
Solutions of Homework 2
1 Check whether the following subsets are open

a) the subset {(x, y) ∈ R2: x2 + y2 < 1},
b) the subset {(x, y) ∈ R2: x2 + y2 ≤ 1},
c) the subset {(x, y) ∈ R2: 0 < x < 1}
d) the subset {(x, y, z) ∈ R3: x2 + y2 < 1, |z| < 1}
e) the subset R2\I− , where I− = {(x, y): y = 0, x ≤ 0}.
(a) The domain a) is open, because every point is internal. To check it notice that for an arbitrary point

(x0, y0) in this domain (x0, y0): x2
0 + y2

0 < 1, there exists δ > 0 such that
√

x2
0 + y2

0 ≤ 1 − δ. Hence all the
points of the ball

B δ
2
(x0, y0):

{
(x, y)| d((x, y), (x0.y0)) <

δ

2

}

belong to this domain. Thus we prove that any point of this domain is internal. Hence the domain is open.
(b) This domain is not open: the points (x0, y0) such that x2

0 + y2
0 = 1 are not internal.

(c) This domain is open, because every point is internal. To check it notice that for an arbitrary point
(x0, y0) in this domain (x0, y0): 0 < x < 1, all the points of the ball Bδ(x0, y0) with δ < 1

2 min{|1 − x|, |x|}
belong to this domain.

(d) The domain is open, because every point is internal. To check it notice that for an arbitrary point

(x0, y0, z0) in this domain (x0, y0, z0): x2
0 +y2

0 < 1, |z0| < 1, there exists δ > 0 such that
{ √

x2
0 + y2

0 ≤ 1− δ
|z| ≤ 1− δ

.

Hence all the points of the ball B δ
2
(x0, y0, z0) belong to this domain. Thus we prove that any point of this

domain is internal. Hence the domain is open.
(e) The domain is open. Take an arbitrary point (x0, y0) in this domain, i,e, y0 6= 0 or if y0 = 0 then

x0 > 0. In the first case if y0 6= 0, then there exists δ > 0 such that |y0| ≥ δ, hence all the points of the ball
B δ

2
(x0, y0) belong to the domain.
If y0 = 0 and x > 0 then there exist δ > 0 such that x0 ≥ δ, hence all the points of the ball B δ

2
(x0, 0).

belong to this domain. Thus we prove that any point of this domain is internal. Hence the domain is open.

2 Consider the sets U1, U2 on R2 such that U1 = R2\I− , U2 = R2\I+ , where I− = {(x, y): y = 0, x ≤ 0},
I+ = {(x, y): y = 0, x ≥ 0}. Using polar coordinates define charts (U1, ϕ1), (U2, ϕ2). Show that these charts
do not form an atlas on R2. Consider an additional chart (U3, ϕ3), where U3 = R2, ϕ3 = id. Show that
{(U3, ϕ3), (U1, ϕ1)} is an atlas on R2. Show that this atlas is smooth.

The charts ϕ1, ϕ2 are following:

ϕ1: (x, y)
ϕ1−→ (r, θ1) with − π < θ1 < π, ϕ1: (x, y)

ϕ1−→ (r, θ2) with 0 < θ2 < 2π

({
x = r cos θ
y = r sin θ

)

The map ϕ1 maps the set U1 onto the open domain 0 < r < ∞,−π < θ1 < π. The map ϕ2 maps the set U2

onto the open domain 0 < r < ∞, 0 < θ2 < 2π. Both maps are bijections on the images. Hence these maps
are charts.

The sets U1, U2 do not cover the whole R2, because the point (0, 0) does not belong neither U1, nor U2.
Hence these charts do not form an atlas.

The sets U2, U3 do cover the whole R2, because the points on I+, which do not belong to U2 belong to
U3. The transition map

Ψ32 = ϕ3ϕ
−1
2 : (r, ϕ) → (x, y):

{
x = r cos θ
y = r sin θ

is smooth: both functions x = r cos θ, y = r cos θ are smooth.
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3 a)Define an atlas on S1 with two charts using stereographic coordinates considered in the Homework 1 and
show that this atlas is smooth.
b)Do the same for S2.

