Quantum mechanics. Problems 3.

If $\Psi \in \mathcal{H}$ is a state and A is observable, then the average value $\bar{A}=(\bar{A})_{\Psi}$ of the observable (self-adjoint operator in \mathcal{H})

$$
(\bar{A})_{\Psi}=\frac{\langle\Psi, \hat{A} \Psi\rangle}{\langle\Psi, \Psi\rangle}
$$

For example if \mathcal{H} is realised as a space of funcions in \mathbf{E}^{3}, i.e. $\Psi=\Psi(x, y, z)$ is a function such that

$$
\begin{equation*}
\int_{\mathbf{E}^{3}} \Psi^{*}(x, y, z) \Psi(x, y, z) d x d y d z<\infty \tag{1}
\end{equation*}
$$

Then the averages of coordinate x is equal to

$$
\begin{equation*}
<x>=(\bar{x})_{\Psi}=\frac{\langle\Psi, x \Psi\rangle}{\langle\Psi, \Psi\rangle}=\frac{\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z\left(x \Psi^{*}(x, y, z) \Psi(x, y, z)\right)}{\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z\left(\Psi^{*}(x, y, z) \Psi(x, y, z)\right)}, \tag{2}
\end{equation*}
$$

and the averages of the momentum p_{y} is equal to

$$
\begin{equation*}
<p_{y}>={\overline{\left(\hat{p_{y}}\right)_{\Psi}}}_{\Psi}=\frac{\left\langle\Psi, p_{y} \Psi\right\rangle}{\langle\Psi, \Psi\rangle}=\frac{\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z\left(\frac{\hbar}{i} \frac{\partial \Psi^{*}(x, y, z)}{\partial y}\right) \Psi(x, y, z)}{\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z\left(\Psi^{*}(x, y, z) \Psi(x, y, z)\right)} . \tag{3}
\end{equation*}
$$

1. Consider the state

$$
\Psi=C e^{-\frac{\left(\mathbf{r}-\mathbf{r}_{0}\right)^{2}}{2 a^{2}}}=C e^{-\frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\left(z-z_{0}\right)^{2}}{2 a^{2}}}
$$

a) calculate the constant C such that $\langle\Psi, \Psi\rangle=1$
b) Calculate averages of coordinates x, y, z
c) Calculate averages of momenta p_{x}, p_{y}, p_{z} for this state.
2. Let Ψ be an arbitrary state which is described by the real function in the space \mathbf{E}^{3} :

$$
\Psi^{*}=\Psi
$$

Show that averages of momenta vanish for this state.
Explain why the condition (1) is important.
3 Consider $\Psi=e^{-x^{2}-y^{2}} z$. Why you cannot you use formula (3) to evaluate the average of the momentum p_{z} ?
4. For the state

$$
\Psi(x, y, z)=C e^{-\frac{\left(\mathbf{r}-\mathbf{r}_{0}\right)^{2}}{2 a^{2}}+\frac{i \mathbf{p}_{0} \cdot \mathbf{r}}{\hbar}}=C e^{-\frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\left(z-z_{0}\right)^{2}}{2 a^{2}}+\frac{i p_{0 x} x+i p_{0 y} x+i p_{0 z} z}{\hbar}}
$$

calculate the averages, $\bar{x}, \bar{y}, \bar{z}, \bar{p}_{x}, \bar{p}_{y}, \bar{p}_{z}$, and the dispersions $\overline{\Delta x^{2}} \overline{\Delta y^{2}} \overline{\Delta z^{2}} \overline{\Delta p_{x}^{2}} \overline{\Delta p_{y}^{2}} \overline{\Delta p_{z}^{2}}$.

