Quantum mechanics. Problems 1.

1. Let \mathcal{H} be unitary space (compex vector space with Hermitian scalar product) Show that $\langle\mathbf{x}, \lambda \mathbf{y}\rangle=\bar{\lambda}\langle\mathbf{x}, \mathbf{y}\rangle$
2. Consider the set of the functions

$$
\varphi_{n}(x)=C_{n} e^{-n x^{2}}
$$

a) find C_{n} such that $\left\|\varphi_{n}\right\|=1$
b) Show that the sequence $\left\{\varphi_{n}\right\}$ is Cauchy sequence (we suppose that condition a) holds.)
c) Consider a "function" f such that

$$
f=\lim _{n \rightarrow \infty} \varphi_{n}
$$

Does this function exist?
3. Prove CBS inequality, i.e. for every two vectors

$$
|\mathbf{x}|^{2}|\mathbf{y}|^{2} \geq|\langle\mathbf{x}, \mathbf{y}\rangle|^{2},
$$

in the real and in the complex cases
4. Let \mathcal{H} be the space of complex valued functions on \mathbf{R} such for every $\Psi \in \mathcal{H}$,

$$
\int_{\mathbf{R}} \Psi(x) \overline{\Psi(x)} d x<\infty
$$

Prove that this is a linear space, i.e. for every two functions $\Psi, \Phi \in H$ their linear combination $\lambda \Psi+\mu \Phi \in \mathcal{H}$.
5. Let \mathcal{H} be unitary vector space. Show that the function $d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$ defines the metric, i.e. this function is non-negative, summetric $(d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})) ; d(\mathbf{x}, \mathbf{x})=0$ and

$$
d(\mathbf{y}, \mathbf{x})+d(\mathbf{z}, \mathbf{y}) \geq d(\mathbf{z}, \mathbf{x}),(\text { triangle inequality }) .
$$

6. Let $\left\{\varphi_{n}\right\}$ be the orthonormal system in \mathcal{H}.

Show that for two arbitrary Ψ, Φ

$$
\langle\Psi, \Phi\rangle=\sum_{n}\left\langle\Psi, \varphi_{n}\right\rangle\left\langle\varphi_{n}, \Phi\right\rangle .
$$

This imples that

$$
\begin{gathered}
\langle\Psi, \Phi\rangle=\sum_{n}\left\langle\Psi, \varphi_{n}\right\rangle\left\langle\varphi_{n}, \Phi\right\rangle=\left\langle\Psi, \varphi_{n}\right\rangle\left\langle\varphi_{n}, \Phi\right\rangle=\sum_{n_{1}, n_{2}}\left\langle\Psi, \varphi_{n_{1}}\right\rangle\left\langle\varphi_{n_{1}}, \varphi_{n_{2}}\right\rangle\left\langle\varphi_{n_{2}}, \Phi\right\rangle= \\
\sum_{n_{1}, n_{2}, n_{3}}\left\langle\Psi, \varphi_{n_{1}}\right\rangle\left\langle\varphi_{n_{1}}, \varphi_{n_{2}}\right\rangle\left\langle\varphi_{n_{2}}, \varphi_{n_{3}}\right\rangle\left\langle\varphi_{n_{3}}, \Phi\right\rangle= \\
\sum_{n_{1}, n_{2}, n_{3}, n_{4}}\left\langle\Psi, \varphi_{n_{1}}\right\rangle\left\langle\varphi_{n_{1}}, \varphi_{n_{2}}\right\rangle\left\langle\varphi_{n_{2}}, \varphi_{n_{3}}\right\rangle\left\langle\varphi_{n_{3}}, \varphi_{n_{4}}\right\rangle\left\langle\varphi_{n_{4}}, \Phi\right\rangle=\ldots
\end{gathered}
$$

