Quantum mechanics. Problems 3.
If U € H is a state and A is observable, then the average value A = (Z)W of the
observable (self-adjoint operator in H)
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For example if H is realised as a space of funcions in E3, i.e. W = U(x,vy,2) is a function

such that
/ U*(x,y, 2)¥(x,y, z)dedydz < co. (1)
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Then the averages of coordinate x is equal to
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and the averages of the momentum p, is equal to
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1. Consider the state
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= Cei 2a2 ;

a) calculate the constant C' such that (¥, ¥) =1
b) Calculate averages of coordinates z,y, z
c) Calculate averages of momenta p,,p,,p. for this state.

2. Let ¥ be an arbitrary state which is described by the real function in the space
E3:
U* =v
Show that averages of momenta vanish for this state.
Explain why the condition (1) is important.

3 Consider U = e=%"—¥"2, Why you cannot you use formula (3) to evaluate the

average of the momentum p,?

4. For the state
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calculate the averages, T, ¥, Z, Dy, Py, D,, and the dispersions Az? Ay? Az? Ap2 Ap2 Ap?.