(a)To solve this problem use the exercise 1 of Homework 1.
Define the first chart (U1, ϕ1) using stereographic coordinate related with North pole:

U1 = S1\(0, 1), ϕ1: U1 3 (x, y) 7→ u =
x

1− y

and
U2 = S1\(0,−1), ϕ2:U2 3 (x, y) 7→ u′ =

x

1 + y

(see solution of exercise 1 in Homework 1) These maps are really charts because in both cases maps are
bijections and an image is R—open domain.

The sets U1, U2 cover the S1. Hence these two charts form an atlas.
The transition function:

Ψ21 = ϕ2ϕ
−1
1 : u 7→ u′ =

1
u

is smooth function. Hence the atlas is smooth.

(b)To solve this problem use the exercise 2 of Homework 1.
Consider S2 as a set of points x2 + y2 + z2 = 1 in R3.
Define the first chart (U1, ϕ1) using stereographic coordinate related with North pole:

U1 = S1\(0, 0, 1), ϕ1:U1 3 (x, y, z) 7→
{

u = x
1−z

v = y
1−z

and the second chart (U2, ϕ2) using stereographic coordinate related with North pole:

U2 = S1\(0, 0,−1), ϕ2:U2 3 (x, y, z) 7→
{

u′ = x
1+z

v′ = y
1+z

(see solution of exercise 2 in Homework 1) The image of map ϕ1 and ϕ2 is whole R2, i.e. image is open.
These maps establish one-one correspondence. Thus these maps are really charts.

The sets U1, U2 cover the S1. Hence these two charts form an atlas. The transition function:

Ψ21 = ϕ2ϕ
−1
1 : (u, v) 7→ (u′, v′),

{
u′ = u

u2+v2

v′ = v
u2+v2

(see the exercise 2 in Homework 1) is smooth function. Hence the atlas is smooth.

4 Define an atlas on RP 2 using inhomogeneous coordinates (see Homework 1). Show that this atlas is
smooth. 4b)∗ Do the same for RPn (n = 2, 3, 4, . . .)

We use here the exercise 5 of Homework 1. a) First introduce atlas on RP 2.
We consider RP 2 as a set of equivalence classes [x : y : z] of non-zero vectors in R3.
Define charts (U1, ϕ1), (U2, ϕ2), (U3, ϕ3) such that

U1 = {[x : y : z] such that x 6= 0}ϕ1, [x : y : z] 7→ (u(1) , v(1)),
{

u(1) = y
x

v(1) = z
x

U2 = {[x : y : z] such that y 6= 0}ϕ2, [x : y : z] 7→ (u(2) , v(2)),
{

u(2) = x
y

v(2) = z
y
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U3 = {[x : y : z] such that z 6= 0}ϕ3, [x : y : z] 7→ (u(3) , v(3)),
{

u(3) = x
z

v(3) = y
z

These three maps are charts because they are bijections on R3.
These charts form an atlas, because for an arbitrary point [x : y : z] ∈ RP 2 x 6= 0, or y 6= 0 or z 6= 0.
Transition functions are

Ψ21 = ϕ2ϕ
−1
1 , (u(1) , v(1)) 7→ (u(2) , v(2)),





u(2) = x
y = 1 : y

x = 1
u(1)

v(2) = z
y = z

x : y
x =

v(1)

u(2)

Ψ32 = ϕ3ϕ
−1
2 , (u(2) , v(2)) 7→ (u(3) , v(3)),





u(3) = x
z = x

y : z
y =

u(2)

v(2)

v(3) = y
z = 1 : z

y = 1
v(2)

Ψ13 = ϕ1ϕ
−1
3 , (u(3) , v(3)) 7→ (u(1) , v(1)),





u(1) = y
x = y

z : x
z =

v(3)

u(3)

v(1) = z
x = 1 : x

z = 1
u(3)

All transition functions are smooth, hence the atlas is smooth.

