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1 Euclidean space

We recall important notions from linear algebra.

1.1 Vector space.

To study geometry we need the conception of vector space and associated with it affine

space. Now we will recall the definition of vector space. Later we will consider affine space.

Vector space V on real numbers is a set of vectors with operations ” +
”—addition of vector and ” · ”—multiplication of vector Lon real number
(sometimes called coefficients, scalars). These operations obey the following
axioms

• ∀a,b ∈ V, a + b ∈ V ,

• ∀λ ∈ R,∀a ∈ V, λa ∈ V .

• ∀a,ba + b = b + a (commutativity)

• ∀a,b, c, a + (b + c) = (a + b) + c (associativity)

• ∃ 0 such that ∀a, a + 0 = a

• ∀a there exists a vector −a such that a + (−a) = 0.

• ∀λ ∈ R, λ(a + b) = λa + λb

• ∀λ, µ ∈ R(λ+ µ)a = λa + µa

• (λµ)a = λ(µa)

• 1a = a

It follows from these axioms that in particularly 0 is unique and −a is
uniquely defined by a. (Prove it.)

Remark We denote by 0 real number 0 and vector 0. Sometimes we
have to be careful to distinguish between zero vector 0 and number zero.

Examples of vector spaces. . . Consider now just one non-trivial example:
a space of polynomials of order ≤ 2:

V = {ax2 + bx+ c, a, b, c ∈ R} .
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It is easy to see that polynomials are ‘vectors’ with respect to operation of
addition and multiplication on numbers.

Consider conterexample: a space of polynomials of order 2 such that
leading coefficient is equal to 1:

V = {x2 + bx+ c, a, b, c ∈ R} .

This is not vcto space: why? since the for any two polynomials f, g from thsi
space the polynomials f − g, f + g does not belong to this space.

1.2 Basic example of (n-dimensional) vector space—
Rn

A basic example of vector space (over real numbers) is a space of ordered
n-tuples of real numbers.
R2 is a space of pairs of real numbers. R2 = {(x, y), x, y ∈ R}
R3 is a space of triples of real numbers. R3 = {(x, y, z), x, y, z ∈ R}
R4 is a space of quadruples of real numbers. R4 = {(x, y, z, t), x, y, z, t,∈ R}

and so on...
Rn—is a space of n-typles of real numbers:

Rn = {(x1, x2, . . . , xn), x1, . . . , , xn ∈ R} (1.1)

If x,y ∈ Rn are two vectors, x = (x1, . . . , xn), y = (y1, . . . , yn) then

x + y = (x1 + y1, . . . , xn + yn) .

and multiplication on scalars is defined as

λx = λ · (x1, . . . , xn) = (λx1, . . . , λxn) , (λ ∈ R) .

(λ ∈ R).

Remark Why Rn is n-dimensional vector space? We see it later in the
subsection 1.4

1.3 Linear dependence of vectors

We often consider linear combinations in vector space:∑
i

λixi = λ1x1 + λ2x2 + · · ·+ λmxm , (1.2)
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where λ1, λ2, . . . , λm are coefficients (real numbers), x1,x2, . . . ,xm are vectors
from vector space V . We say that linear combination (1.2) is trivial if all
coefficients λ1, λ2, . . . , λm are equal to zero.

λ1 = λ2 = · · · = λm = 0 .

We say that linear combination (1.2) is not trivial if at least one of coefficients
λ1, λ2, . . . , λm is not equal to zero:

λ1 6= 0, orλ2 6= 0, or . . . orλm 6= 0 .

Recall definition of linearly dependent and linearly independent vectors:
Definition The vectors {x1,x2, . . . ,xm} in vector space V are linearly

dependent if there exists a non-trivial linear combination of these vectors
such that it is equal to zero.

In other words we say that the vectors {x1,x2, . . . ,xm} in vector space V
are linearly dependent if there exist coefficients µ1, µ2, . . . , µm such that at
least one of these coefficients is not equal to zero and

µ1x1 + µ2x2 + · · ·+ µmxm = 0 . (1.3)

Respectively vectors {x1,x2, . . . ,xm} are linearly independent if they are
not linearly dependent. This means that an arbitrary linear combination of
these vectors which is equal zero is trivial.

In other words vectors {x1,x2,xm} are linearly independent if the condi-
tion

µ1x1 + µ2x2 + · · ·+ µmxm = 0

implies that µ1 = µ2 = · · · = µm = 0.
Very useful and workable
Proposition Vectors {x1,x2, . . . ,xm} in vector space V are linearly

dependent if and only if at least one of these vectors is expressed via linear
combination of other vectors:

xi =
∑
j 6=i

λjxj .

Proof. If the condition (1.3) is obeyed then xi −
∑
j 6=i λjxj = 0. This non-trivial linear

combination is equal to zero. Hence vectors {x1, . . . ,xm} are linearly dependent.
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Now suppose that vectors {x1, . . . ,xm} are linearly dependent. This means that there
exist coefficients µ1, µ2, . . . , µm such that at least one of these coefficients is not equal to
zero and the sum (1.3) equals to zero. WLOG suppose that µ1 6= 0. We see that to

x1 = −µ2

µ1
x2 −

µ3

µ1
x3 − · · · −

µm
µ1

xm ,

i.e. vector x1 is expressed as linear combination of vectors {x2,x3, . . . ,xm} .

