{x^2 + y^2} \\ t = \frac{-y}{x^2 + y^2} \end{cases}$$

These both functions are smooth. Hence the atlas is smooth.

In the case $\mathbb{C}P^n$ the atlas formally looks like for the $\mathbb{R}P^n$ but all x^i , $u^k_{(r)}$ are complex variables.

6 Is the map φ : $\mathbf{R} \to \mathbf{R}, x \mapsto x^3$ a diffeomorphism?

This map is one-one map of \mathbf{R}^1 on \mathbf{R}^n . It is smooth function, but... the inverse function $x \mapsto \sqrt[3]{x}$ is not smooth at the point x = 0, since the first derivative already is not defined at this point. Hence this map is not diffeomorphism.

7 Establish diffeomorphisms between $\mathbf{R}P^1$ and S^1 , and between $\mathbf{C}P^1$ and S^2 .

a) Diffeomorphism $\mathbf{R}P^1$ and S^1 .

Consider $\mathbb{R}P^1$ as set [x:y] of equivalence classes of vectors in \mathbb{R}^2 and S^1 as set of points $(x,y): x^2 + y^2 = 1$. The atlas $\{(U_1, \varphi_1), (U_2, \varphi_2)\}$ was already constructed in the exercise 3a:

$$U_1 = S^1 \setminus (0,1), \ \varphi_1 : U_1 \ni (x,y) \mapsto u = \frac{x}{1-y}, \ \ U_2 = S^1 \setminus (0,-1), \ \varphi_2 : U_2 \ni (x,y) \mapsto u' = \frac{x}{1+y}$$

with transition function

$$\Psi_{21} = \varphi_2 \varphi_1^{-1} \colon u \mapsto u' = \frac{1}{u}$$

The atlas on $\mathbb{R}P^1$ is $\{(U'_1, \varphi'_1), (U'_2, \varphi'_2)\}$ where U'_1 is a set of points [x : y] with $y \neq 0, U'_2$ is a set of points [x : y] with $x \neq 0$,

$$\varphi_1'([x,y] = v = \frac{x}{y}, \ \varphi_2'([x,y] = v' = \frac{y}{x})$$

with transition function $v' = \frac{1}{v}$.

Define the following map from S^1 to $\mathbf{R}P^1$

$$S^{1} \ni (x, y), F(x, y) = \begin{cases} [1 - y : x] = [1 : \frac{x}{1 - y}] & \text{if } y \neq 1 \\ [0 : 1] & \text{if } y = 1 \end{cases}$$

This map establishes one-one correspondence between all the points of the circle except the North Pole and the points of the line \mathbf{R}^1 and it sends the North Pole to the "infinity" point [0:1] of projective line.

Write down the expression of this map in coordinates:

$$F_{1'1} = \varphi_1' \varphi_1^{-1} : u \mapsto v, v = u,$$

$$F_{2'1} = \varphi_2' \varphi_1^{-1} : u \mapsto v', v' = \frac{1}{u}$$

$$F_{1'2} = \varphi_1' \varphi_2^{-1} : u' \mapsto v, v = \frac{1}{u'},$$

$$F_{2'2} = \varphi_2' \varphi_2^{-1} : u' \mapsto v', v' = u'$$

All coordinate expressions for the map F is smooth.

We see that the map F is one-one correspondence and in all local charts this function and its inverse are smooth functions. Hence it is diffeomorphism.

Remark Notice that one can write the function F in the following "symmetric" way:

$$F(x,y) = \begin{cases} [1-y:x] \text{ if } y \neq 1\\ [x:1+y] \text{ if } y \neq -1 \end{cases}$$

 $([1 - y : x] = [1 - y^2 : x(1 + y)] = [x^2 : x(1 + y)] = [x : 1 + y])$

Now establish diffeomorphism between S^2 and $\mathbb{C}P^1$.

We already constructed atlases for these spaces (see exercises 3,5): Atlas $\{(U_1, \varphi_1), (U_2, \varphi_2)\}$ for S^2 is

$$U_1 = S^1 \setminus (0, 0, 1), \qquad \varphi_1 \colon U_1 \ni (x, y, z) \mapsto \begin{cases} u = \frac{x}{1-z} \\ v = \frac{y}{1-z} \end{cases}$$

and

$$U_2 = S^1 \setminus (0, 0, -1), \qquad \varphi_2 \colon U_2 \ni (x, y, z) \mapsto \begin{cases} u' = \frac{x}{1+z} \\ v' = \frac{y}{1+z} \end{cases}$$

with transition function:

$$\Psi_{21} = \varphi_2 \varphi_1^{-1} \colon (u, v) \mapsto (u', v'), \quad \begin{cases} u' = \frac{u}{u^2 + v^2} \\ v' = \frac{v}{u^2 + v^2} \end{cases}$$

and atlas $\{(U_1',\varphi_1'),(U_2',\varphi_2')\}$ for ${\bf C}P^1$ where

$$\varphi_1': \quad U_1' \to \mathbf{C}: \ s = \frac{z^2}{z^1}, \quad (u \in \mathbf{C}) \quad \varphi_2': \quad U_2' \to \mathbf{C}: \ s' = \frac{z^1}{z^2}, \quad (w \in \mathbf{C})$$

where $U'_1 = \{[z^1 : z^2], z^1 \neq 0\}, U'_2 = \{[z^1 : z^2], z^2 \neq 0\}$ and transition functions $s = \frac{1}{s'}$ where s, s' are complex variables.

