Quantum mechanics. Problems 4.

Heisenberg uncertainty principle

One of the formulation of the Heisenberg incertainty principle is the following: Let \hat{A}, \hat{B} be two observables, and \hat{C} be an operator such that

$$\hat{C} = i[\hat{A}, \hat{B}]. \tag{1}$$

Then for any given state $\Psi \neq 0$ the product of dispersions^{*} of observables \hat{A} and \hat{B} is bigger tor equal than the half of the dispession of \hat{C} .

1. a) is the operator C' = -iC = [A, B] in (1) an observable?

b) explain why the operator C = i[A, B] is an observable.

2 Suppose that for the state $\Psi \neq 0$,

$$< A >_{\text{average}} = a$$
, $< B >_{\text{average}} = b$.

Show that averages of operators A' = A - a and B' = B - b on the state Ψ vanish.

3 Show that the dispersions of operator A and operator B on the state Ψ coincide respectively with the dispersions of the operator A' and operator B' on this state

4 Using this result prove the Heisenberg uncertainty principle.

5 (Uncertainty principle in music) Consider the signal

$$A(t) = \begin{cases} 0 \text{ for } t < 0\\ A_0 \sin w_0 t \text{ for } 0 < t < T\\ 0 \text{ for } t > T \end{cases}$$

Calculate the dispersion $\sqrt{\Delta w^2}$ of frequency. Explain why $\sqrt{\Delta w^2} \to \infty$ if $T \to 0$.

6

Consider a state

$$\Psi_1(x, y, z) = e^{(x - x_0)^2 + i\frac{p_0 y}{\hbar}}$$

Is it possible to measure simultaneously x and p_y for this state? Does this contradicts to Heisenberg uncertainty principle?

* Dispersion of operator \hat{K} on an arbitrary state Φ is equal to

$$\sqrt{\Delta K^2} = \sqrt{\langle \Phi, (\hat{K} - k)\Phi \rangle},$$

where $k = \langle \Psi, \hat{K}\Psi \rangle$ is the average of the operator \hat{K} . (We suppose that $\langle \Psi, \Psi \rangle = 1$.)