1.4 Dimension of vector space. Basis in vector space.

Definition Vector space V has a dimension n if there exist n linearly inde-
pendent vectors in this vector space, and any n+ 1 vectors in V are linearly
dependent.

In the case if in the vector space V for an arbitrary N there exist N linearly indepen-
dent vectors then the space V is infinite-dimensional. An example of infinite-dimensional
vector space is a space V of all polynomials of an arbitrary order. One can see that for an
arbitrary N polynomials

{1, x, x2, x3, . . . , xN}

are linearly idependent. (Try to prove it!). This implies V is infinite-dimensional vector

space.

Basis
Definition Let V be n-dimensional vector space. The ordered set {e1, e2, . . . , en}

of n linearly independent vectors in V is called a basis of the vector space V .

Remark We say ‘a basis’, not ‘the basis’ since there are many bases in
the vector space (see also Homeworks 1.2).

Remark Focus your attention: basis is an ordered set of vectors, not just
a set of vectors1.

Proposition Let {e1, . . . , en} be an arbitrary basis in n-dimensional vec-
tor space V . Then any vector x ∈ V can be expressed as a linear combination
of vectors {e1, . . . , en} in a unique way, i.e. for every vector x ∈ V there
exists an ordered set of coefficients {x1, . . . , an} such that

x = x1e1 + · · ·+ xnen (1.4)

and if

1See later on orientation of vector spaces, where the ordering of vectors of basis will be
highly important.
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x = a1e1 + · · ·+ anen = b1e1 + · · ·+ bnen , (1.5)

then a1 = b1, a2 = b2, . . . , an = bn. In other words for any vector x ∈ V there
exists an ordered n-tuple (x1, . . . , xn) of coefficients such that x =

∑n
i=1 x

iei
and this n-tuple is unique.

Proof Let x be an arbitrary vector in vector space V . The dimension of vector space V

equals to n. Hence n+1 vectors (e1, . . . , en,x) are linearly dependent: λ1e1+ · · ·+λnen+

λn+1x = 0 and this combination is non-trivial. If λn+1 = 0 then λ1e1 + · · · + λnen = 0

and this combination is non-trivial, i.e. vectors (e1, . . . , en are linearly dependent. Con-

tradiction. Hence λn+1 6= 0, i.e. vector x can be expressed via vectors (e1, . . . , en):

x = x1e1 + . . . xnen where xi = − λi

λn+1
. We proved that any vector can be expressed

via vectors of basis. Prove now the uniqueness of this expansion. Namely, if (1.5) holds

then (a1 − b1)e1 + (a2 − b2)e2 + · · · + (an − bn)en = 0. Due to linear independence

of basis vectors this means that (a1 − b1) = (a2 − b2) = · · · = (an − bn) = 0, i.e.

a1 = b1, a2 = b2, . . . , an = bn

In other words:
Basis is a set of linearly independent vectors in vector space V

which span (generate) vector space V .
(Recall that we say that vector space V is spanned by vectors {x1, . . . ,xn}

(or vectors vectors {x1, . . . ,xn} span vector space V ) if any vector a ∈ V
can be expresses as a linear combination of vectors {x1, . . . ,xn}.

Definition Coefficients {a1, . . . , an} are called components of the vector
x in the basis {e1, . . . , en} or just shortly components of the vector x.

Remark Basis is a maximal set of linearly independent vectors in a linear
space V .

This leads to definition of a basis in infinite-dimensional space. We have to note that

in infinite-dimensional space more useful becomes the conception of topological basis when

infinite sums are considered.

Canonical basis in Rn

We considered above the basic example of n-dimensional vector space—a
space of ordered n-tuples of real numbers: Rn = {(x1, x2, . . . , xn), xi ∈ R}
(see the subsection 1.2). What is the meaning of letter ‘n’ in the definition
of Rn?
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Consider vectors e1, e2, . . . , en ∈ Rn:

e1 = (1, 0, 0 . . . , 0, 0)
e2 = (0, 1, 0 . . . , 0, 0)
. . . . . .

en = (0, 0, 0 . . . , 0, 1)

(1.6)

Then for an arbitrary vector Rn 3 a = (a1, a2, a3, . . . , an)

a = (a1, a2, a3, . . . , an) =

a1(1, 0, 0 . . . , 0, 0)+a2(0, 1, 0 . . . , 0, 0)+a3(0, 0, 1, 0 . . . , 0, 0)+· · ·+an(0, 1, 0 . . . , 0, 1) =

=
m∑
i=1

aiei = aiei (we will use sometimes condensed notations x = xiei)

Thus we see that for every vector a ∈ Rn we have unique expansion via the
vectors (1.6).

The basis (1.6) is the distinguished basis. Sometimes it is called canonical
basis in Rn. One can find another basis in Rn–just take an arbitrary ordered
set of n linearly independent vectors. (See exercises in Homework 0).

1.5 Scalar product. Euclidean space

In vector space one have additional structure: scalar product of vectors.
Definition Scalar product in a vector space V is a function B(x,y)

on a pair of vectors which takes real values and satisfies the the following
conditions:

B(x,y) = B(y,x) (symmetricity condition)
B(λx + µx′,y) = λB(x,y) + µB(x′,y) (linearity condition)

B(x,x) ≥ 0 , B(x,x) = 0⇔ x = 0 (positive-definiteness condition)
(1.7)

Definition Euclidean space is a vector space equipped with a scalar product.