The case of RPn. We consider RPn as a set of equivalence classes [x1 : x2 : . . . : xn : xn+1] of non-zero
vectors in Rn+1.

In this case we have n + 1-charts (Uk, ϕk) (k=1,2,3,. . . ,n+1), where

Uk = {[x1 : x2 : . . . : xn : xn+1] such that xk 6= 0}

and ϕk, [x1 : x2 : . . . : xn : xn+1] 7→ (u1
(1)

, . . . , u1
(1)

) are

ϕ1:





u1
(1)

= x2

x1

u2
(1)

= x3

x1

u3
(1)

= x4

x1

. . . . . . . . .
uk

(1) = xn+1

x1

, ϕ2:





u1
(2)

= x1

x2

u2
(2)

= x3

x2

u3
(2)

= x4

x2

. . . . . . . . .
uk

(2) = xn+1

x2

, , . . . , ϕn+1:





u1
(n+1)

= x1

xn+1

u2
(n+1)

= x2

xn+1

u3
(n+1)

= x3

xn+1

. . . . . . . . .
uk

(n+1) = xn

xn+1

This collection of charts is an atlas because for an arbitrary point [x1 : x2 : . . . : xn : xn+1] ∈ RPn one of
components is not equal to zero. One can see that all transition functions are smooth. E.g.

Ψ21 = ϕ2 ◦ ϕ−1
1 (u1

(1)
, . . . , u1

(1)
) 7→ (u1

(2)
, . . . , u1

(2)
),





u1
(2)

= x1

x2 = 1 : x2

x1 = 1
u2

(1)

u2
(2)

= x3

x2 = x3

x1 : x2

x1 =
u2
(1)

u1
(1)

u3
(2)

= x4

x2 = x4

x1 : x2

x1 =
u3
(1)

u1
(1)

and all components are smooth functions.

5 Define an smooth atlas on CP 1. 5b)∗ Do it for CPn.
CP 1 is the set of equivalence classes of pairs of complex numbers [z1 : z2], such that z1 6= 0 or z2 6= 0.
For CP 1 we have an atlas with two charts:
First chart (U1, ϕ1): the set U1 of the equivalence classes [z1 : z2] such that z1 6= 0 and the map

ϕ1: U1 → C: u =
z2

z1
, (u ∈ C)
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of U1 in R2 (complex plane)
Second chart: the set U2 of the equivalence classes [z1 : z2] such that z2 6= 0 and the map

ϕ2: U2 → C: w =
z1

z2
, (w ∈ C)

These two maps ϕ1, ϕ2 are bijections of sphere without a point on the whole plane R2. Hence they are
charts. These two charts form an atlas.

Consider transition function Ψ21 = ϕ2ϕ
−1
1 , w = 1

u . In terms of real coordinates it will be

w = v + it =
1
u

=
1

x + iy
=

x− iy

x2 + y2
,

{
v = x

x2+y2

t = −y
x2+y2

These both functions are smooth. Hence the atlas is smooth.

In the case CPn the atlas formally looks like for the RPn but all xi, uk
(r)

are complex variables.

6 Is the map ϕ: R → R, x 7→ x3 a diffeomorphism?
This map is one-one map of R1 on Rn. It is smooth function, but... the inverse function x 7→ 3

√
x is

not smooth at the point x = 0, since the first derivative already is not defined at this point. Hence this map
is not diffeomorphism.

