Homework 6. Solutions

1 Calculate $H_{D R}^{0}(M)$ in the case if manifold M is
a) $M=\mathbf{R}$

Answer: $H_{D R}^{0}(\mathbf{R})=\mathbf{R}$
b) $M=S^{1}$,

Answer: $H_{D R}^{0}(\mathbf{R})=\mathbf{R}$
c) $\mathrm{M}=\mathbf{R}^{n}$,

Answer: $H_{D R}^{0}(\mathbf{R})=\mathbf{R}$
d) $M=\mathbf{R}^{n} \backslash\{0\}(n=1,2,3, \ldots)$,

Answer: $H_{D R}^{0}(\mathbf{R})=\mathbf{R}$ if $n \geq 2$ and $H_{D R}^{0}(\mathbf{R})=\mathbf{R}^{2}$ if $n=1$.
e) M is an arbitrary topological manifold.

Answer: $H_{D R}^{0}(\mathbf{R})=\mathbf{R}^{n}$, where
n is number of connected components.
Explanations to answers:
As we know from the lecture course for any manifold M, the dimension of the space $H^{0}(M)$ is the number of connected components of M (if it is finite).

Let us recall that the space of 0 -forms is the space of smooth functions on M. A function $f \in \Omega^{0}(M)$ is closed if $d f=0$. What does it mean? Near each point f must be a constant (indeed, we may introduce coordinates and write $d f=0$ in coordinates). Hence f is a local constant. It need not be a constant on the whole M (a global constant), which is demonstrated by the example of a manifold consisting of two connected components such as two disjoint copies of \mathbf{R}^{n}. The function may be zero on one component and 1 , on another. Notice that there no exact 0 -forms (because there are no -1 -forms). Therefore $H^{0}(M)$ is the space of all local constants on M. It is intuitively clear and can be proved by a simple topological argument that on a connected topological space any local constant is a constant. Therefore, if a topological space, in particular, a manifold M, is the disjoint union of its connected components (maximal connected subspaces), then any local constant is defined by its values of the components (constants); thus it is a function on the set of components. If the number of components is finite, the space of functions on this set is finite-dimensional. As a basis one take functions that are identically 1 on one component and identically 0 on all other components. Hence the dimension is the number of components.

2 Calculate all de Rham cohomology groups $H_{D R}^{k}(M)$ for
a) $M=\mathbf{R}^{1}$,
b) $M=S^{1}$.

As we know from the exercise 1) $H_{D R}^{0}(\mathbf{R})=\mathbf{R}^{1}$. An arbitrary 1-form $f d x$ on \mathbf{R} is closed and it is exact: $f d x=d F$, because an arbitrary function has antiderivative. Hence $H_{D R}^{1}(\mathbf{R})=0$.

For S^{1} again $H_{D R}^{0}\left(S^{1}\right)=\mathbf{R}^{1}$ because S^{1} is connected. An arbitrary 1-form on $f d \varphi$ on S^{1} is closed. Is it right that any closed form is exact? Of course no! E.g.one-form $d \varphi$ is not exact because $\int_{S^{1}} d \varphi=2 \pi \neq 0$. If form ω is exact $\omega=d r$ then due to Stokes theorem

$$
\int_{S^{1}} \omega=\int_{S^{1}} d r=\int_{\partial S^{1}} r=0
$$

Hence we see that form $d \varphi$ is not homologous to zero $[d \varphi] \neq 0$ in $H_{D R}^{1}(M)$. On other hand one can see that cohomology classes of arbitrary forms are proportional to $[d \varphi]$. Indeed let ω be an arbitrary one-form and $\int_{S^{1}} \omega=Q$. Consider one form

$$
\omega^{\prime}=\omega-\frac{Q}{2 \pi} d \varphi
$$

One can see that

$$
\int_{S^{1}} \omega^{\prime}=\int_{S^{1}} \omega-\frac{Q}{2 \pi} \int_{S^{1}} d \varphi=0
$$

One can easy to see that the condition that $\int_{S^{1}} \omega^{\prime}=0$ is enough that ω^{\prime} is exact form. (The antiderivative exists.). Hence we see that for any form $w,[w]=\frac{Q}{2 \pi}[d \varphi]$. This means that cohomology group is one-dimensional.

