Jacobi identity and intersection of altitudes

It is many years that I know the expression which belongs to V. Arnold and which sounds something like that: "Altitudes (heights) of triangle intersect in one point because of Jacoby identity" or may be even more aggressive: "The geometrical meaning of Jacoby identity is contained in the fact that altitudes of triangle are intersected in the one point". Today preparing exercises for students I suddenly understood a meaning of this sentence. Here it is:

Let \(ABC \) be a triangle. Denote by \(\mathbf{a} \) vector \(BC \), by \(\mathbf{b} \) vector \(CA \) and by \(\mathbf{c} \) vector \(AB: \mathbf{a} + \mathbf{b} + \mathbf{c} = 0 \). Consider vectors \(\mathbf{N}_a = [\mathbf{a}, [\mathbf{b}, \mathbf{c}]], \mathbf{N}_b = [\mathbf{b}, [\mathbf{c}, \mathbf{a}]] \) and \(\mathbf{N}_c = [\mathbf{c}, [\mathbf{a}, \mathbf{b}]]. \) (We denote by \([,]\) vector product). Vector \(\mathbf{N}_a \) applied at the point \(A \) of the triangle \(ABC \) belongs to the plane of triangle, it is perpendicular to the side \(BC \) of this triangle. Hence the altitude (height) \(h_A \) of the triangle which goes via the vertex \(A \) is egement on the line given by equation \(\mathbf{r}_A(t) = A + t \mathbf{N}_a \). The same is for vectors \(\mathbf{N}_b, \mathbf{N}_c \): Altitude (height) \(h_B \) is on the line which goes via the vertex \(B \) along the vector \(\mathbf{N}_b \) and altitude \(h_C \) (height) is a line which goes via the vertex \(C \) along the vector \(\mathbf{N}_c \). Due to Jacobi identity sum of vectors \(\mathbf{N}_a, \mathbf{N}_b, \mathbf{N}_c \) is equal to zero:

\[
\mathbf{N}_a + \mathbf{N}_b + \mathbf{N}_c = [\mathbf{a}, [\mathbf{b}, \mathbf{c}]] + [\mathbf{b}, [\mathbf{c}, \mathbf{a}]] + [\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = 0 \tag{1}
\]

To see that altitudes \(h_A: A + t \mathbf{N}_a, \ h_B: B + t \mathbf{N}_b \) and \(h_C: C + t \mathbf{N}_c \) intersect at a point it is enough to show that the sum of torques (angular momenta) of vector \(\mathbf{N}_a \) attached at the point \(A \), vector \(\mathbf{N}_b \) attached at the line \(B \), and vector \(\mathbf{N}_c \) attached at the line \(C \) vanishes with respect to some \(M \):

\[
[\mathbf{M}, \mathbf{N}_a] + [\mathbf{M}, \mathbf{N}_b] + [\mathbf{M}, \mathbf{N}_c] = 0. \tag{2}
\]

Indeed it is easy to see that equation (1) implies that relation (2) obeys for an arbitrary point \(M' \) if and only if it obeys for a given point \(M \).

We prove now equation (2) for an arbitrary point \(M \). Denote \(MA = \mathbf{x} \) then using equation (1) we see that for left hand side of the equation (2)

\[
[\mathbf{M}, \mathbf{N}_a] + [\mathbf{M}, \mathbf{N}_b] + [\mathbf{M}, \mathbf{N}_c] = [\mathbf{x}, \mathbf{N}_a] + [\mathbf{x} + \mathbf{c}, \mathbf{N}_b] + [\mathbf{x} + \mathbf{c} + \mathbf{a}, \mathbf{N}_c] =
\]

\[
= [\mathbf{c}, \mathbf{N}_b] + [\mathbf{c} + \mathbf{a}, \mathbf{N}_c] = [\mathbf{c}, [\mathbf{b}, [\mathbf{c}, \mathbf{a}]]] + [\mathbf{c} + \mathbf{a}, [\mathbf{c}, [\mathbf{a}, \mathbf{b}]]] =
\]

\[
[\mathbf{a} + \mathbf{b}, [\mathbf{b}, [\mathbf{a}, \mathbf{b}]]] + [\mathbf{b}, [\mathbf{a} + \mathbf{b}, [\mathbf{a}, \mathbf{b}]]] = (\text{here we used that } \mathbf{a} + \mathbf{b} + \mathbf{c} = 0)
\]

\[
[\mathbf{a}, [\mathbf{b}, [\mathbf{a}, \mathbf{b}]]] + [\mathbf{b}, [\mathbf{a}, [\mathbf{a}, \mathbf{b}]]] + [\mathbf{b}, [\mathbf{b}, [\mathbf{a}, \mathbf{b}]]] = [\mathbf{a}, [\mathbf{b}, [\mathbf{a}, \mathbf{b}]]] + [\mathbf{b}, [\mathbf{a}, [\mathbf{a}, \mathbf{b}]]] =
\]

\[
[a, [b, [a, b]]] + [b, [a, [a, b]]] + [[b, a], [a, b]] - [[b, a], [a, b]] = [a, b], [a, b] = 0.
\]

Jacobi identity

In the last relation we again use Jacobi identity: We see that equation (2) holds, hence altitudes of triangle intersect in one point! Zabavno, da?

Hovik Khudaverdian (24.01.07)