7 Establish diffeomorphisms between RP 1 and S1, and between CP 1 and S2.
a) Diffeomorphism RP 1 and S1.

Consider RP 1 as set [x : y] of equivalence classes of vectors in R2 and S1 as set of points (x, y): x2 + y2 = 1.
The atlas {(U1, ϕ1), (U2, ϕ2)} was already constructed in the exercise 3a:

U1 = S1\(0, 1), ϕ1: U1 3 (x, y) 7→ u =
x

1− y
, U2 = S1\(0,−1), ϕ2:U2 3 (x, y) 7→ u′ =

x

1 + y

with transition function
Ψ21 = ϕ2ϕ

−1
1 : u 7→ u′ =

1
u

The atlas on RP 1 is {(U ′
1, ϕ

′
1), (U

′
2, ϕ

′
2)} where U ′

1 is a set of points [x : y] with y 6= 0, U ′
2 is a set of

points [x : y] with x 6= 0,
ϕ′1([x, y] = v =

x

y
, ϕ′2([x, y] = v′ =

y

x

with transition function v′ = 1
v .

Define the following map from S1 to RP 1

S1 3 (x, y), F (x, y) =
{

[1− y : x] = [1 : x
1−y ] if y 6= 1

[0 : 1] if y = 1

This map establishes one-one correspondence between all the points of the circle except the North Pole and
the points of the line R1 and it sends the North Pole to the ”infinity” point [0 : 1] of projective line.

Write down the expression of this map in coordinates:

F1′1 = ϕ′1ϕ
−1
1 :u 7→ v, v = u ,

F2′1 = ϕ′2ϕ
−1
1 : u 7→ v′, v′ =

1
u

F1′2 = ϕ′1ϕ
−1
2 :u′ 7→ v, v =

1
u′

,
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F2′2 = ϕ′2ϕ
−1
2 :u′ 7→ v′, v′ = u′ ,

All coordinate expressions for the map F is smooth.
We see that the map F is one-one correspondence and in all local charts this function and its inverse

are smooth functions. Hence it is diffeomorphism.
Remark Notice that one can write the function F in the following ”symmetric” way:

F (x, y) =
{

[1− y : x] if y 6= 1
[x : 1 + y] if y 6= −1

([1− y : x] = [1− y2 : x(1 + y)] = [x2 : x(1 + y)] = [x : 1 + y])

Now establish diffeomorphism between S2 and CP 1.
We already constructed atlases for these spaces (see exercises 3,5):
Atlas {(U1, ϕ1), (U2, ϕ2)} for S2 is

U1 = S1\(0, 0, 1), ϕ1:U1 3 (x, y, z) 7→
{

u = x
1−z

v = y
1−z

and

U2 = S1\(0, 0,−1), ϕ2:U2 3 (x, y, z) 7→
{

u′ = x
1+z

v′ = y
1+z

with transition function:

Ψ21 = ϕ2ϕ
−1
1 : (u, v) 7→ (u′, v′),

{
u′ = u

u2+v2

v′ = v
u2+v2

and atlas {(U ′
1, ϕ

′
1), (U

′
2, ϕ

′
2)} for CP 1 where

ϕ′1: U ′
1 → C: s =

z2

z1
, (u ∈ C) ϕ′2: U ′

2 → C: s′ =
z1

z2
, (w ∈ C)

where U ′
1 = {[z1 : z2], z1 6= 0}, U ′

2 = {[z1 : z2], z2 6= 0} and transition functions s = 1
s′ where s, s′ are

complex variables.
Now consider the following map of S1 on CP 1

S2 3 (x, y, z), F (x, y, z) =
{

[1− z : x + iy] if z 6= 1
[1 + z : x− iy] if z 6= −1

This map sends all the points of the sphere except the north pole on the complex plane and North pole to
the point [0 : 1]. It is one-one correspondence between S2 and CP 1.