Thus we prove that $H^{1}\left(S^{1}\right)=\mathbf{R}$.
Compare answers.
3 Calculate all de Rham cohomology groups $H_{D R}^{k}(M)$ for manifolds
a) $N=S^{1}$,
b) $M=\mathbf{R}^{2} \backslash\{0\}$.

Compare answers
We already calculated cohomology groups for $S^{1}: H_{D R}^{0}\left(S^{1}\right)=\mathbf{R}, H_{D R}^{1}\left(S^{1}\right)=\mathbf{R}$.
(All higher groups are zero because dimension of S^{1} is 1).
Calculate $H_{D R}^{0}, H_{D R}^{1}, H_{D R}^{2}$. (All higher groups are equal to zero) $H_{D R}^{0}\left(\mathbf{R}^{2} \backslash\{0\}\right)=\mathbf{R}$ because $\mathbf{R}^{2} \backslash\{0\}$ is connected.

One can see that 1-form $\sigma=d \varphi=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed but not exact form because $\int_{x^{2}+y^{2}=1} \sigma=2 \pi \neq 0$. By the same arguments that for circle one can see that $H^{1}\left(\mathbf{R}^{2} \backslash\{0\}\right)=\boldsymbol{\square}$ R.

Obviously any two form $\omega=a(x, y) d x \wedge d y$ for 2-dimensional manifold is closed, because it is top degree form. (All k forms for 2 -dimensional manifold vanish if $k \geq 3$.) One can show that it is exact and $H^{2}\left(\mathbf{R}^{2} \backslash\{0\}\right)=0$. To show it in more economical way perform calculations in polar coordiantes. $\omega=\omega=a(x, y) d x \wedge d y=a(r, \theta) r d r \wedge d \theta$ $(d x \wedge d y=r d r \wedge d \theta)$, where $a(r, \varphi)$ is defined for $0<r<\infty$. We see that one can find one form $b(r, \theta) d \theta$ such that

$$
a(r, \theta) r d r \wedge d \theta=d(b(r, \theta) d \theta), \text { i.e. } a(r, \theta)=\frac{1}{r} \frac{\partial b(r, \theta)}{\partial r}
$$

E.g. $b(r, \theta)=\int_{1}^{r} t a(t, \theta) d t$, i.e. the form ω is exact.

We see that cohomology groups for $\mathbf{R}^{2} \backslash\{0\}$ are the same as for S^{1}. This follows from the fact these spaces are it homotopy equivalent.-

4 Consider the space $M=\mathbf{R}^{2} \backslash\{0\}$. Show that it is not a star-shaped domain.
Consider the form

$$
\begin{equation*}
\omega=\frac{x d y-y d x}{x^{2}+y^{2}} . \tag{1}
\end{equation*}
$$

Calculate the integral of this 1-form over
a) a unit circle $S^{1}\left(x^{2}+y^{2}=1\right)$,
b) over closed curve which is a boundary of domain which contains an origin,
c) over a closed curve which is a boundary of domain which does not contain an origin.

If it is the star shaped domain with respect the point \mathbf{x}_{0} then consider the segment which passes through the point 0 we come to contradiction.

It is evident that $\iota * \omega=d \varphi$ for embedding ι of S^{1} in \mathbf{R}^{2} by $x=\cos \theta, y=\sin \theta$:

$$
\iota^{*} \omega=\iota^{*}\left(\frac{x d y-y d x}{x^{2}+y^{2}}\right)=\frac{\cos \theta d(\sin \theta)-\sin \theta d(\cos \theta)}{(\cos \theta)^{2}+(\sin \theta)^{2}}=\frac{\cos ^{2} \theta d \theta+\sin ^{2} \theta d \theta}{\left.\cos ^{2} \theta\right)+\sin ^{2} \theta}=d \theta
$$

