
Homework 6. Solutions
1 Calculate H0

DR(M) in the case if manifold M is
a) M = R
Answer: H0

DR(R) = R
b) M = S1,
Answer: H0

DR(R) = R
c) M=Rn,
Answer: H0

DR(R) = R
d) M = Rn\{0} (n = 1, 2, 3, . . .),
Answer: H0

DR(R) = R if n ≥ 2 and H0
DR(R) = R2 if n = 1.

e) M is an arbitrary topological manifold.
Answer: H0

DR(R) = Rn, where
n is number of connected components.

Explanations to answers:
As we know from the lecture course for any manifold M , the dimension of the space

H0(M) is the number of connected components of M (if it is finite).
Let us recall that the space of 0-forms is the space of smooth functions on M . A

function f ∈ Ω0(M) is closed if df = 0. What does it mean? Near each point f must be a
constant (indeed, we may introduce coordinates and write df = 0 in coordinates). Hence f

is a local constant. It need not be a constant on the whole M (a global constant), which is
demonstrated by the example of a manifold consisting of two connected components such as
two disjoint copies of Rn. The function may be zero on one component and 1, on another.
Notice that there no exact 0-forms (because there are no −1-forms). Therefore H0(M) is
the space of all local constants on M . It is intuitively clear and can be proved by a simple
topological argument that on a connected topological space any local constant is a constant.
Therefore, if a topological space, in particular, a manifold M , is the disjoint union of its
connected components (maximal connected subspaces), then any local constant is defined
by its values of the components (constants); thus it is a function on the set of components.
If the number of components is finite, the space of functions on this set is finite-dimensional.
As a basis one take functions that are identically 1 on one component and identically 0 on
all other components. Hence the dimension is the number of components.

2 Calculate all de Rham cohomology groups Hk
DR(M) for

a) M = R1,
b) M = S1.
As we know from the exercise 1) H0

DR(R) = R1. An arbitrary 1-form fdx on R is
closed and it is exact: fdx = dF , because an arbitrary function has antiderivative. Hence
H1

DR(R) = 0.
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For S1 again H0
DR(S1) = R1 because S1 is connected. An arbitrary 1-form on fdϕ

on S1 is closed. Is it right that any closed form is exact? Of course no! E.g.one-form dϕ is
not exact because

∫
S1 dϕ = 2π 6= 0. If form ω is exact ω = dr then due to Stokes theorem

∫

S1
ω =

∫

S1
dr =

∫

∂S1
r = 0

Hence we see that form dϕ is not homologous to zero [dϕ] 6= 0 in H1
DR(M). On other

hand one can see that cohomology classes of arbitrary forms are proportional to [dϕ].
Indeed let ω be an arbitrary one-form and

∫
S1 ω = Q. Consider one form

ω′ = ω − Q

2π
dϕ

One can see that ∫

S1
ω′ =

∫

S1
ω − Q

2π

∫

S1
dϕ = 0

One can easy to see that the condition that
∫

S1 ω′ = 0 is enough that ω′ is exact form.
(The antiderivative exists.). Hence we see that for any form w, [w] = Q

2π [dϕ]. This means
that cohomology group is one-dimensional.

Thus we prove that H1(S1) = R.
Compare answers.

3 Calculate all de Rham cohomology groups Hk
DR(M) for manifolds

a) N = S1,
b) M = R2\{0}.
Compare answers
We already calculated cohomology groups for S1: H0

DR(S1) = R,H1
DR(S1) = R.

(All higher groups are zero because dimension of S1 is 1).
Calculate H0

DR,H1
DR,H2

DR. (All higher groups are equal to zero) H0
DR(R2\{0}) = R

because R2\{0} is connected.
One can see that 1-form σ = dϕ = xdy−ydx

x2+y2 is closed but not exact form because∫
x2+y2=1

σ = 2π 6= 0. By the same arguments that for circle one can see that H1(R2\{0}) =
R.

Obviously any two form ω = a(x, y)dx ∧ dy for 2-dimensional manifold is closed,
because it is top degree form. (All k forms for 2-dimensional manifold vanish if k ≥ 3.)
One can show that it is exact and H2(R2\{0}) = 0. To show it in more economical
way perform calculations in polar coordiantes. ω = ω = a(x, y)dx ∧ dy = a(r, θ)rdr ∧ dθ

(dx∧ dy = rdr∧ dθ), where a(r, ϕ) is defined for 0 < r < ∞. We see that one can find one
form b(r, θ)dθ such that

a(r, θ)rdr ∧ dθ = d(b(r, θ)dθ) , i.e. a(r, θ) =
1
r

∂b(r, θ)
∂r
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E.g. b(r, θ) =
∫ r

1
ta(t, θ)dt, i.e. the form ω is exact.

We see that cohomology groups for R2\{0} are the same as for S1. This follows from
the fact these spaces are it homotopy equivalent.—

4 Consider the space M = R2\{0}. Show that it is not a star-shaped domain.
Consider the form

ω =
xdy − ydx

x2 + y2
. (1)

Calculate the integral of this 1-form over
a) a unit circle S1 (x2 + y2 = 1),
b) over closed curve which is a boundary of domain which contains an origin,
c) over a closed curve which is a boundary of domain which does not contain an origin.

If it is the star shaped domain with respect the point x0 then consider the segment
which passes through the point 0 we come to contradiction.

