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Abstract

Geometry on the surface of the cylinder is locally Euclidean. An
”ant-mathematician” who lives on the cylinder will not distinguish the
geometry of the surface at small distances from the Euclidean geome-
try; the Pythagorean Theorem will be almost the same, and for ”not
too large” triangles the sum of the angles will be π. In the first part of
talk, we will study locally Euclidean two-dimensional geometries. We
will study these geometries by using discrete subgroups of the isometry
group of the Euclidean plane E2. The list of locally Euclidean geome-
tries is exhausted by the geometries on the surface of the cylinder,
on the surface of the torus, on the surface of the ”twisted cylinder”
(the Moebius band), and on the so-called Klein bottle. In the second
part of the talk, we will consider the set of locally Euclidean geome-
tries, and will show that this set can be naturally parametrized by the
points of the Lobachevsky (hyperbolic) plane.
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1 Locally Euclidean surfaces

1.1 (Uniformly) locally Eucldean surfaces

We consider locally Euclidean 2-dimensional geometries. An arbitrary 2-
dimensional geometry can be considered as 2-dimensional Riemannian sur-
face, (M,G). M is a surface, and G defines scalar product of tangent vectors,
i.e. length of an arbitrary curve. For arbitrary curve x = x(t), t1 ≤ t ≤ t2

length of the curve =

∫ t2

t1

√
(v(t),v(t))dt , scalar product (v(t),v(t)) = G(v(t),v(t)) ,

where v(t) is velocity vector. In local coordinates xi, the curve has ap-
pearance x(t) = xi(t), G = gik(x)dxidxk, v(t) = vi(x(t))∂i, and the scalar
product of velocity vector on itself is equal to

(v,v) = vi(x(t))gik(x(t))vk(x(t)) =
dxi(x(t))

dt
gik(x(t))

dxk(x(t))

dt
,

i.e.

length of the curve =

∫ t2

t1

√
(v(t),v(t))dt =

∫ t2

t1

√
dxi(x(t))

dt
gik(x(t))

dxk(x(t))

dt
.dt

We consider surfaces which locally look as Euclidean plane.
We say that M is uniformly locally Eucldean if
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• in a vicinity of arbitrary points there exist Eucldean coordinates, i.e.
the coordinates u, v such that G = du2 + dv2 in these coordinates.

• this neighborhood is enough large: there exists r > 0 such that in a
vicinity of arbitrary point there exist Eucldiean coordinates u, v which
are defined at least in the circle of radius ≥ r.

Exercise Show that the surface of cylindre is locally Eucldean.

Exercise Show that the surface of sphere is not locally Eucldean.

Exercise Show that domain a < x < b of E2 is locally Eucldean but it
is not uniformly locally Eucldean, and compare it with surface of cylindre,
(which is uniformly locally Euclidean.)

(We suppose that metric on the surface M in E3 is the metric induced
from E3.)

In this talk we will consider only uniformly locally Euclidean surface, and
we will call them sometimes just locally Eucldean.

1.2 Examples of locally Euclidean surfaces and sub-
groups of E(2).

We considered surface of cylindre. It is uniformly locally Euclidean surface.
How to come to another examples. Here we suggest the regular way to come
to all such examples. It is in the spirit of Klein Erlangen programme.

1.2.1 Subgroups of group E(2) and surfaces

Let Γ be an arbitrary subgroup of group of isometries of E2.
Assign to the group Γ a space MΓ of orbits of Γ-group action on E2,

MΓ = E2\Γ.
We denote the points of the spaceMΓ, by handwriting lettersA,B, C,D, . . . .

These points are orbits of group Γ action. Every point A ∈ E2 produces the
point A ∈ E2\Γ, the equivalence class of a point A with respect to the group
Γ: A = [A]Γ , g ∈ Γ , A′ = g(A) ∈ [A].

To establish the geometry on M we define the distance between points
A,B as the minimal distance between the orbit {Ag} and {Bg}:

if A = [A] and B = [B] then d(A,B) = min
g,g′∈Γ

d(Ag, Bg′)
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Exercise 1 Let a 6= 0 be an arbitrary vector in E2 and Γ = {Tna} be a group
of translations generated by the translation on vector a:

Tna : r→ r + na .

Describe the geometry MΓ and show that this is geometry of cylinder.

Exercise 2 Let Γ = C2 be group of reflection with respect to the line l.
Describe the geometry MΓ and show that this is not uniformly locally

Euclidean manifold.

1.2.2 Uniformly discontinuous subgroups of E(2)

We say that the subgroup Γ acts properly discontinuous on E2 if there exists
δ such that for an arbitrary point A ∈ E2, and for an arbitrary non-identity
element g ∈ Γ

d(A, g(A)) ≥ δ .

