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The talk is devoted to the following fact: Every mechanical system in a vicinity of

stability point can be described as a system of non-interacting oscillators. To explain it

we consider a system of interacting N particles, Every particle has three degrees of free-

dom (three coordinates). This system can be described by second order Newton differential

equations on 3N coordinates. Suppose that this system is ’almost’ in equilibrium position.

Using the linear algebra one can introduce new 3N coordinates y1, . . . , y3N so called col-

lective coordinates in this 3N -dimensional dynamical system, such that every coordinate yi

will obey the differential equation,

d2yi(t)

dt2
+ ω2yi = 0 . (0.1)

This is the equation for harmonic oscillator. Thus we see that in these new coordinates

the system is described by 3N free oscilators, the osillators, which do not interact with

each other. These free harmonic osillators, may be interpreted as non-relativistic version

(’phonons’) of photons1).

Physiscts consider Harmonic osillator as a fundamental physical system.

Why? Because every system in linear approximmation behaves as a collection

of free oscillators.

Consider an arbitrary system of interacting N particles r1, r2, . . . , rN . Every particle

has three degrees of freedom (three coordinates). This system can be described by second

order Newton differential equations on 3N coordinates:

mi
d2ri(t)

dt2
= Fi. (1.1)

(for every i = 1, ,̇N we have three second order equations.)

Suppose that all forces are potential, i.e. there exist a function U = U(r1, r2, . . . , rn)

such that the force acting on i-th particle is equal to

Fi = −∂U(r1, . . . , rn)

∂ri
(1.2)

A function U = U(r1, . . . , rN ) is called potential energy function.

1) The material of the lecture will appear in my personal homepage ”khudian.net” in the

subdirectory Lectures/Galois group lectures
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Suppose that the system is ’almost’ in equilibrium position. What it means? Consider

a set of vectors, {r(0)1 , r
(0)
2 , . . . r

(0)
N−1, r

(0)
N , }, such that if i-th particle is at the point r

(0)
i for

all i = 1, 2, . . . , N−1, N then all the forces acting on every particle vanish, i.e. this becomes

an equilibrium configuration: all the particles are in the equilibrium position. This means

that the configuration {r(0)1 , r
(0)
2 , . . . r

(0)
N−1, r

(0)
N } is a stationary point of potential energy

function:

Fi = −∂U
∂ri

∣∣
r1=r

(0)
1 ,r2=r

(0)
2 ,...,rN−1=r

(0)

N−1
,rN=r

(0)

N

= 0 . (1.3)

every particle ri(t) oscillates around the stability point r(0)
2).

Our aim is to study the solutions ri(t) of equation (1) in the case of every particle

ri(t) is almost in equilibrium position (3).

(’Almost’ means that oscillations are small.)

It is useful to rewrite equations (1.1) as equations for Lagrangian:

mi
d2ri(t)

dt2
= Fi = −∂U(r1, . . . , rn)

∂ri
⇔ ∂L(ri,vj)

∂ri
=

d

dt

(
∂L

∂vi

)
(1.4)

where

L = L(ri,vi) = Kinetic energy− Potential energy =
N∑

k=1

mkv
2
k

2
− U(r1, . . . , rN ) . (1.4a)

Equations (1.1) are invariant only with respect to orthogonal trasnformations. Euler

Larange equations (1.1L) on Lagrangian (5) accept arbitrary transformations of coordi-

nates..

Change little bit notations

Following traditions denote the set of all coordinates by qi (where i = 1, . . . , 3N) r1︸︷︷︸
first particle

, r2︸︷︷︸
second particle

, . . . rN︸︷︷︸
N -th particle

 =

=


x1
y1
z1


︸ ︷︷ ︸

first particle

,

x2
y2
z2


︸ ︷︷ ︸

second particle

, . . .

xN
yN
zN


︸ ︷︷ ︸

N -th particle

 =

2) is it stable, or instable equilibrium point? This depends on the Hessian matrix ∂2U
∂ri∂rk

in stationary point (see further.)
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 q1, q2, q3︸ ︷︷ ︸
first particle

, q4, q5, q6,︸ ︷︷ ︸
second particle

, . . . q3N−2, q3N−1, q3N︸ ︷︷ ︸
N -th particle

 , (1.5)

Respectively we will rewrite Lagrangian and motion equations

L(r1, . . . rN ,v1, . . . ,vN ) −→ L(q1, . . . q3N , q̇1, . . . q3N ) =

3N∑
k=1

mkq̇
2
k

2
− U(q1, . . . , q3N ) .

(1.4c)

One can consider the system of 3N ‘one-dimensional particles’ which oscillate around the

stability point.

Remark one can see from equation (?) that for every k = 1, . . . N coordinates

(q3k, q3k+1, q3k+1) are coordinates of the k-th particle, i.e. in equation (7) ’masses’ m3k =

m3k+1 = m3k+2.

Remark In geometry usually we use upper indices for coordinates. Beacuse of tech-

nical reasons we use lower and upper indices...

Remark A good example of such a system is the system of particles whic are loclaised

in the nodes of integer lattice.

For potential energy U = U(q1, . . . , q3N ) we have according to (3) that

∂U(q1, . . . , qN )

∂qi

∣∣
qi=q

(0)
i

= 0 , (8)

where we denote by q
(0)
i the stationary value of the coordinate qi (see considerations in

equation (6)); E.g.

 q
(0)
1

q
(0)
2

q
(0)
3

 = r
(0)
1 .

Remark If we suppose that these are stable equilibrium points, this means that

corresponding hessian is non-degenerate and it is positive defnite.

Consider the Taylor expansion for the function U in a vicinity of stationary point.

