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Cubic and quadric equations; Galois theory for pedestrians

H.M. Khudaverdian

This étude is written on the base of the book of A. Khovansky ”Galois Theory” and

it is inspired by the lecture ‘Galois Lecture’ for students on 4th march 2016 and by the

discussion with R. Mkrtchyan in December 2015 of quantum mechanical interpretation of

roots of Lie algebra,

The content of this étude is the following: Let H be an abelian normal subgroup of

group Sn of permutations of n elements. (Instead Sn one may consider an arbitrary Galois

group G, but for clarity we consider just a group Sn.) We suppose that Sn acts on the

space of polynomials Σ(n) of n variables x1, x2, . . . , xn.)

Σ(n) = C[x1, . . . , xn] .

Then we can perform the following constructions.

Consider an arbitrary element h ∈ H of this group. The corresponding linear operator

acting on space Σ(n) is diagonalisable, since hN = 1. Moreover all elements of the group

H can be diagonalised simultaneously since H is an abelian group. More precisely this

means that one can consider the decomposition of space Σ = Σ(n) of polynomials on n

variables on linear subspaces over characters of group H:

Σ = ⊕λ∈ĤΣ
(n)
λ

such that if λ ∈ Ĥ is an arbitrary character of H, then an arbitrary polynomial P ∈ Σ
(n)
λ

is an eignevector of all elements of h with eigenvalues λ(h),

hP = λ(h)P .

(Here Ĥ is a dual group of group H. it is a group of characters of group H 1)). One can

say that all elements of group H are commuting observables, and they are simultaneously

measurable.

Denote by Σ
(n)
H the subspace of H-invariant polynomials (this is subspace correspond-

ing to character λ ≡ 1.). All characters are taking values in roots of unity, i.e. for an

arbitrary polynomial P ∈ Σ
(n)
λ , there exists an integer N such that the polynomial PN

belongs to the space ΣH . Thus we come to conclusion:

An arbitrary polynomial in Σ(n) is a sum of roots of polynomials in ΣH .

1) Groups Ĥ and H are both abelian groups with same numebr of elements, but in

general they are not isomorphic.
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Now concetrate on the question how to calculate H-invariant polynomials, ie. polyb-

nomials in ΣH .

Now suppose that H is an invariant subgroup in group Sn. In this case the smaller

group Sn\H acts on the space ΣH , i.e. H-invariant polynomials are roots of polynomial

with smaller Galois group; if Sn is Galois group of initial polynbomial, then Galois group

acting on H-invariant polynomials becomes G = Sn\H. These considerations explain why

if Galois group is solvable, then the roots of polynomial are expressed by taking operation

of roots2). In particular for n = 2, 3, 4 symmetric groups (groups of all permutations)

S2, S3, S4 are solvable 3). We come to the formulae which express polynomials in Sn via

Sn-invariant polynomials for n = 2, 3, 4, i.e., solving cubic and quartic equations in radicals.

We will perform the scheme described above for quadratic, cubic and quatric polynomi-

als. quadratic equation n = 2

Group S2 is abelian S2 = {1, σ}, σ2 = 1. It has two characters:

λI ≡ 1
λII : λI(1) = 1 , λII(σ) = −1

, Ŝ2 = {λI , λII} .

For an arbitrary polynomial P ∈ Σ(2), P = P (x1, x2), we have

P = PI + PII =
P + σP

2︸ ︷︷ ︸
even polynomial

+
P + σP

2︸ ︷︷ ︸
odd polynomial

((σP )(x1, x2) = P (x2, x1)),

The decomposition of the space of polynomials is

Σ(2) = Σ
(2)
λI

+ Σ
(2)
λII

.

If x1 + x2 = −p, x1x2 = q (x1, x2 are roots of polynomial x2 + px + q) then every

even polynomial is S2-invariant, i.e. it is polynomial on p, q. For every odd polynomial its

square is S2-invariant also, i.e. and odd polynomial is square root of polynomial on p, q.

In particular for polynomial P = x1 we have

x1 =
x1 + x2

2
+
x1 − x2

2
=
x1 + x2

2
±

√(
x1 − x2

2

)2

=

2) here the word ‘root’ I use in two different meanings: ‘root of polynomial’ and ‘operation

of taking root’.
3) The abelian group is solvable. The group G is solvable if it possesses abelian normal

subgroup such that factor is solvable. In particular S3 is solvable since S3\C3 = S2 is

abelian, where C3 is cyclic subgroup. For S4 one can consider abelian normal subgroup

KI generated by permutations (12)(34) and (13)(24) (see details later in the text). The

factor is group S3. Hence S − 4 is solvable also.
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x1 + x2
2

±

√(
x1 + x2

2

)2

− x1x2 = −p
2

+

√
p2

4
− q .