Hence

$$
\int_{\iota\left(S^{1}\right)} \omega=\int_{S^{1}} \iota^{*} \omega=\int_{S^{1}} d \theta=2 \pi
$$

(Sometimes $\int_{\iota\left(S^{1}\right)} \omega$ we write just as $\int_{S^{1}} \omega$)
Let C be an arbitrary closed curve which is a boundary of domain D which contains an origin and let S^{1} be a circle with a radius $r\left(x^{2}+y^{2}=r^{2}\right)$ where we choose r such that S^{1} belongs to the domain D. Consider the domain $\tilde{D}=D \backslash B$ where $B=\left\{x, y, x^{2}+y^{2}<r^{2}\right\}$

The boundary of domain \tilde{D} is the closed curve C and the closed curve S^{1}. The form $\omega=\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ is closed form in $\mathbf{R}^{2} \backslash 0$ (because in polar coordiantes it is equal to $d \theta$). Hence we can apply Stokes Theorem for the domain \tilde{D} :

$$
\int_{\partial \tilde{D}} \omega=\int_{\tilde{D}} d \omega=0
$$

On the other hand:

$$
\int_{\partial \tilde{D}} \omega=\int_{C} \omega-\int_{S^{1}} \omega
$$

Hence $\int_{C} \omega=\int_{S}^{1} \omega=2 \pi$ (The sign "-" comes because of orientation.)
In the case if C an closed curve which is a boundary of domain D which does not contain an origin then one can apply immediately Stokes Theorem to the domain $D(\partial D=$ $C)$ because the form ω is regular closed form in this domain:

$$
\int_{C} \omega=\int_{\partial D} \omega=\int_{D} d \omega=0
$$

since $d \omega=0$
$\mathbf{5}^{*}$ Let σ be an arbitrary closed 1-form on $M=\mathbf{R}^{2} \backslash\{0\}$ and an integral of this form over the unit circle $x^{2}+y^{2}=1$ is equal to q. Consider the form $\sigma^{\prime}=\sigma-\frac{q}{2 \pi} \omega$, where ω is the form defined by the equation (1). Show that this an exact form

Hint (solution????): One can see that an integral of this form over the unit circle $x^{2}+y^{2}=1$ is equal to 0 , hence consider the scalar function $\Phi(x)$ which is equal to the integral of σ^{\prime} over the curve finishing at the point x. One can see that $d \Phi=\sigma^{\prime}$

6 a) Calculate de Rham cohomology groups for \mathbf{R}^{2}.
b) Show an example of closed two form non-homologous to zero on S^{2}. Calculate de Rham cohomology groups for S^{2}. Explain why $H_{D R}^{2}\left(S^{2} \backslash N\right)=0$.

One can see that $H_{D R}^{0}\left(\mathbf{R}^{2}\right)=\mathbf{R}$ (See for example exercise 1).
It follows from Poincare lemma that $H_{D R}^{1}\left(\mathbf{R}^{2}\right)=0, H_{D R}^{2}\left(\mathbf{R}^{2}\right)=0$ Perform explicit calculations.

If $\omega=a d x+b d y$ is closed form, then to find Φ such that $d \Phi=a d x+b d y$ one can perform the same calculations that we did in the lecture course:

$$
\Phi(x, y)=x \int_{0}^{1} a(t x, t y) d t+y \int_{0}^{1} b(t x, t y) d t
$$

(It is really very good exercise to try to check again that $\frac{\partial \Phi(x, y)}{\partial x}=a(x, y)$ and $\frac{\partial \Phi(x, y)}{\partial y}=b(x, y)$ (of course under assumption that $d \omega=0$, i.e. $\frac{\partial a(x, y)}{\partial y}=\frac{\partial b(x, y)}{\partial x}$)

So we check straightforwardly that an arbitrary closed 1-form in \mathbf{R}^{2} is exact.
Now show that an arbitrary closed 2-form in \mathbf{R}^{2} is exact.
Let $a(x, y) d x \wedge d y$ be an arbitrary 2-form. It is closed, because it has maximum rank. (k-forms on \mathbf{R}^{2} vanish if $k \geq 3$).