U(q1, . . . q3N ) = U(q
(0)
1 , . . . q

(0)
3N ) +

3N∑
k=1

∂U(q1, . . . , q3N )

∂qk
∣∣
qi=q

(0)
i

· (qk − q(0)k )+

+
1

2

3N∑
k,m=1

∂2U(q1, . . . , q3N )

∂qk∂qm

∣∣
qi=q

(0)
i

· (qk − q(0)k ) + ·(qm − q(0)m ) + o

((
q − q(0)

)2)
(1.6a)

Since we are in stability point then due to (8) this formula can be simplified:

U(q1, . . . q3N ) = U(q
(0)
1 , . . . q

(0)
3N )+

1

2

3N∑
k,m=1

∂2U(q1, . . . , q3N )

∂qk∂qm

∣∣
qi=q

(0)
i︸ ︷︷ ︸

Hik

(qk−q(0)k )(qm−q(0)m )+o

((
q − q(0)

)2)

(1.6b)
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Now we introduce new coordinates

{xi}:xi = qi − q(0)i (1.7)

This is just translation, which does not affect differential equations (5). We consider small

oscillations, thus we will omit terms of order bigger than 2 in equation (11); we omit also

constant term in Lagrangian, and we will come to Lagrangian:

L(x1, x3N , ẋ1, ẋ3N ) =
3N∑
k=1

mkẋ
kẋk

2
− 1

2

3N∑
k,m=1

Hkmx
kxm (1.8)

In these coordinates differential equations for coordinates xk look almost the same as for

coordinates qk:

mk
d2xk

dt2
+

3N∑
m=1

Hkmx
m = 0 . (1.8b)

(we omit higher order terms) Our aim is to see can we come to new coordinates such that

in these coordinates thiese equations look simpler.

It is a time to switch on the linear algebra.

Consider vector space R3N of 3N -tuples.

To every point with coordinates (x1, . . . , x3N ) correspond a vector x. We suppose

that the canonical basis {ei} is defined in R3N , (ei, i = 1, . . . , 3N is 3N -tuple such that

the i-th component of this vector is eual to 1, and all other components are equal to zero.

The dynamicla system defines two bilinear symmetric forms in the vector space R3N :

First form induced by kinetic energy of the Lagrangian (1.8):

T (x,y): T (x,x) =
3N∑
k=1

mkx
kxk

2
(2.1a)

and the second form induced by the Hessian of potential energy at the equilibrium point:

H(x,y): H(x,x) =
∑
k=1

Hkmx
kxm , (2, 1b)

Theorem Let T = T (x,y), H = H(x,y) be two symmetric blinear forms in (finite-

dimensional) vector space V , and the first form is positive definite:

T (x,x) ≥ 0 , T (x,x) = 0⇒ x = 0 . (2.2a)

This form defines Euclidean structure in vector space V , i.e. the scalar product:

(x,y) = T (x,y) . (2.2b)
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There exist an orthonormal basis {fi} (with respect to the scalar product (T2)) such that

H(ei, ej) = { 0 if i 6= j

i.e. in this basis matrix of bilinear form T is identity matrix, and matrix of the bilinear

form H is the matrix

||H|| = diag {λ1, λ2, . . . , λn} .

Use this Theorem to the Lagrangian. Consider the new coordinates {yi} corresponding

to the basis {fi}. We come to Lagrangian

L =
3N∑
k=1

ẏ2k
2
−

3N∑
k=1

λky
2
k

2
, (2.3)

This is the Lagrangian of 3N non-interacting particles. Every particle obeys the equation

of motion
d2yi(t)

dt2
+ ω2yi = 0 . (2.3b)

We come to the equation that we declared above (see equation (0.1)).

If all λi > 0, i.e. (the bilinear form is H positive definite also) then the equilibrium

position is stable, and

Now we prove the Theorem

Proof of the Theorem

Formulate

Lemma A symmetric operator P on Euclidean space En has at least one eigenvector.

(Operator P is a symmetric operator on En if (Px,y) = (x, Py).

Proof of the Theorem (based on Lemma)

Symmetric positive-definite bilinear form T (x,y) defines in V the Euclidean structure,

the scalar product (2.1a). Symmetric bilinear form H = H(x,y) defines on this Euclidean

space a symmetric linear operator PH such that for arbitrary vectors x,y (PH(x),y) =

H(x,y).

Using lemma consider the unit vector e1 which is proportional to eigenvector of this

symmetric operator, and consider the subspace V1 of vectors orthogonal to the vector e1:

V1 = {x: (x, e1) = 0}. The subspace V1 is invariant subspace of operator PH , and this

operator is a symmetric operator on this subspace. We can by induction continue the

process on V1. Thus we will come to the statement of the Theorem.

Remark It is very easy to see that in fact we deduced from the lemma the

Theorem ′ A symmetric operator on En. is diagonalisable, and all its eigenvalues

may be chosen to be orthogonal to each other.
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It remains prove the lemma.

We will present two proves which look different.

PROOF OF THE LEMMA

First proof

Let P be a symmetric operator on Euclidean space En. Consider the function f(x) =

(Px,x) on the the unit sphere Sn−1 = {x: , (x,x) = 1.The compactness of the sphere

implies the existence of a vector x0 on the sphere, such that this function atteints the

maximum on this vector. This is an eigenvector of operator P .

Second proof

Consider complexification VEn = En × C of initial Euclidean vector space En.

Let λ be a root (maybe complex) of polynomial P (z) = det(PH − z), and let x be

a corresponding eigenvector (may be complex). Then the condition (Px,x) = λ(x,x) =

(x, Px) = λ̄(x,x) implies that λ is real, respectively the eigenvector x maybe chosen also

real.

It seems that the second proof is purely algebraic, on the other hand it uses the

fundamental theorem of algebra, hence it uses more or less the continuity.
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