Quantum mechanics. Problems 7.

Secondary Quantisation

We consider the Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}=\sum_{i}\left(\frac{\hat{p}_{i}^{2}}{2 m}+\frac{m w_{i}^{2} \hat{q}_{i}^{2}}{2}\right)=\sum_{i} E_{i}\left(a_{i}^{+} a_{i}+\frac{1}{2}\right), \quad \sum_{i} \hbar w_{i}\left(a_{i}^{+} a_{i}+\frac{1}{2}\right), \quad E_{i}=\hbar w_{i} \tag{1}
\end{equation*}
$$

This Hamiltonian simultaneousy describes the following two pictures
\mathbf{I} free (non-interacting) harmonic osicillators, every oscillator with frequency w_{i};
II free non-relativistic identical bosonic particles. Each of these particles is described by the Hamiltonian

$$
\begin{equation*}
H_{\text {classical }}=\frac{p^{2}}{2 m}+U(q), \quad H_{\text {quantum }}=\frac{\hat{p}^{2}}{2 m}+U(\hat{q}), \tag{2}
\end{equation*}
$$

In the second picture classical equations of motion Equations of motion are $\left\{\begin{array}{l}\dot{p}=-\frac{\partial H}{\partial q}=-\frac{\partial U}{\partial q} \\ \dot{q}=\frac{\partial H}{\partial q}=p\end{array}\right.$ of one particle after qunatisation become the following

$$
\begin{equation*}
i \hbar \frac{\partial \Psi(q, t)}{\partial t}=\hat{H} \Psi, \quad \Psi(q, t)=\sum_{i} c_{i}(t) \varphi_{i}(x), \quad \text { where } \hat{H} \varphi_{n}=E_{n} \varphi_{n} \tag{3}
\end{equation*}
$$

1 Show that $\left\{c_{n}(t)\right\}$ in equation (3) obey the differential equations $\frac{d c_{n}(t)}{d t}=E_{n} c_{n}(t)$.
2 Show that these equations are equations of motion of classical Hamiltonian $\mathcal{H}=\mathcal{H}\left(c, c^{*}\right)=\sum_{i} E_{i} c_{i}^{*} c_{i}, \quad$ with Poisson $\operatorname{bracket}\left\{c_{i}, c_{j}\right\}=\left\{c_{i}^{*}, c_{j}^{*}\right\}=0, \quad\left\{c_{i}, c_{j}^{*}\right\}=\frac{1}{i \hbar} \delta_{i j}$.

3 Show that the Hamiltonian (1) describing quantum osillators will be the quantum Hamiltonian describing free particles.

4 Consider a state Ψ such that
i) the first oscillator is in the first state, $n_{1}=1$, i.e. its energy is equal to

$$
\hbar w_{1}\left(n_{1}+\frac{1}{2}\right)=\frac{3}{2} \hbar w_{1}
$$

ii) the second oscillator is in the second state, $n_{2}=2$, i.e. its energy is equal to

$$
\hbar w_{1}\left(n_{2}+\frac{1}{2}\right)=\frac{5}{2} \hbar w_{1}
$$

all other oscillators are in the ground state: $n_{3}=n_{4}=\ldots=0$, i.e. their energies are equal to respectively to $\frac{1}{2} \hbar w_{i}$.
a) write down the wave function $\Psi=\Psi\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ of these osillators in coordinate representation
b) write down the wave function $\hat{a}_{2} \Psi$
the wave function $\Psi=\mid 12>$ corresponds in the second picture to the wave function of 3 particles: one particle at the energy E_{1} and two particles at the energy E_{2}
c) write down this wave-function in terms of wave functions $\left\{\varphi_{i}(x)\right\}$ (eigenfunctions of one particle: $\hat{H} \varphi_{n}=E_{n} \varphi_{n}$.)