Cubic equation n = 3

Group S3 contains abelian normal subgroup C3 = {1, s, s2}, where s = (123).

Abelian subgroup C3 has following three characters:

λ0 ≡ 1
λI : λI(1) = 1 , λI(s) = ε , λI(s

2) = ε2

λII : λII(1) = 1 , λII(s) = ε2 , λII(s
2) = ε

, where ε = e
2πi
3 . , ,

that is the group Ĉ3 of characters is Ĉ3 = {λ0, λI , λII}.
For an arbitrary polynomial P ∈ Σ(3), P = P (x1, x2, x3) we have

P = P0 + PI + PII =
P + (sP ) + (s2P )

3︸ ︷︷ ︸
eigenvalues (1, 1, 1)

+
P + ε2(sP ) + ε(s2P )

3︸ ︷︷ ︸
eigenvalues (1, ε, ε2)

+
P + εsP + ε2(s2P )

3︸ ︷︷ ︸
eigenvalues (1, ε2, ε)

In details: (sP )(x1, x2, x3) = P (x2, x3, x1), the polynomials PI , PII are eigenvectors such

that
sPI = λI(s)PI = εPI , s

2PI = λI(s
2)PI = ε2PI

sPII = λII(s)PI = ε2PII , s
2PII = λII(s

2)PII = εPII

The decomposition of spaces is:

Σ(3) = Σ
(3)
λ0

+ Σ
(3)
λI

+ Σ
(3)
λII

.

The subspace Σλ0 is subspace of C3-invariant polynomials.

The cube of every polynomial in Σ
(3)
I or in Σ

(3)
II is C3-invariant polynomial. Hence

every polynomial can be expressed via C3-invariant polynomials with use of operation of

taking cubic roots.

Now concetratae on C3-invariant polynomials. On the space Σ
(3)
C3

of C3-invariant

polynomials acts factor-group

S3\C3 = S2

i.e. C3 invariant polynomials are roots of quadratic equation!

Now if we consider polynomial P = x1 we come to the formula for cubic roots.

Perform calulations

Suppose that x1 + x2 + x3 = −a, x1x2 + x1x3 + x2x3 = p and x1x2x3 = −q i.e.

x1, x2, x3 are roots of polynomial x3 + ax2 + px+ q. According to decomposition formula

we have:

x1 = (x1)0 + (x1)I + (x1)II =
x1 + x2 + x3

3︸ ︷︷ ︸
eigenvalue 1

+
x1 + ε2x2 + εx3

3︸ ︷︷ ︸
eigenvalue ε

+
x1 + εx2 + ε2x3

3︸ ︷︷ ︸
eigenvalue ε2

+
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(We write down here eigenvalue of operator s.) The first expression is obviously not

only C3-invariant but it is S3-invariant also: (x1)0 = x1+x2+x3

3 = −a3 . Later for simplicity

without loss of generality we assume later than a = x1+x2+x3 = 0 (changing xi 7→ xi− a
3 ).

Denote wI = (x1)I and wII = (x2)II . The cubes of expressions wI = (x1)I and

wII = (x2)II are eigenvectors with eigenvalue 1, hence they are C3-invariant. Hence

the group S3\C3 = S2 acts on these numbers, i.e. they are roots of quadratic equation:

[(12)]w3
I = w3

II .

C3-invariant polynomails w3
I +w3

II and w3
Iw

3
II are invariant with respect to the action

of factorgroup S2 = S3\C3, i.e. these polynomials are S3 invariant polynomials, i.e. they

are expressed via coefficients: we have after long but simple calculations that

w3
I + w3

II =

(
x1 + ε2x2 + εx3

3

)3

+

(
x1 + εx2 + ε2x3

3

)3

= −q

and

w3
I · w3

II =

(
x1 + ε2x2 + εx3

3

)3(
x1 + εx2 + ε2x3

3

)3

= −27p6

Hence

x1 = w0 + wI + wII = 3
√
w1 + 3

√
w2 =

3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
(†)

Remark The question what branch of cubic root to choose can be answered if we

note that wIwII is S3 invariant under the action of S3.

Quartic equations n = 4

First explain why and how we choose ableian subbgroup in S4.

Consider platonic body, tetrahedron A1A2A3A4. On vertices of this tetrahedron acts

group S4.

Let

E1 be a middle point of the segment A1A2,

F1 be a middle point of the segment A3A4

E2 be a middle point of the segment A1A3

F2 be a middle point of the segment A2A4

E3 be a middle point of the segment A1A4

F3 be a middle point of the segment A2A3

Consider the cross formed by segments l1 = E1F1, l2 = E2F2, l3 = E3F3, and consider

the subgroup of all permutations of vertices of the tetrahedron, such that the cross remains
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intact: They will be permuttions a = (12)(34), b = (13(24) and permutation ab = (14)(23).