One can easy to see that the function B(x,y) is bilinear function, i.e. it
is linear function with respect to the second argument also2. This follows
from previous axioms:

B(x, λy+µy′) =︸︷︷︸
symm.

B(λy+µy′,x) =︸︷︷︸
linear.

λB(y,x)+µB(y′,x) =︸︷︷︸
symm.

λB(x,y)+µB(x,y′) .

2Here and later we will denote scalar product B(x,y) just by (x,y). Scalar product
sometimes is called inner product. Sometimes it is called dot product.
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A bilinear function B(x,y) on pair of vectors is called sometimes bilinear form on

vector space. Bilinear form B(x,y) which satisfies the symmetricity condition is called

symmetric bilinear form. Scalar product is nothing but symmetric bilinear form on vectors

which is positive-definite: B(x,x) ≥ 0) and is non-degenerate ((x,x) = 0⇒ x = 0.

Example We considered the vector space Rn, the space of n-tuples (see
the subsection 1.2). One can consider the vector space Rn as Euclidean space
provided by the scalar product

B(x,y) = x1y1 + · · ·+ xnyn (1.8)

This scalar product sometimes is called canonical scalar product.
Exercise Check that it is indeed scalar product.

Example We consider in 2-dimensional vector space V with basis {e1, e2}
and B(X,Y) such that B(e1, e1) = 3, B(e2, e2) = 5 and B(e1, e2) = 0. Then
for every two vectors X = x1e1 + x2e2 and Y = y1e1 + y2e2 we have that

B(X,Y) = (X,Y) =
(
x1e1 + x2e2, y

1e1 + y2e2

)
=

x1y1(e1, e1) + x1y2(e1, e2) + x2y1(e2, e1) + x2y2(e2, e2) = 3x1y1 + 5x2y2 .

One can see that all axioms are obeyed.
Notations!

Scalar product sometimes is called ”inner” product or ”dot” product.
Later on we will use for scalar product B(x,y) just shorter notation (x,y)
(or 〈x,y〉). Sometimes it is used for scalar product a notation x · y. Usually
this notation is reserved only for the canonical case (1.8).

Counterexample Consider again 2-dimensional vector space V with ba-
sis {e1, e2}.

Show that operation such that (e1, e1) = (e2, e2) = 0 and (e1, e2) = 1 does
not define scalar product. Solution. For every two vectors X = x1e1 + x2e2

and Y = y1e1 + y2e2 we have that

(X,Y) =
(
x1e1 + x2e2, y

1e1 + y2e2

)
= x1y2 + x2y1

hence for vector X = (1,−1) (X,X) = −2 < 0. Positive-definiteness is not
fulfilled.

Another Counterexample Show that operation (X,Y) = x1y1 − x2y2
does not define scalar product. Solution. Take X = (0,−1). Then (X,X) =
−1. The condition of positive-definiteness is not fulfilled. (See also exercises
in Homework 2.)
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1.6 Orthonormal basis in Euclidean space

One can see that for scalar product (1.8) and for the basis {e1, . . . , en} defined
by the relation (1.6) the following relations hold:

(ei, ej) = δij =

{
1 if i = j

0 if i 6= j
(1.9)

Let {e1, e2, . . . , en} be an ordered set of n vectors in n-dimensional Eu-
clidean space which obeys the conditions (1.9). One can see that this ordered
set is a basis 3.

Definition-Proposition The ordered set of vectors {e1, e2, . . . , en} in
n-dimensional Euclidean space which obey the conditions (1.9) is a basis.
This basis is called an orthonormal basis.

One can prove that every (finite-dimensional) Euclidean space possesses
orthonormal basis.

Later by default we consider only orthonormal bases in Euclidean spaces.
Respectively scalar product will be defined by the formula (1.8). Indeed let
{e1, e2, . . . , en} be an orthonormal basis in Euclidean space. Then for an
arbitrary two vectors x,y, such that x =

∑
xiei, y =

∑
yjej we have:

(x,y) =
(∑

xiei,
∑

yjej

)
=

n∑
i,j=1

xiyj(ei, ej) =
n∑

i,j=1

xiyjδij =
n∑
i=1

xiyi

We come to the canonical scalar product (1.8). Later on we usually will
consider scalar product defined by the formula (1.8) i.e. scalar product in
orthonormal basis.

Remark We consider here general definition of scalar product then came
to conclusion that in a special basis, (orthonormal basis), this is nothing but
usual ‘dot’ product (1.8).

1.7 Affine spaces and vector spaces

Let V be a vector space. A set A whose elements will be called ‘points’ is
an affine space associated with the vector space V if the following rule is

3Indeed prove that conditions (1.9) imply that these n vectors are linear independent.
Suppose that λ1e1 + λ2e2 + · · ·+ λnen = 0. For an arbitrary i multiply the left and right
hand sides of this relation on a vector ei. We come to condition λi = 0. Hence vectors
(e1, e2, . . . , en) are linearly dependent.
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defined: to every point P ∈ A and an arbitrary vector x ∈ V a point Q is
assigned: (P,x) 7→ Q. We denote Q = P + x.