In other words it means that the distance between distinct points of an
arbitrary orbit exceeds the δ.

Why these groups are interesting? Because every such a group defines
locally Eucldean manifold1.

Proposition 1. If action of group Γ has a fixed point (there exists r0 ∈ E2

such that for all g ∈ Γ, g(r0) = r0) (il faut dire mieux), then MΓ is not
uniformly locally Euclidean.

Proof. If A = r0 is a fixed point, then for arbitrary g 6= 1 d(A,Ag) ≥
δ, and on the other hand d(A,Ag) = 0, if Γ acts uniformly discontinuou.
Contradiction.

Proposition 2. If Γ ∈ E(2) is uniformly discontinuous group, then the
surface MΓ = E2\Γ is uniformly local.

Proof. .
Let Γ be uniformly discontinuous, i.e. there exists δ > 0 such that for an

arbitrary g ∈ Γ and for an arbitrary point A ∈ E2 d(Ag, A) < δ ⇒ g = 1.
Let B be an arbitrary point which belongs to the disc D δ

2
(A) Consider orbits

1In fact the inverse implication is true also, and the set of all (uniformly) locally Eu-
clidean surfaces is in one-one correspondence with the set of all uniformly discontinuous
subgroups of group E2.(see further)
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A and B of these points. It is easy to see from triangle inequality that for
arbitrary points A′ ∈ A and B′ ∈ B the distance between these points is
bigger or equal to r = δ

2
. Indeed let A” = Ag, and B′ = Bh. Denote

B̃ = Bhg−1
. Then d(A′, B′) = d

(
A,
(
Bh
)g−1

)
= d

(
A, B̃

)
, and by triangle

inequality

d(A′, B′) = d(A, B̃) ≥
∣∣∣d(B, B̃)− d(A,B)

∣∣∣ > δ

if B 6= B̃. Thus we see that in the case if two points A and B are closer
than δ

2
, then the distance between orbits A and B is equal to the distance

d(A,B). This implies that MΓ is uniformly locally Euclidean if Γ is uniformly
discontinous.

1.2.3 Classiication of all uniformly discontinuous subgroups of
E(2)

First of all recall the classic Theorem:

Theorem 1. (Chazles+?) Any isometry of E2 is rotation, or translation or
glided reflection.

This Theorem possesses two statements. First that an arbitrary (even
non-linear map ) which is isometry has appearance

F (r) = Ar + b ,

where A is linear operator, and the second statement that this linear map is
rotation (with respect to some centre) or translation or glided reflection.

We can prove the first statement under the assumption that F (r) is
smooth map of E2 in E2.

Suppose now that F (r) = A(r) + b.

I-st case) orientation is preserved, i.e. detA = 1. If A = 1 then it is
translation, if A 6= 1 then operator A− 1 is invertible, and

r = A(r) + b = a + (A (r− a)) ,where , a = (1− A)−1(b) ,

i.e. this affine transformation is a rotation around the point O − a.

II-nd case) orientation is not preserved, i.e. detA = −1. This operator
has eigenvector n
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One can see that we come to reflection with respect to the line along the
vector n and translation along n, i.e. glided reflection.

Now using this Theorem classify uniformly discontinuous subgroups of
isometry group.

Let Γ be a subgroup of E(2) which acts on E2 uniformly discontinuous,
i.e. there exists δ > 0 such that for an arbitrary point A ∈ E2 and an
arbitrary g ∈ Γ

d(A,Ag) < δ ⇒ g = 1 .

It follows from proposition 1 that the subgroup Γ contains only translations
and non-trivial glide reflections.

If group Γ = e this is trivial: MΓ = E2.
Denote by Γ(0) the subgroup of Γ which preserve orientation, i.e. subgroup

of translations.

Proposition 3. The subgroup Γ(0) of uniformly discontinuous grroup Γ of
orientation preserving transformations is

• the group of translations generated by arbitrary non-zero vector a

Γ(0) = Γ(0)0a = {Tna : Tna(r) = r + na, ,where n = 0,±1,±2, . . . }

• the group of translations generated by arbitrary two non-zero linearly
independent vectors a,b

Γ0) = Γ
(0)
a,b = {Tma+nb : Tma+nb(r) = r+ma+nb, ,where m,n = 0,±1,±2, . . . }

On the base of this proposition study the general case.

Let Γ be an arbitrary uniformly discontinuous subgroup of E(2). Then

Γ(0) = Γ
(0)
a or Γ(0) = Γ

(0)
a,b.

