
Quantum mechanics. Problems 7.

Secondary Quantisation
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This Hamiltonian simultaneousy describes the following two pictures

I free (non-interacting) harmonic osicillators, every oscillator with frequency wi;

II free non-relativistic identical bosonic particles. Each of these particles is described

by the Hamiltonian
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In the second picture classical equations of motion Equations of motion are

{
ṗ = −∂H

∂q = −∂U
∂q
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∂q = p

of one particle after qunatisation become the following
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1 Show that {cn(t)} in equation (3) obey the differential equations dcn(t)
dt = Encn(t).

2 Show that these equations are equations of motion of classical Hamiltonian
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3 Show that the Hamiltonian (1) describing quantum osillators will be the quantum

Hamiltonian describing free particles.

4 Consider a state Ψ such that

i) the first oscillator is in the first state, n1 = 1, i.e. its energy is equal to
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ii) the second oscillator is in the second state, n2 = 2, i.e. its energy is equal to
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all other oscillators are in the ground state: n3 = n4 = . . . = 0, i.e. their energies are

equal to respectively to 1
2 h̄wi.

a) write down the wave function Ψ = Ψ(x1, x2, x3, . . .) of these osillators in coordinate

representation

b) write down the wave function â2Ψ

the wave function Ψ = |12 > corresponds in the second picture to the wave function

of 3 particles: one particle at the energy E1 and two particles at the energy E2

c) write down this wave-function in terms of wave functions {ϕi(x)} ( eigenfunctions

of one particle: Ĥϕn = Enϕn.)
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