The following properties must be satisfied:

• For arbitrary two vectors x,y ∈ V and arbitrary point P ∈ A,
P + (x + y) = (P + x) + y.

• For an arbitrary point P ∈ A, P + 0 = P .

For arbitrary two points P,Q ∈ A there exists unique vector y ∈ V
such that P + y = Q.

If P + x = Q we often denote the vector x = Q− P = ~PQ. We say that
vector x = ~PQ starts at the point P and it ends at the point Q.

One can see that if vector x = ~PQ, then ~QP = −x; if P,Q,R are three
arbitrary points then ~PQ+ ~QR = ~PR.

Examples of affine space.
Every vector space can be considered as an affine space in the following

way. We define affine space A as a same set as vector space V , but we
consider vectors of V as points of this affine space. If A = a is an arbitrary
point of the affine space, and b is an arbitrary vector of vector space V , then
A + b is equal to the vector a + b. We assign to two ‘points’ A = a, B = b
the vector x = b− a.

On the other hand if A is an affine space with associated vector space V ,
then choose an arbitrary point O ∈ A and consider the vectors starting at
the at the origin. We come to the vector space V .

One can say that vector space is an affine space with fixed origin.
For example vector space R2 of pairs of real numbers can be considered

as a set of points. If we choose arbitrary two points A = (a1, a2), B = (b1, b2),

then the vector ~AB = B − A = (b1 − a1, b2 − a2).
Geometrical properties of scalar product: length of the vectors, angle between vectors

The scalar product of vector on itself defines the length of the vector:

Length of the vector x = |x| =
√

(x,x) =
√

(x1)2 + · · ·+ (xn)2 (1.10)

If we consider Euclidean space En as the set of points (affine space) then
the distance between two points x,y is the length of corresponding vector:

distance between points x,y = |x− y| =
√

(y1 − x1)2 + · · ·+ (yn − xn)2
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We recall very important formula how scalar (inner) product is related
with the angle between vectors:

(x,y) = x1y1 + x2y2 = |x||y| cosϕ

where ϕ is an angle between vectors x and y in E2.
This formula is valid also in the three-dimensional case and any n-dimensional

case for n ≥ 1. It gives as a tool to calculate angle between two vectors:

(x,y) = x1y1 + x2y2 + · · ·+ xnyn = |x||y| cosϕ (1.11)

In particulary it follows from this formula that

angle between vectors x,y is acute if scalar product (x,y) is positive
angle between vectors x,y is obtuse if scalar product (x,y) is negative
vectors x,y are perpendicular if scalar product (x,y) is equal to zero

(1.12)
Remark Geometrical intuition tells us that cosinus of the angle between two vectors

has to be less or equal to one and it is equal to one if and only if vectors x,y are collinear.
Comparing with (1.11) we come to the inequality:

(x,y)2 =
(
x1y1 + · · ·+ xnyn

)2 ≤ ((x1)2 + · · ·+ (xn)2
) (

(y1)2 + (· · ·+ (yn)2
)

= (x,x)(y,y)
and(x,y)2 = (x,x)(y,y) if vectors are colienar, i.e. xi = λyi

(1.13)

This is famous Cauchy–Buniakovsky–Schwarz inequality, one of most important inequali-

ties in mathematics. (See for more details Homework 2)

1.8 Transition matrices. Orthogonal bases and orthog-
onal matrices

One can consider different bases in vector space.
Let A be n× n matrix with real entries, A = ||aij||, i, j = 1, 2, . . . , n:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
a31 a32 . . . a3n
. . . . . . . . . . . .

a(n−1) 1 a(n−1)2 . . . a(n−1)n
an 1 an2 . . . ann


Let {e1, e2, . . . , en} be an arbitrary basis in n-dimensional vector space V .
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The basis {e1, e2, . . . , en} can be considered as row of vectors, or 1 × n
matrix with entries–vectors.

Multiplying 1 × n matrix {e1, e2, . . . , en} on matrix A we come to new
row of vectors {e′1, e′2, . . . , e′n} such that

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A = (1.14)

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}


a11 a12 . . . a1n
a21 a22 . . . a2n
a31 a32 . . . a3n
. . . . . . . . . . . .

a(n−1) 1 a(n−1)2 . . . a(n−1)n
an 1 an2 . . . ann

 (1.15)

, 

e′1 = a11e1 + a21e2 + a31e3 + · · ·+ a(n−1) 1en−1 + an 1en

e′1 = a12e1 + a22e2 + a32e3 + · · ·+ a(n−1) 2en−1 + an 2en

e′1 = a13e1 + a23e2 + a33e3 + · · ·+ a(n−1) 3en−1 + an 1en

· · · = . . . · · ·+ . . . · · ·+ . . . · · ·+ · · ·+ . . . . . . . . . . . .

e′n = a1ne1 + a2ne2 + a3ne3 + · · ·+ a(n−1)nen−1 + annen

or shortly:

e′i =
n∑
k=1

ekaki . (1.16)

Definition Matrix A which transforms a basis {e1, e2, . . . , en} to the row
of vectors {e′1, e′2, . . . , e′n} (see equation (1.16)) is transition matrix from the
basis {e1, e2, . . . , en} to the row {e′1, e′2, . . . , e′n}.