First case Γ(0) = Γ
(0)
a .

if Γ = Γ0 = {Tna}, and M = E2\Γ is cylindre.
Now suppose Γ 6= Γ0, i.e. Γ possesses glide reflections. Let S = Sl,b ∈ Γ

(reflection with respect to the line l directed along the vector b and trans-
lation on the vector b ). Then S2 = T2b. Hence b = ka

2
for some integer k.

This integer k has to be odd, since if p = 2p then the transformation T−paS
is the reflection, and it possesses fixed point (see the porposition 1). We see
that in this case G is generated by translation Ta and glided reflection Sl,a

2
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In this case M = E2\Γ is twisted cylindre, (Mobius strip with infinite
sides)

Second case Γ(0) = Γ
(0)
a,b.

Let Γ0 = {Tna}. Study again two possibilites.
First: Γ = Γ0 = {Tna}. In this case
M = E2\Γ is a torus.
Suppose now that Γ 6= Γ0 and it possesses glided reflections. One can see

that this can happen only if vectors a and b are orthogonal to each other.
We will come to M = E2\Γ is a Klein bottle.

We come to the theorem classifying all the locally Euclidean surfaces
corresponding to uniformly discontinuous isometry subgroups.

Theorem 2. Let Γ be an arbitrary uniformly discontinuous subgroup of
isometries group of E2. Then the following possibilities may occur (ca il
faut dire mieux!!!)

• I-st case (trivial)

Γ = e has only identity element. Then M = M\Γ = E2

• II-nd case

Group Γ = {Tma} is generated by translation on vector a, where a is
an arbitrary non-zero vector. Then M = M\Γ is cylindre

• III-rd case

Group Γ: Γ(0) = {Tna}, however, Γ 6= Γ(0). This group is generated by
translation on vector a, and glide reflection Sl,a

2
, where the line l goes

along the vector a Then M = M\Γ is twisted cylindre (Mobius).

• IV-th case

Group Γ = {Tma+nb} is generated by translation on vectors a and b,
where a,b are arbitrary linearly independent vectors. Then M = M\Γ
is a torus

• V-th case

Group is generated by translation on vectors a and b, and glided re-
flection Sl,a

2
, where the line l goes along the vector a where a,b are

arbitrary non-zero vectors which are orthogonal! to each other. Then
M = M\Γ is a Klein bottle.
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1.3 The final classification

We classified in the Theorem above all locally Euclidean surfaces which are
generated by uniformly discontinuous groups.

Is an arbitrary uniformly locally Euclidean surface M generated by uni-
formluy discontinuous group? Yes!

To prove this statement we consider the following construction.
Take an arbitrary point A ∈ E2 and A ∈M . Choose arbitrary Cartesian

coordinates x, y in E2 adjusted to the point A (xA = yA = 0 and choose
arbitrary local Euclidean coordinates {u0, v0} on M in vicinity of point A
(uM = vM = 0). Thus we define a map E2 → M for an arbitrary point
r ∈ E2 which is in the disc Dr(A). If point is on the distance bigger than r
but less than 2r we can consider two discs, e.t.c....

This we will construct a map

E2

p ↓
M

such that p(A) = A. Taking the preimage of arbitrary point B ∈ M one
come to the set of points which define the uniformly discontinuous group.

We come to

Theorem 3. Let M be an arbitrary uniformly locally Euclidean surface.
Then there exists uniformly discontinuous group Γ such that

M = MΓ

It follows from this Theorem and Proposition 3 the following corollary

Corollary 1. Let M be an arbitrary uniformly locally Eucldean surface.
Then M = E2 or M is cylindre, or M is twisted cylidnre, or M is torus, or
M is Klein bottle.

2 Space of locally Eucldean geometries

Geometries on cylindres are similar to each other, the same about geometries
of twisted cylindres and Klein bottles.

Consider the space of geometries on tori.
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Every lattice Ta,b defines geometry Ma,b = M\{Tma+nb}.
Questions arises.
At what extend lattices depend on vectors a, b. At what extend geome-

tries (tori) Ma,b depend on lattices?
What is a geometry in the space of geometries on tori?

2.1 Lattices— Geometries on tori—unimodular group

Definition 1. Consider pair of arbitrary lattices Ta,b and Ta′,b′ and corre-
sponding tori Ma,b and Ma′,b′ .

Two geometries Ma,b and Ma′,b′ are the same if

lattices Ta,b and Ta′,b′ coincide . (2.1)

Two geometries are the same if

there exists isometry F such that a′ = F (a) and b′ = F (b) . (2.2)

Two geometries Ma,b and Ma′,b′ are similar if

a′ = λa ,b′ = λb . (2.3)

The first and second conditions are obvious, the condition is natural.
They lead to very amazing consequences.