Now consider the following map of S^1 on $\mathbb{C}P^1$

$$S^{2} \ni (x, y, z), \ F(x, y, z) = \begin{cases} [1 - z : x + iy] \text{ if } z \neq 1\\ [1 + z : x - iy] \text{ if } z \neq -1 \end{cases}$$

This map sends all the points of the sphere except the north pole on the complex plane and North pole to the point [0:1]. It is one-one correspondence between S^2 and $\mathbb{C}P^1$.

Derive expressions in coordinates for the map F. We see that $[1 - z : x + iy] = [1 : \frac{x+iy}{1-z}] = [1 : u + iv]$, hence

$$F_{1'1} = \varphi_1' \varphi_1^{-1}, \ s = u + iv$$

and

$$F_{2'1} = \varphi_2' \varphi_1^{-1}, \ s' = \frac{1}{s} = \frac{1}{u+iv} = \frac{u-iv}{u^2+v^2}$$

Respectively $[1 - z : x + iy] = [(1 - z(x - iy) : x^2 + y^2] = [x - iy : 1 + z] = [\frac{x - iy}{1 - z} : 1] = [u' - iv' : 1]$ and

$$F_{2'2} = \varphi_2' \varphi_2^{-1}, \ s' = u' - iv'$$

and

$$F_{1'2} = \varphi_1' \varphi_2^{-1}, \ s = \frac{1}{s'} = \frac{1}{u' - iv'} = \frac{u' + iv}{u^2 + v^2}$$

We see that the function F is not only bijection but the smooth function, and inverse function is smooth too. Hence F is diffeomorphism.

7 Show that the special linear group $SL(2) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{R}, \det g = 1 \right\}$ has a natural structure of a differentiable manifold of dimension 3.

Consider \mathbf{R}^4 with coordinates (a, b, c, d). The group SL(2) is defined as the set S of the points in \mathbf{R}^4 which obeys the equation F(a, b, c, d) = ad - bc = 1. Consider derivative matrix of this function:

$$\left(\frac{\partial F(a,b,c,d)}{\partial a},\frac{\partial F(a,b,c,d)}{\partial b},\frac{\partial F(a,b,c,d)}{\partial c},\frac{\partial F(a,b,c,d)}{\partial d}\right) = (d,c,b,a) = 0$$

This matrix contains one row—vector. Its rank is equal to 1 if this vector is not equal to zero. We have to check that at the points of S where ad - bc = 1 the vector $(a, b, c, d) \neq 0$.

At the points where $a \neq 0$ the vector $(a, b, c, d) \neq 0$. At the points of S where a = 0 then cd = 1 because ad - dc = 1. If cd = 1 then $c \neq 0$, hence vector $(a, b, c, d) \neq 0$.

We show that at all points of the set S defined by the equation ad - bc = 1 the matrix of derivatives has rank 1. Hence according to Theorem S is a smooth manifold of dimension 4 - 1 = 3.

 $\mathbf{8}^*$ Show that the special unitary group SU(2)

$$SU(2) = \left\{ g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{C}, g^{-1} = g^+, \det g = 1 \right\}$$

has a natural structure of a differentiable manifold of dimension 3. Show that this manifold is diffeomorphic to S^3 . (Recall that g^+ is the matrix which is hermitian conjugate to the matrix g: if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $g^+ = \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}$)

If matrix g is equal to $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and its determinant is equal to 1 then

$$g^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 and $g^+ = \begin{pmatrix} \bar{a} & \bar{c} \\ \bar{b} & \bar{d} \end{pmatrix}$

Hence we see that for complex numbers $a, b, c, d \ d = \bar{a}, c = -\bar{b}$. Hence

$$g = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$$

where a, b are complex numbers such that det $g = a\bar{a} + b\bar{b} = 1$. Denote a = x + iy, b = z + it we come to

$$\det g = 1 = a\bar{a} + b\bar{b} = (x + iy)(x - iy) + (z + it)(z - it) = x^2 + y^2 + z^2 + t^2$$

We see that SU(2) is a set of points in \mathbb{R}^4 obeying the equation $x^2 + y^2 + z^2 + t^2 = 1$. This is S^3 .

 9^* Show that the configuration space of solid body with a fixed point can be identified with the special orthogonal group SO(3). (The group SO(3) is a group of 3×3 real orthogonal matrices with determinant 1, i.e., it is the group of matrices which preserve scalar product and orientation in \mathbb{R}^3 .)

Take any orthogonal frame fixed with body. The position of the body is a linear transformation of this frame. This linear transformation preserves length, hence it preserves scalar product, i.e. it is orthogonal transformation:

$$A^+ = A$$

If transformation is orthogonal its determinant is equal to 1 (preserving orientation), or -1 (changing orientation). Any transformation $\gamma(t)$ can be smoothly connected with identity transformation $\gamma(t)|_{t=0}$. det $(\gamma(t))$ is continuous function. Hence det $\gamma(t) = 1$. We see that configuration space can be identified with SO(3)

 $\mathbf{10}^{\dagger}$ Show that the projective space $\mathbf{R}P^3$ is diffeomorphic to SO(3).

We know that any orthogonal transformation preserving orientation is a rotation on a given angle around a given axis...