What is the condition that the row {e′1, e′2, . . . , e′n} is a basis too? The
row, ordered set of vectors, {e′1, e′2, . . . , e′n} is a basis if and only if vectors
(e′1, e

′
2, . . . , e

′
n) are linearly independent. Thus we come to

Proposition 1 Let {e1, e2, . . . , en} be a basis in n-dimensional vector
space V , and let A be an n× n matrix with real entries. Then

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A (1.17)

is a basis if and only if the transition matrix A has rank n, i.e. it is non-
degenerate (invertible) matrix.

Recall that n× matrix A is nondegenerate (invertible) ⇔ detA 6= 0.
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Remark Recall that the condition that n×n matrix A is non-degenerate
(has rank n) is equivalent to the condition that it is invertible matrix, or to
the condition that detA 6= 0.

Now suppose that {e1, e2, . . . , en} is orthonoromal basis in n-dimensional
Euclidean vector space. What is the condition that the new basis {e′1, e′2, . . . , e′n} =
{e1, e2, . . . , en}A is an orthonormal basis too?

Definition We say that n× n matrix is orthogonal matrix if its product
on transposed matrix is equal to unity matrix:

A
T

A = I . (1.18)

Exercise. Prove that determinant of orthogonal matrix is equal to ±1:

A
T

A = I ⇒ detA = ±1 . (1.19)

Solution ATA = I. Hence det(ATA) = detAT detA = (detA)2 = det I =
1. Hence detA = ±1. We see that in particular orthogonal matrix is non-
degenerate (detA 6= 0). Hence it is a transition matrix from one basis to
another. The following Proposition is valid:

Proposition 2 Let {e1, e2, . . . , en} be an orthonormal basis in n-dimensional
Euclidean vector space. Then the new basis {e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A
is orthonormal basis if and only if the transition matrix A is orthogonal ma-
trix.

Proof The basis {e′1, e′2, . . . , e′n} is orthonormal means that (e′i, e
′
j) = δij.

We have:

δij = (e′i, e
′
j) =

(
n∑

m=1

emAmi, e
′
j =

n∑
n=1

enAnj

)
=

n∑
m,n=1

AmiAnj(em, en) =

n∑
m,n=1

AmiAnjδmn =
n∑

m=1

AmiAmj =
n∑

m=1

ATimAmj = (ATA)ij , (1.20)

Hence (ATA)ij = δij, i.e. ATA = I.

We know that determinant of orthogonal matrix equals to ±1. It is very useful to
consider the following groups:

• The group O(n)—group of orthogonal n× n matrices:

O(n) = {A : ATA = I} . (1.21)

• The group SO(n) special orthogonal group of n× n matrices:

SO(n) = {A : ATA = I, detA = 1} . (1.22)
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1.9 Linear operators.

1.9.1 Matrix of linear operator in a given basis

Recall here facts about linear operators in vector space
Let P be a linear operator in vector space V :

P : V → V, P (λx + µy) = λP (x) + µP (y).

Let {e1, . . . , en} be an arbitrary basis in n-dimensional vector space V . Con-
sider the action of operator P on basis vectors: e′i = P (ei):

e′1 = P (e1) = e1p11 + e2p21 + e3p31 + · · ·+ enpn1
e′2 = P (e2) = e1p12 + e2p22 + e3p32 + · · ·+ enpn2
e′3 = P (e3) = e1p13 + e2p23 + e3p31 + · · ·+ enpn3

. . .
e′n = P (en) = e1p1n + e2p2n + e3p3n + · · ·+ enpnn

(1.23)

Definition Let {ei} be a basis. Then the transition matrix ||pik|| defined by
relation (1.23) is called matrix of operator P in the basis {ei}.

e′i = P (ei) =
∑

ekpki .

In the case if linear operator P is non-degenerate (invertible) then vectors
e′1, e

′
2, e
′
3, . . . , e

′
n, form a basis. The matrix P = ||pik|| is the transition matrix

from the basis {ei} to the basis {e′i = P (ei)}.
Matrix of linear operator changes if we change the basis
Before studying this question consider just an example.
Let P be linear operator in 2-dimensional vector space V such that for a

basis {e1, e2},

P (e1) = p11e1 + p21e2 , P (e2) = p12e1 + p22e2 .

i.e. the matrix of operator P in the basis {e1, e2} is a matrix(
p11 p12
p21 p22

)
.

Consider now instead the basis e1, e2 another basis

{f1, f2} , such that f1 =
1

2
e1 , f2 = 3e2 . (1.24)

13



Then for new basis we have

P (f1) = P
(e1

2

)
=

1

2
(p11e1 + p21e2) =

1

2

(
p11(2f1) + p21

f2
3

)
= p11f1 +

p21
6

f2 ,

and

P (f2) = P (3e2) = 3 (p12e1 + p22e2) = 3

(
p12(2f1) + p22

f2
3

)
= 6p12f1 + p22f2 ,

i.e. the matrix of operator P in the basis {f1, f2} is a matrix(
p11 6p12
p21

6
p22

)
.

We see that changing of basis (1.24) implies the changing of matrix rep-
resenting operator P .