Derive expressions in coordinates for the map F . We see that [1− z : x + iy] = [1 : x+iy
1−z ] = [1 : u + iv],

hence
F1′1 = ϕ′1ϕ

−1
1 , s = u + iv

and
F2′1 = ϕ′2ϕ

−1
1 , s′ =

1
s

=
1

u + iv
=

u− iv

u2 + v2

Respectively [1− z : x + iy] = [(1− z(x− iy) : x2 + y2] = [x− iy : 1 + z] = [x−iy
1−z : 1] = [u′ − iv′ : 1] and

F2′2 = ϕ′2ϕ
−1
2 , s′ = u′ − iv′

and

F1′2 = ϕ′1ϕ
−1
2 , s =

1
s′

=
1

u′ − iv′
=

u′ + iv′

u2 + v2
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We see that the function F is not only bijection but the smooth function, and inverse function is smooth
too. Hence F is diffeomorphism.

7 Show that the special linear group SL(2) =
{

g =
(

a b
c d

)
: a, b, c, d ∈ R, det g = 1

}
has a natural struc-

ture of a differentiable manifold of dimension 3.
Consider R4 with coordinates (a, b, c, d). The group SL(2) is defined as the set S of the points in R4

which obeys the equation F (a, b, c, d) = ad− bc = 1. Consider derivative matrix of this function:
(

∂F (a, b, c, d)
∂a

,
∂F (a, b, c, d)

∂b
,
∂F (a, b, c, d)

∂c
,
∂F (a, b, c, d)

∂d

)
= (d, c, b, a) =

This matrix contains one row—vector. Its rank is equal to 1 if this vector is not equal to zero. We have to
check that at the points of S where ad− bc = 1 the vector (a, b, c, d) 6= 0.

At the points where a 6= 0 the vector (a, b, c, d) 6= 0. At the points of S where a = 0 then cd = 1 because
ad− dc = 1. If cd = 1 then c 6= 0, hence vector (a, b, c, d) 6= 0.

We show that at all points of the set S defined by the equation ad − bc = 1 the matrix of derivatives
has rank 1. Hence according to Theorem S is a smooth manifold of dimension 4− 1 = 3.

8∗ Show that the special unitary group SU(2)

SU(2) =
{

g =
(

a b
c d

)
: a, b, c, d ∈ C, g−1 = g+, det g = 1

}

has a natural structure of a differentiable manifold of dimension 3. Show that this manifold is diffeomorphic

to S3. (Recall that g+ is the matrix which is hermitian conjugate to the matrix g: if g =
(

a b
c d

)
, then

g+ =
(

ā c̄
b̄ d̄

)
)

If matrix g is equal to
(

a b
c d

)
and its determinant is equal to 1 then

g−1 =
(

d −b
−c a

)
and g+ =

(
ā c̄
b̄ d̄

)

Hence we see that for complex numbers a, b, c, d d = ā, c = −b̄. Hence

g =
(

a b
−b̄ ā

)

where a, b are complex numbers such that det g = aā + bb̄ = 1. Denote a = x + iy, b = z + it we come to

det g = 1 = aā + bb̄ = (x + iy)(x− iy) + (z + it)(z − it) = x2 + y2 + z2 + t2

We see that SU(2) is a set of points in R4 obeying the equation x2 + y2 + z2 + t2 = 1. This is S3.

9∗ Show that the configuration space of solid body with a fixed point can be identified with the special
orthogonal group SO(3). (The group SO(3) is a group of 3× 3 real orthogonal matrices with determinant 1,
i.e., it is the group of matrices which preserve scalar product and orientation in R3.)

Take any orthogonal frame fixed with body. The position of the body is a linear transformation of this
frame. This linear transformation preserves length, hence it preserves scalar product, i.e. it is orthogonal
transformation:

A+ = A
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If transformation is orthogonal its determinant is equal to 1 (preserving orientation), or −1 (changing
orientation). Any transformation γ(t) can be smoothly connected with identity transformation γ(t)|t=0.
det(γ(t)) is continuous function. Hence det γ(t) = 1. We see that configuration space can be identified with
SO(3)

10† Show that the projective space RP 3 is diffeomorphic to SO(3).
We know that any orthogonal transformation preserving orientation is a rotation on a given angle around

a given axis...
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