Quantum mechanics. Problems 8.

Angular momentum

Let
$A_{m}=\{$ space of polynomials of order $m\}, A_{m} \ni P=\sum P_{i_{1} i_{2} \ldots i_{m}} x^{i_{1}} x^{i_{2}} \ldots x^{i_{m}}, i_{k}=1,2,3$, and H_{m} be subspace of harmonic (traceless) polynomials in A_{m} :

$$
H_{m}=\left\{P: P \in A_{m}, \Delta P=0\right\},
$$

i.e.

$$
A_{m} \ni P=\sum P_{i_{1} i_{2} \ldots i_{m}} x^{i_{1}} x^{i_{2}} \ldots x^{i_{m}}: \Delta P=\sum_{m} \frac{\partial P(x, y, z)}{\partial x^{m} \partial x^{m}}=P_{m m i_{3} i_{4} \ldots i_{k}}=0
$$

We have that $2 m+1$-dimenisonal space H_{m} is irreducible representation of the group $S O(3)$.

1 In the case if wave function is equal to
a)

$$
\Psi=\Psi(\mathbf{r})=F(r)(a x+b y+c z)
$$

b)

$$
\begin{gathered}
\Psi=\Psi(\mathbf{r})=F(r)\left(x^{2}+y^{2}+\varepsilon z^{2}\right),(\varepsilon= \pm 1) \\
\Psi=\Psi(\mathbf{r})=F(r)\left(x^{3}+y^{3}\right),
\end{gathered}
$$

where $F(r)$ is the function of $r=\sqrt{x^{2}+y^{2}+z^{2}}$ be wave function of the particle.
Calculate angular momentum and the projection of angular momentum on the axis z.
Calculate the action of operator $\hat{L^{2}}$ on the wave function
2 Show that arbitrary wave function $\Psi(r)$ can be represented in the following way

$$
\Psi(\mathbf{r})=A^{(0)}(r)+A_{i}^{(1)}(r) x^{i}+A_{i k}^{(2)}(r) x^{i} x^{k}+A_{i k m}^{(3)}(r) x^{i} x^{k} x^{m}+\ldots,
$$

where $A_{i_{1} \ldots i_{m}}^{(m)}$ is symmetric traceless tensor.
What is the meaning of this expansion.
3 Perform the expansion descirbed in the previous problem for the function $\Psi(\mathbf{r})=x^{3}$. What is the meaning of this expansion

4 a) Calculate explicitly the operator

$$
\hat{L}^{2}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}
$$

in Cartesian coordinates.
b) Show that

$$
\hat{L}^{2}=-r^{2} \Delta-\hat{E}^{2}-\hat{E},
$$

where

$$
\hat{E}=x \partial_{x}+y \partial_{y}+z \partial_{z}
$$

is Euler operator
c) Show that for arbitrary $P \in H_{m}$

$$
\hat{L}^{2} P=m(m+1) P
$$

d) Show that for arbitrary $P \in H_{m}$ and arbitrary function $F=F(r)$

$$
\hat{L}^{2} \Psi P=m(m+1) \Psi, \text { if } \Psi=F(r) P
$$