Do it now in general case.
Consider a new basis {f1, . . . , fn} in the linear space V . LetA be transition

matrix from the basis {e1, . . . , en} to the new basis {f1, . . . , fn}:

{f1, . . . , fn} = {e1, . . . , en}A, i.e.fi =
∑
k

ekaki

(see equation (1.16)). Then the action of operator P in the new basis is given
by the formula f ′i = P (fi). According to the formulae (1.9.1) and (1.23) we
have

f ′i = P (fi) = P

(∑
q

eqaqi

)
=
∑
q

aqi

(∑
r

erprq

)
=
∑
q,r

erprqaqi =
∑
r

er(PA)ri =

∑
r,k

fk(A
−1)kr(PA)ri =

∑
k

fk(A
−1PA)ki .

We see that in the new basis {fi} a matrix of linear operator is A−1PA:

If {e′1, . . . , e′n} = {e1, . . . , en}P, then {f ′1, . . . , f ′n} = {f1, . . . , fn}A−1PA, ,
(1.25)

whereA is transition matrix from the basis {e1, . . . , en} to the basis {f1, . . . , fn},
Consider the following example.
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Example Let P be a linear operator in 2-dimensional vector space V
such that in a basis e1, e2 it is given by the following relation:

P (e) = 2e , P (e2) = e2 .

Then the matrix of operator P in this basis is obviously(
2 0
0 1

)
(1.26)

Now consider another basis, {f1, f2} in the space V :{
f1 = 7e1 + 5e2

f2 = 4e1 + 3e2

, respectively

{
e1 = 3f1 − 5f2

e2 = −4f1 + 7f2
. (1.27)

Calculate matrix of the operator P on this new basis:

P (f1) = P (7e1+5e2) = 14e1+5e2 = 14(3f1−5f2)+5(−4f1+7f2) = 22f1−35f2 ,

P (f2) = P (4e1+3e2) = 8e1+3e2 = 8(3f1−5f2)+3(−4f1+7f2) = 12f1−19f2 .

Hence the matrix of operator P in the basis {f1, f2} is matrix(
22 12
−35 −19

)
. (1.28)

Matrices (1.26) and (1.28) are different matrices which are represented the
same linear operator P in different bases. According to equation (1.27)(

22 12
−35 −19

)
=

(
7 4
5 3

)−1(
2 0
0 1

)(
7 4
5 3

)
=

(
3 −4
−5 7

)(
2 0
0 1

)(
7 4
5 3

)
,

(1.29)

Note that if a matrix P = ||pij|| is the transition matrix from the basis
{e1, . . . , en} to the basis {e′1, . . . , e′n}. For an arbitrary vector x

∀x =
n∑
i=1

eix
i = (e1, e2, . . . , en) ·


x1

x2

. . .
xn
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Px = (e1, e2, . . . , en) · P ·


x1

x2

. . .
xn

 =
n∑
i=1

e′ix
i =

n∑
i,k=1

ekpkix
i .

If xi are components of vector x at the basis {e1, . . . , en} and x′i are
components of the vector x at the new basis {e′i} then x′i =

∑
i pikx

k.

1.9.2 Determinant and Trace of linear operator

We recall the definition of determinant and explain what is the trace of linear
operator,

Definition-Proposition Let P be a linear operator in vector space V
and let Pik = ||pik|| be transition matrix of this operator in an arbitrary basis
in V (see construction (1.23).) Then determinant of linear operator P equals
to determinant of transition matrix of this operator.

detP = det (pik)

In the same way we define trace of operator via trace of matrix:

TrP = Tr (||pik||) = p11 + p22 + p33 + · · ·+ pnn . (1.30)

Determinant and trace of operator are well-defined. since due to (1.25) de-
terminant and trace of transition matrice do not change if we change the
basis in spite of the fact that transition matrix changes: P 7→ A−1PA, but

det
(
A−1PA

)
= detA−1 detP detA = (detA)−1 detP detA = detP .

In the example above (see equations (1.26) and (1.28)) we have different
matrices which represent the same but one operator P in different bases.
These matrices are related by equations (1.27) and (1.29) and

detP = det

(
2 0
0 1

)
= 2 · 1 = det

(
22 12
−35 −19

)
= 22 · (−19)− (−35) · 12 = 2

TrP = Tr

(
2 0
0 1

)
= 2 + 1 = Tr

(
22 12
−35 −19

)
= 22− 19 = 3

In the same way one can see that trace is invariant too:

Tr (A−1PA) =
∑
i

(A−1PA)ii =
∑
i,k,p

(
A−1

)
ik
pkp =

∑
i,k,p

Api
(
A−1

)
ik
pkp =
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∑
p,k

(
A ·A−1

)
pk
pkp =

∑
p,k

δkppkp =
∑
k

pkk = TrP .

Trace of linear operator is an infinitesimal version of its determinant:

det(1 + tP ) = 1 + tTrP +O(t2) .

This is infinitesimal version for the followiong famous formula which relates trace and det
of linear operator:

det etA = etTrA . (1.31)

where etA =
∑

tnAn

n! . E.g. if A =

(
0 −1
1 0

)
, then etA =

(
cos t − sin t
sin t cos t

)
, det etA = 1 and

etTrA = e0 = 1.

1.9.3 Orthogonal linear operators

Now we study geometrical meaning of orthogonal linear operators in Eu-
clidean space.