It is evident that ι ∗ ω = dϕ for embedding ι of S1 in R2 by x = cos θ, y = sin θ:

ι∗ω = ι∗
(

xdy − ydx

x2 + y2

)
=

cos θd(sin θ)− sin θd(cos θ)
(cos θ)2 + (sin θ)2

=
cos2 θdθ + sin2 θdθ

cos2 θ) + sin2 θ
= dθ

Hence ∫

ι(S1)

ω =
∫

S1
ι∗ω =

∫

S1
dθ = 2π

(Sometimes
∫

ι(S1)
ω we write just as

∫
S1 ω )

Let C be an arbitrary closed curve which is a boundary of domain D which contains
an origin and let S1 be a circle with a radius r (x2+y2 = r2)where we choose r such that S1

belongs to the domain D. Consider the domain D̃ = D\B where B = {x, y, x2 + y2 < r2}
The boundary of domain D̃ is the closed curve C and the closed curve S1. The form

ω = ω = xdy−ydx
x2+y2 is closed form in R2\0 (because in polar coordiantes it is equal to dθ).

Hence we can apply Stokes Theorem for the domain D̃:
∫

∂D̃

ω =
∫

D̃

dω = 0

On the other hand: ∫

∂D̃

ω =
∫

C

ω −
∫

S1
ω .

Hence
∫

C
ω =

∫ 1

S
ω = 2π (The sign ”-” comes because of orientation.)

In the case if C an closed curve which is a boundary of domain D which does not
contain an origin then one can apply immediately Stokes Theorem to the domain D (∂D =
C) because the form ω is regular closed form in this domain:

∫

C

ω =
∫

∂D

ω =
∫

D

dω = 0
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since dω = 0

5∗ Let σ be an arbitrary closed 1-form on M = R2\{0} and an integral of this form
over the unit circle x2 + y2 = 1 is equal to q. Consider the form σ′ = σ − q

2π ω, where ω is
the form defined by the equation (1). Show that this an exact form

Hint (solution????): One can see that an integral of this form over the unit circle
x2 + y2 = 1 is equal to 0, hence consider the scalar function Φ(x) which is equal to the
integral of σ′ over the curve finishing at the point x. One can see that dΦ = σ′

6 a) Calculate de Rham cohomology groups for R2.
b) Show an example of closed two form non-homologous to zero on S2. Calculate de

Rham cohomology groups for S2. Explain why H2
DR(S2\N) = 0.

One can see that H0
DR(R2) = R (See for example exercise 1).

It follows from Poincare lemma that H1
DR(R2) = 0,H2

DR(R2) = 0 Perform explicit
calculations.

If ω = adx + bdy is closed form, then to find Φ such that dΦ = adx + bdy one can
perform the same calculations that we did in the lecture course:

Φ(x, y) = x

∫ 1

0

a(tx, ty)dt + y

∫ 1

0

b(tx, ty)dt

(It is really very good exercise to try to check again that ∂Φ(x,y)
∂x = a(x, y) and

∂Φ(x,y)
∂y = b(x, y) (of course under assumption that dω = 0, i.e. ∂a(x,y)

∂y = ∂b(x,y)
∂x )

So we check straightforwardly that an arbitrary closed 1-form in R2 is exact.
Now show that an arbitrary closed 2-form in R2 is exact.
Let a(x, y)dx∧ dy be an arbitrary 2-form. It is closed, because it has maximum rank.

(k-forms on R2 vanish if k ≥ 3).
It is easy to see that it is exact even without using Poincare lemma.
We see that one can find 1-form bdy such that

a(x, y)dx ∧ dy = d(b(x, y)dy), i.e. a =
∂b(x, y)

∂x

One can take a(x, y) =
∫ x

0
b(t, y)dt

Hence we see that arbitrary closed 2-form is exact, i.e.

7 Calculate de Rham cohomology groups for R3. What can be said about de Rham
cohomology groups of the space R3\0 in comparison with R3 and S2?

We know already that H0
DR(R3) = R because R3 is connected.

H1
DR(R3) = H2

DR(R3) = H3
DR(R3) = R = 0
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due to Pincare lemma. One can straightforwardly to calculate for closed formes exact
formes as in previous exercise.

If we consider R3\0 then this space is homotopy equivalent to sphere S2 and

H0
DR(R3\0) = H0

DR(S2) = R ,

because sphere and R3\0 are connected.
One can show that

H1
DR(R3\0) = H1

DR(S2) = 0 (∗)
and

H2
DR(R3\0) = H2

DR(S2) = 0 (∗∗)
Focus attention on the last expression (The previous expression (*) requires additional
tools which are out of our programme)

Note that S2 is compact oriented manifold. Hence there exists an volume form on it.
In the case of S2 it is σ = sin θdθ ∧ dϕ:

volume of the sphere =
∫

sin θdθ ∧ dϕ =
4
3
π 6= 0

In particularly this means that the form σ is not cohomologous to zero. Indeed suppose
[σ] = 0 in H2

DR(S2), i.e. σ = dr. Then due to Stokes Theorem
∫

S2 σ =
∫

S2 dr =
∫

∂S2 r = 0.
Contradiction. Hence we see that on compact orientable n-manifolds top cohomology
group Hn(Mn) is not equal to zero. On the last lecture we considered this question and
came to the conclusion that on compact orientable n-manifolds top cohomology group
Hn(Mn) = R.

What about H3(R3\0)? Of course it is equal to zero because H3(R3\0) = H3(S2)
and for two dimensional manifolds k-dimensional groups vanish for k ≥ 3.

But one can straightforwardly to perform calculations in spherical coordinates in a
way similar to the exercise 3): Let ω = a(r, θ, ϕ)dr ∧ dθ ∧ dϕ be abn arbitrary 3 form in
R3\0, where 0 < r < ∞. To show that this form is exact one have to solve equation:

a(r, θ, ϕ)dr ∧ dθ ∧ dϕ = d(b(r, θ, ϕ)dθ ∧ dϕ)

Evidently this equation has solution: b =
∫ r

1
a(t, θ, ϕ)dt.
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