It is easy to see that it is exact even without using Poincare lemma.
We see that one can find 1-form bdy such that

$$
a(x, y) d x \wedge d y=d(b(x, y) d y), \text { i.e. } \quad a=\frac{\partial b(x, y)}{\partial x}
$$

One can take $a(x, y)=\int_{0}^{x} b(t, y) d t$
Hence we see that arbitrary closed 2 -form is exact, i.e.
7 Calculate de Rham cohomology groups for \mathbf{R}^{3}. What can be said about de Rham cohomology groups of the space $\mathbf{R}^{3} \backslash 0$ in comparison with \mathbf{R}^{3} and S^{2} ?

We know already that $H_{D R}^{0}\left(\mathbf{R}^{3}\right)=\mathbf{R}$ because \mathbf{R}^{3} is connected.

$$
H_{D R}^{1}\left(\mathbf{R}^{3}\right)=H_{D R}^{2}\left(\mathbf{R}^{3}\right)=H_{D R}^{3}\left(\mathbf{R}^{3}\right)=\mathbf{R}=0
$$

due to Pincare lemma. One can straightforwardly to calculate for closed formes exact formes as in previous exercise.

If we consider $\mathbf{R}^{3} \backslash 0$ then this space is homotopy equivalent to sphere S^{2} and

$$
H_{D R}^{0}\left(\mathbf{R}^{3} \backslash 0\right)=H_{D R}^{0}\left(S^{2}\right)=\mathbf{R},
$$

because sphere and $\mathbf{R}^{3} \backslash 0$ are connected.
One can show that

$$
\begin{equation*}
H_{D R}^{1}\left(\mathbf{R}^{3} \backslash 0\right)=H_{D R}^{1}\left(S^{2}\right)=0 \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{D R}^{2}\left(\mathbf{R}^{3} \backslash 0\right)=H_{D R}^{2}\left(S^{2}\right)=0 \tag{**}
\end{equation*}
$$

Focus attention on the last expression (The previous expression $\left(^{*}\right)$ requires additional tools which are out of our programme)

Note that S^{2} is compact oriented manifold. Hence there exists an volume form on it. In the case of S^{2} it is $\sigma=\sin \theta d \theta \wedge d \varphi$:

$$
\text { volume of the sphere }=\int \sin \theta d \theta \wedge d \varphi=\frac{4}{3} \pi \neq 0
$$

In particularly this means that the form σ is not cohomologous to zero. Indeed suppose $[\sigma]=0$ in $H_{D R}^{2}\left(S^{2}\right)$, i.e. $\sigma=d r$. Then due to Stokes Theorem $\int_{S^{2}} \sigma=\int_{S^{2}} d r=\int_{\partial S^{2}} r=0$. Contradiction. Hence we see that on compact orientable n-manifolds top cohomology group $H^{n}\left(M^{n}\right)$ is not equal to zero. On the last lecture we considered this question and came to the conclusion that on compact orientable n-manifolds top cohomology group $H^{n}\left(M^{n}\right)=\mathbf{R}$.

What about $H^{3}\left(\mathbf{R}^{3} \backslash 0\right)$? Of course it is equal to zero because $H^{3}\left(\mathbf{R}^{3} \backslash 0\right)=H^{3}\left(S^{2}\right)$ and for two dimensional manifolds k-dimensional groups vanish for $k \geq 3$.

But one can straightforwardly to perform calculations in spherical coordinates in a way similar to the exercise 3): Let $\omega=a(r, \theta, \varphi) d r \wedge d \theta \wedge d \varphi$ be abn arbitrary 3 form in $\mathbf{R}^{3} \backslash 0$, where $0<r<\infty$. To show that this form is exact one have to solve equation:

$$
a(r, \theta, \varphi) d r \wedge d \theta \wedge d \varphi=d(b(r, \theta, \varphi) d \theta \wedge d \varphi)
$$

Evidently this equation has solution: $b=\int_{1}^{r} a(t, \theta, \varphi) d t$.