Recall that linear operator P in Euclidean space En is called orthogonal
operator if it preserves scalar product:

(Px, Py) = (x,y), for arbitrary vectors x,y (1.32)

In particular if {ei} is orthonormal basis in Euclidean space then due to
(1.32) the new basis {e′i = P (ei)} is orthonormal too. Thus we see that
matrix of orthogonal operator P in a given orthogonal basis is orthogonal
matrix:

P T · P = I (1.33)

(see (1.18) in subsection 1.7). In particular we see that for orthogonal linear
operator detP = ±1 (compare with (1.19)).

1.10 Orientation in vector space

You heard words “orientation...”, “”
You heard expressions like: A basis {a,b, c} have the same orientation

as the basis {a′,b′, c′} if they both obey right hand rule or if they both
obey left hand rule. In the other case we say that these bases have opposite
orientation...

Try to give the exact meaning to these words.
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1.10.1 Orientation in vector space. Oriented vector space

Note that in three-dimensional Euclidean space except scalar (inner) prod-
uct, one can consider another important operation: vector product. The
conception of orientation is indispensable for defining this operation.

Consider the set of all bases in the given vector space V .
Let (e1, . . . en), (e′1, . . . e

′
n) be two arbitrary bases in the vector space V

and let T be transition matrix which transforms the basis {ei} to the new
basis {e′i}:

{e′1, . . . e′n} = {e1, . . . en}T , (e′i =
n∑
k=1

ektki) (1.34)

(see also (1.15)).
Definition We say that two bases {e1, . . . en} and {e′1, . . . e′n} in V have

the same orientation if the determinant of transition matrix (1.34) from the
first basis to the second one is positive: detT > 0.

We say that the basis {e1, . . . en} has an orientation opposite to the orienta-
tion of the basis {e′1, . . . e′n} (or in other words these two bases have opposite
orientation) if the determinant of transition matrix from the first basis to the
second one is negative: detT < 0.

Remark Transition matrix from basis to basis is non-degenerate, hence
its determinant cannot be equal to zero. It can be or positive or negative.

One can see that orientation establishes the equivalence relation in the set
of all bases. Denote this relation by “∼”: {e1, . . . en} ∼ {e′1, . . . e′n} , if two
bases {e1, . . . en} and {e′1, . . . e′n} have the same orientation, i.e. detT > 0
for transition matrix.

Show that “∼” is an equivalence relation, i.e. this relation is reflexive,
symmetric and transitive.

Check it:

• it is reflexive, i.e. for every basis {e1, . . . en}

{e1, . . . , en} ∼ {e1, . . . , en} , (1.35)

because in this case transition matrix T = I and detI = 1 > 0.
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• it is symmetric, i.e.

If {e1, . . . , en} ∼ {e′1, . . . , e′n} then {e′1, . . . , e′n) ∼ {e1, . . . , en},
because if T is transition matrix from the first basis {e1, . . . , en} to the
second basis {e′1, . . . , e′n}: {e′1, . . . , e′n} = {e1, . . . , en}T ,

then the transition matrix from the second basis {e′1, . . . , e′n} to the first
basis {e1, . . . , en} is the inverse matrix T−1: {e1, . . . , en} = {e′1, . . . , e′n}T−1.
Hence detT−1 = 1

detT
> 0 if detT > 0.

• Is transitive, i.e. if {e1, . . . , en} ∼ {e′1, . . . , e′n} and {e′1, . . . , e′n) ∼
{ẽ1, . . . , ẽn}, then one can see that {e1, . . . , en} ∼ {ẽ1, . . . , ẽn}.
Do it in detail. For convenience call a basis {e1, . . . , en} the ‘I-st’ basis,
call a basis {e′1, . . . , e′n} the ‘II-nd’ basis and call a basis {ẽ1, . . . , ẽn}
the ‘III-rd’ basis. Let T12 be a transition matrix from the I-st basis to
the II-nd basis, T13 be a transition matrix from the I-st basis to the
III-rd basis and T23 be a transition matrix from the II-nd basis to the
III-rd basis:

{e′1, . . . , e′n} = {e1, . . . , en}T12
{ẽ1, . . . , ẽn} = {e1, . . . , en}T13
{ẽ1, . . . , ẽn} = {e′1, . . . , e′n}T23,

(1.36)

Hence {ẽ1, . . . , ẽn} = {e′1, . . . , e′n}T23 =

({e1, . . . , en}T12)T23 = {e1, . . . , en}T12 ◦ T23 = {e1, . . . , en}T13.

We see that T13︸︷︷︸
I-st → III-rd

= T12︸︷︷︸
I-st → II-nd

◦ T23︸︷︷︸
II-nd → II-rd

:

T13 = T12 ◦ T23 ⇒ detT13 = det(T12 ◦ T23) = detT12 · detT23 . (1.37)

Transitivity immediately follows from this relation: if I-st ∼ II and
II-nd ∼ III-rd, then determinants of matrices T12 and T23 are positive.
Hence according to relation (1.37) detT13 is positive too, i.e. I-st ∼
III-rd.

Since it is equivalence relation the set of all bases is a union if disjoint
equivalence classes. Two bases are in the same equivalence class if and only
if they have the same orientation.