We come to abelian group:

KI = {1, a, b, ab}

It is normal subgroup since it preserves the cross l1l2l3 in tetraedron A1A2A3A4 Factor-

group S4\KI acts on the cross. It is group of permutations of edges of CROSS, i.e. it is

S3. We come to

S4\KI = S3 .

Since we know that group S3 is solvable (S3\C3 = C2), hence S4 is also solvable. Now

perform calculations according our scheme.

Abelian subgroup KI of S4 has following four characters:

λ0 ≡ 1
λI : λI(1) = 1 , λI(a) = 1 , λI(b) = −1 , λI(ab) = −1

λII : λII(1) = 1 , λII(a) = −1 , λII(b) = 1 , λII(ab) = −1
λIII : λIII(1) = 1 , λIII(a) = −1 , λIII(b) = −1 , λIII(ab) = 1

, since a2 = b2 = 1. ,

i.e. group of characters of KI is K̂I = {λ0, λI , λII , λIII}. Respectively for an arbitrary

polynomial of roots, P ∈ Σ(4), P = P (x1, x2, x3, x4) we have

P = P0 + PI + PII + PIII =

P + (aP ) + (bP ) + (abP )

4︸ ︷︷ ︸
eigenvalues (1, 1, 1, 1)

+
P + (aP ) + (bP ) + (abP )

4︸ ︷︷ ︸
eigenvalues (1, 1,−1,−1)

+

P − (aP ) + (bP )− (abP )

4︸ ︷︷ ︸
eigenvalues (1, 1,−1,−1)

+
P − (aP )− (bP ) + (abP )

4︸ ︷︷ ︸
eigenvalues (1,−1,−1,−1)

+

In details:

(aP )(x1, x2, x3, x4) = P (x2, x1, x4, x3),

(bP )(x1, x2, x3, x4) = P (x2, x1, x4, x3),

(bP )(x1, x2, x3, x4) = P (x3, x4, x1, x2),

aP0 = λ0(a)P0 = P0 , bP0 = λ0(b)P0 , abP0 = λ0(ab)P0 = P0

aPI = λI(a)PI = PI , bPI = λI(b)PI = −PI , abPI = λI(ab)PI = −PI
aPII = λII(a)PII = −PI , bPII = λII(b)PII = PII , abPII = λII(ab)PII = −PII

aPIII = λIII(a)PIII = −PIII , bPIII = λIII(b)PIII = −PIII , abPIII = λIII(ab)PIII = PI

.

Polynomial P0 is KI-invariant polynomial, all other polynomials are not KI invariants

but their squares are. The decomposition of spaces is:

Σ(4) = Σ
(4)
λ0

+ Σ
(4)
λI

+ Σ
(4)
λII

+ Σ
(4)
λIII

.
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The subspace Σ0 is subspace of K4-invariant polynomials.

The square of every polynomial in Σ
(4)
I or in Σ

(4)
II or in Σ

(4)
III isKI-invariant polynomial.

Hence we see that every polynomial can be expressed via KI-invariant polynomials with

use of operation of quadratic roots
√

.

On the space of KI-invariant polynomials acts group

S4\C3 = S3

i.e. KI invariant polynomials are roots of cubic polynomials.!

Now if we consider polynomial P = x1 we come to the formula for roots of quartic

polynomials.

Perform calculations

Suppose that x1+x2+x3+x4 = −a, x1x2+x1x3+x2x3+ . . . = p and x1x2x3+dots =

−q, x1x2x3x4 = r i.e. x1, x2, x3 are roots of polynomial x4 + ax3 + p2 + qx+ r. According

to decomposition formula we have:

x1 = (x1)0 + (x1)I + (x1)II + (x1)III =

x1 + x2 + x3 + x4
4︸ ︷︷ ︸

all eigenvalues 1

+
x1 + x2 − x3 − x4

4︸ ︷︷ ︸
eigenvalues (1, 1,−1,−1)

+

x1 − x2 + x3 − x4
4︸ ︷︷ ︸

eigenvalues (1,−1, 1,−1)

+
x1 − x2 − x3 + x4

4︸ ︷︷ ︸
eigenvalues (1,−1,−1, 1)

Denote by

u0 =
x1 + x2 + x3 + x4

4
, uI =

x1 + x2 − x3 − x4
4

, uII =
x1 − x2 + x3 − x4

4
, uIII =

x1 − x2 − x3 + x4
4

.

Polynomial w0 is not only KI-invariant int is S4-invariant– u0 = −a. Squares of all other

polynomials are KI-invarianbt polynomials,i.e. on polynomials vI = u2I , vII = u2II , vIII =

u2III acts the factor group S4/KI = S3. hence they are roots of cubic polynomial (with

coefficeints which are polynomials on a, p.q.r).
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