Quantum mechanics. Problems 5.

Coordinate and Momentum representation

$$\Psi(\mathbf{r}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int \Phi(\mathbf{p}) e^{\frac{i}{\hbar}\mathbf{p}\mathbf{r}} d^3 r \,, \qquad \Phi(\mathbf{p}) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \int \Psi(\mathbf{r}) e^{-\frac{i}{\hbar}\mathbf{p}\mathbf{r}} d^3 p \,. \tag{1}$$

If the vector \mathbf{x} defines a state of quantum mechanical system, then $\mathbf{x} = \Psi(r)$ is the representation of this state in coordinates, and $|\Psi(\mathbf{r}_0)|^2$ says about a probability to find a particle in the vicinity of the point \mathbf{r}_0 ; respectively If $\mathbf{x} = \Phi(p)$ is the representation of this state in momenta, and $|\Phi(\mathbf{p}_0)|^2$ 'says' about a probability that momentum of the particle is the vicinity of the \mathbf{p}_0 .

a) Check that formulae (1) are well defined, in particularly check that double Fourier transform in equation (1) is the identity operation.

Hint: you may use the formula that $\int_{-\infty}^{\infty} e^{ikx} dk = 2\pi\delta(x)$.

$$\Psi \to \Phi \to \Psi$$

b) Find momentum representation for wave function $\Psi(x) = \delta(x - x_0) + \delta(x - x_1)$. Explain why average momentum of this state vanishes.

c) Find momentum representatin for the wave function $\Psi(x) = \begin{cases} 1 & \text{for } 0 < x < a \\ 0 & \text{for } x \notin (0, a) \end{cases}$

 $\mathbf{2}$

a) Calculate

$$e^{\frac{i}{\hbar}\hat{p}_x}e^{-(x-x_0)^2}$$

b) You can see the following exercise in Quantum Mechanics: Show that

$$e^{\frac{i}{\hbar}\hat{p}_x}\Psi(x) = \Psi(x+1)$$

Is this statement correct (for an arbitrary smooth function)?

3

a) Let A be an antisymmetric matrix. Show that e^A is an orthogonal matrix.

b) Calculate the mtrix
$$e^{t \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}$$
.

c) Let B be hermitian matrix. Show that e^{iB} is unitary matrix.

d) Calculate the matrix
$$e^{i\varphi \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}$$
.

4 At the moment t = 0, the wave function of the free particle is

$$\Psi(x) = e^{\frac{-(x-x_0)^2}{2a^2}}$$

How look this wave function at the moment $t = t_0$?

 $\mathbf{5}$

- a) Find stationary states of the particle in the infinite potential well of the width a.
- b) Find the momeuntum representation of the state with minimum energy.
- c) Calculate the average momentum of the arbitrary stationary state.