Jacobi identity and intersection of altitudes

It is many years that I know the expression which belongs to V.Arnold and which sounds something like that: "Altitudes (heights) of triangle intersect in one point because of Jacoby identity" or may be even more aggressive: "The geometrical meaning of Jacoby identity is contained in the fact that altitudes of triangle are intersected in the one point". Today preparing exercises for students I suddenly understood a meaning of this sentence. Here it is:

Let $A B C$ be a triangle. Denote by a vector $B C$, by \mathbf{b} vector $C A$ and by \mathbf{c} vector $A B: \mathbf{a}+\mathbf{b}+\mathbf{c}=0$. Consider vectors $\mathbf{N}_{\mathbf{a}}=[\mathbf{a},[\mathbf{b}, \mathbf{c}]], \mathbf{N}_{\mathbf{b}}=[\mathbf{b},[\mathbf{c}, \mathbf{a}]]$ and $\mathbf{N}_{\mathbf{c}}=[\mathbf{c},[\mathbf{a}, \mathbf{b}]]$. (We denote by [,] vector product). Vector $\mathbf{N}_{\mathbf{a}}$ applied at the point A of the triangle $A B C$ belongs to the plane of triangle, it is perpendicular to the side $B C$ of this triangle. Hence the altitude (height) h_{A} of the triangle which goes via the vertex A is egment on the line given by equation $\mathbf{r}_{A}(t)=A+t \mathbf{N}_{\mathbf{a}}$. The same is for vectors $\mathbf{N}_{\mathbf{b}}, \mathbf{N}_{\mathbf{c}}$: Altitude (height) h_{B} is on the line which goes via the vertex B along the vector \mathbf{N}_{b} and altitude h_{C} (height) is a line which goes via the vertex C along the vector \mathbf{N}_{c}.

Due to Jacobi identity sum of vectors $\mathbf{N}_{\mathbf{a}}, \mathbf{N}_{\mathbf{b}}, \mathbf{N}_{\mathbf{c}}$ is equal to zero:

$$
\begin{equation*}
\mathbf{N}_{\mathbf{a}}+\mathbf{N}_{\mathbf{b}}+\mathbf{N}_{\mathbf{c}}=[\mathbf{a},[\mathbf{b}, \mathbf{c}]]+[\mathbf{b},[\mathbf{c}, \mathbf{a}]]+[\mathbf{a},[\mathbf{b}, \mathbf{c}]]=0 \tag{1}
\end{equation*}
$$

To see that altitudes $h_{A}: A+t \mathbf{N}_{\mathbf{a}}, \quad h_{B}: B+t \mathbf{N}_{\mathbf{b}}$ and $h_{C}: C+t \mathbf{N}_{\mathbf{c}}$ intersect at a point it is enough to show that the sum of torques (angular momenta) of vector $\mathbf{N}_{\mathbf{a}}$ attached at the point A, vector $\mathbf{N}_{\mathbf{b}}$ attached at the line B, and vector $\mathbf{N}_{\mathbf{c}}$ attached at the line C vanishes with respect to some M :

$$
\begin{equation*}
\left[M A, \mathbf{N}_{\mathbf{a}}\right]+\left[M B, \mathbf{N}_{\mathbf{b}}\right]+\left[M C, \mathbf{N}_{\mathbf{c}}\right]=0 \tag{2}
\end{equation*}
$$

Indeed it is easy to see that equation (1) implies that relation (2) obeys for an arbitrary point M^{\prime} if and only if it obeys for a given point M.

We prove now equation (2) for an arbitrary point M. Denote $M A=\mathbf{x}$ then using equation (1) we see that for left hand side of the equation (2)

$$
\begin{gathered}
{\left[M A, \mathbf{N}_{\mathbf{a}}\right]+\left[M B, \mathbf{N}_{\mathbf{b}}\right]+\left[M C, \mathbf{N}_{\mathbf{c}}\right]=\left[\mathbf{x}, \mathbf{N}_{\mathbf{a}}\right]+\left[\mathbf{x}+\mathbf{c}, \mathbf{N}_{\mathbf{b}}\right]+\left[\mathbf{x}+\mathbf{c}+\mathbf{a}, \mathbf{N}_{\mathbf{c}}\right]=} \\
=\left[\mathbf{c}, \mathbf{N}_{\mathbf{b}}\right]+\left[\mathbf{c}+\mathbf{a}, \mathbf{N}_{\mathbf{c}}\right]=[\mathbf{c},[\mathbf{b},[\mathbf{c}, \mathbf{a}]]]+[\mathbf{c}+\mathbf{a},[\mathbf{c},[\mathbf{a}, \mathbf{b}]]]= \\
{[\mathbf{a}+\mathbf{b},[\mathbf{b},[\mathbf{a}+\mathbf{b}, \mathbf{a}]]]+[\mathbf{b},[\mathbf{a}+\mathbf{b},[\mathbf{a}, \mathbf{b}]]]=(\text { here we used that } \mathbf{a}+\mathbf{b}+\mathbf{c}=0)} \\
{[\mathbf{a},[\mathbf{b},[\mathbf{b}, \mathbf{a}]]]+[\mathbf{b},[\mathbf{b},[\mathbf{b}, \mathbf{a}]]]+[\mathbf{b},[\mathbf{a},[\mathbf{a}, \mathbf{b}]]]+[\mathbf{b},[\mathbf{b},[\mathbf{a}, \mathbf{b}]]]=[\mathbf{a},[\mathbf{b},[\mathbf{b}, \mathbf{a}]]]+[\mathbf{b},[\mathbf{a},[\mathbf{a}, \mathbf{b}]]]=} \\
\underbrace{[\mathbf{a},[\mathbf{b},[\mathbf{b}, \mathbf{a}]]]+[\mathbf{b},[[\mathbf{b}, \mathbf{a}]]]+[[\mathbf{b}, \mathbf{a}],[\mathbf{a}, \mathbf{b}]]]}_{\text {Jacobi identity }}-[[\mathbf{b}, \mathbf{a}],[\mathbf{a}, \mathbf{b}]]=[[\mathbf{a}, \mathbf{b}],[\mathbf{a}, \mathbf{b}]]=0 .
\end{gathered}
$$

In the last relation we again use Jacobi identity: We see that equation (2) holds, hence altitudes of triangle intersect in one point! Zabavno, da?

Hovik Khudaverdian (24.01.07)