Proposition 4. Two lattices Ta,b and Ta′,b′ coincide if and only if(
a′

b′

)
=

(
p q
r s

)(
a
b

)
such that

ps− qr = ±1

and
p, q, r, s are integers

in other words if these lattices are related by unimodular transformation in
integers.
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The proof is evident, and it is very illuminating tpo do the following
exercises.

Exercise Check that lattices

Ta,b and T41a+5b,8a+b

are the same in spite of the fact that parallelograms Πa,b and Π41a+5b,8a+b

look very different!

Exercise Prove that lattices Ta,b and Ta′,b coincide if and only if paral-
lelograms Πa,b and Πa′,b′ have the same area.

Now identify all similar tori and tori which are related with each other
by unimodular transfromation, and find distance between geometries.

Let Ta,b be a lattice.
Assign to this lattice the complex number

z =
ax + iay
bx + iby

in the case if a × b is poisitve, and the inverse complex number in the case
if a× b is negative.

Thus using equations (2.2) and (2.3) we come to

Proposition 5. Set of all lattices is in one-one correspondence with points
of upper half-plane H.

It follows from (2.1) the following fundamental statement

Theorem 4. Set of all lattices is the set of all points of upper half-plane, and
two points define the same geometry if they are related with transformation

z′ =
pz + q

rz + s
,with ps− qr = 1 , or z′ =

pz̄ + q

rz̄ + s
,with ps− qr = −1 , (2.4)

where
p,q,r,s, are integers (2.5)

i.e. they are related with transformation of group PSL2(Z) and its conjugate.

Notice that we come to Lobachevsky (hyperbolic) plane 2.
One can see using equation (2.1) that the following statement holds:

2If we omit the condition (2.5) we come to the group (2.4) of all holomorphic bijections
H↔ H.
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Theorem 5. The set of all geometries on tori can be parameterised by the
points of Lobachevsky (hyperbolic) plane. Two geometries are similar if and
only if they are related by transformation (2.4), i.e. transformation of group
PSL(2, R) + conjugate .

2.2 Geodesics and Metric of hyperbolic geometry

Group of isometries defines geodesics and metrics (up to proportionality) of
hyperbolic geometry

We know that ransformations

z′ =
pz + q

rz + s
,with ps− qr > 0 , or z′ =

pz̄ + q

rz̄ + s
,with ps− qr < 1 , (2.6)

i.e. transformations (2.4) without condition (2.5)3 are isometries of this ge-
ometry.

2.2.1 Hyperbolic isometries

Exercise Show that translations are hyperbolic isometries

Exercise Show that dilations are hyperbolic isometries

Exercise Show that inversion with centre at y = 0 is hyperbolic isometry.

Exercise Show that arbitrary hyperbolic isometry is composition of these
transformations.

2.2.2 Geodesics as locus of fixed points

Lemma 1. Let a curve C be a locus of fixed points of an isometry. Then
this curve is geodesic.

Exercise Prove this lemma

Using this lemma and exercises in 2.2.1 one can see that an arbitrary
upper-half circle with the centre at y = 0 and vertical lines are geodesics.

3One can see that this is equivalent (2.4) in spite of the fact that we did not put the
condition of unimodularity
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2.2.3 Formula for distance

A distance on H, d(z1, z2) has

• to obey metric axioms: positive, triangle,.....

• has to be PSL(2,R) + conjug.-nvariant, i.e. invariant with respect to
transformations (2.6)

• be additive on geodesics

Theorem 6. Let G be a Riemannian metric which is invariant with resepct
to the action of the group (2.6) of H. Then up to multiplier is defined by
equation

G =
dzdz̄

(z − z̄)(z̄ − z)

This theorem follows from the lemma

Lemma 2. Let d = d(ia, ib) be metric on vertical line y = 0, (a, b > 0).
Then

d(ia, ib) =
∣∣∣log

(a
b

)∣∣∣ ,
since using group of isometry we can define the distance between two

arbitrary points.
Prove the lemma

Proof. Transformation z → λz, and z → −λ
z

are symmetry transfromations,
hence for arbitrary points z = ia, ib and for arbitrary real λ

d (ia, ib) = d (iλ, iλb) = d

(
i
λ

a
, i
λ

b

)
=

Moreover since vertical line is geodesic hence for arbitrary three points ia, ib, ic

d(ia, ic) = d(ia, ib) + d(ib, ic) , if a < b < c

It follows from these equations that d(ia, ib) = log a
b
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