How many equivalence classes exist? One, two or more?
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Show first that there sare at least two equivalence classes.
Example Let {e1, e2 . . . , en} be an arbitrary basis in n-dimensional vec-

tor space V . Swap the vectors e1, e2. We come to a new basis: {e′1, e′2 . . . , e′n}

e′1 = e2, e
′
2 = e1, all other vectors are the same: e3 = e′3, . . . , en = e′n

(1.38)
We have:

{e′1, e′2, e′3 . . . , e′n} = {e2, e1, e3, . . . , en} = {e1, e2, e3, . . . , en}Tswap , (1.39)

where one can easy see that the determinant for transition matrix Tswap
is equal to −1, i.e. bases {e1, e2 . . . , en} and {e2, e1 . . . , en} have opposite
orientation.

E.g. write down the transition matrix (1.43) in the case if dimension
of vector space is equal to 5, n = 5. Then we have {e′1, e′2, e′3, e′4, e′5} =
{e2, e1, e3, e4, e5} = {e1, e2, e3, e4, e5}T where

Tswap =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (detTswap = −1) . (1.40)

We see that bases {e1, e2 . . . , en} and {e′1, e′2 . . . , e′n} have opposite ori-
entation.

We see that there are at least two equivalence classes.
One can see that there are exactly two equivalence classes.

Proposition Let two bases {e1, . . . , en} and {e′1, . . . , e′n} in vector space
V have opposite orientation. Let {ẽ1, . . . , ẽn} be an arbitrary basis in V .
Then the basis {ẽ1, . . . , ẽn} and the first basis {e1, . . . , en} have the same ori-
entation or the basis {ẽ1, . . . , ẽn} and the second basis {e′1, . . . , e′n} have the
same orientation. In other words if {e1, . . . , en}, {e′1, . . . , e′n} and {ẽ1, . . . , ẽn}
are three bases in vector space V such that {e1, . . . , en} 6∼ {e′1, . . . , e′n} then

{ẽ1, . . . , ẽn} ∼ {e1, . . . , en} or {ẽ1, . . . , ẽn} ∼ {e′1, . . . , e′n} . (1.41)

There are two equivalence classes of bases with respect to orientation. An
arbitrary basis belongs to the equivalence class of the basis {e1, e2 . . . , en}, or
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it belongs to the to the equivalence class of the basis {e′1, e2 . . . , e
′
n} (in the

case if bases {ẽ′1, . . . , ẽ′n}, {ẽ1, . . . , ẽn} have opposite orientation).
Proof of the statement immediately follows from equations (1.36) and

(1.37). In the same way like in these equations we call a basis {e1, e2 . . . , en}
the ”I-st basis”, a basis {e′1, e′2 . . . , e′n} the ”II-nd basis” and a basis {ẽ1, ẽ2 . . . , ẽn}
the ”III-rd basis”. Determinant of transition matrix T12 is negative since I-
st and II-nd bases have opposite orientation. Then it follows from relation
(1.37) that determinants of transition matrices T13 and T23 have opposite
signs. Hence detT13 > 0, i.e. I-st and III-rd bases have the same orientation,
or detT23 > 0,i.e II-nd and III-rd bases have the same orientation.

Example Let {e1, e2 . . . , en} be an arbitrary basis in n-dimensional vec-
tor space V . Swap the vectors e1, e2. We come to a new basis: {e′1, e′2 . . . , e′n}

e′1 = e2, e
′
2 = e1, all other vectors are the same: e3 = e′3, . . . , en = e′n

(1.42)
We have:

{e′1, e′2, e′3 . . . , e′n} = {e2, e1, e3, . . . , en} = {e1, e2, e3, . . . , en}Tswap , (1.43)

where one can easy see that the determinant for transition matrix Tswap
is equal to −1, i.e. bases {e1, e2 . . . , en} and {e2, e1 . . . , en} have opposite
orientation.

E.g. write down the transition matrix (1.43) in the case if dimension
of vector space is equal to 5, n = 5. Then we have {e′1, e′2, e′3, e′4, e′5} =
{e2, e1, e3, e4, e5} = {e1, e2, e3, e4, e5}T where

Tswap =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (detTswap = −1) . (1.44)

We see that bases {e1, e2 . . . , en} and {e′1, e′2 . . . , e′n} have opposite ori-
entation.

E.g. In the example considered above (see swappingbasevectors) an arbi-
trary basis {e′1, . . . e′n} have the same orientation as the basis {e1, e2 . . . , en},
i.e. belongs to the equivalence class of basis {e1, e2 . . . , en}, or it has the
same orientation as the “swapped” basis {e2, e1 . . . , en}, i.e. it belongs to
the equivalence class of the “swappedd” basis {e2, e1 . . . , en}.
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The set of all bases is a union of two disjoint subsets.
Any two bases which belong to the same subset have the same orientation.

Any two bases which belong to different subsets have opposite orientation.
Definition An orientation of a vector space is an equivalence class of

bases in this vector space.
Note that fixing any basis we fix orientation, considering the subset of all

bases which have the same orientation that the given basis.
There are two orientations. Every basis has the same orientation as a

given basis or orientation opposite to the orientation of the given basis.
If we choose an arbitrary basis then all bases which belong to the equiva-

lence class of this basis may be called “left” bases and all the bases which do
not belong to the equivalence class of this basis may be called “right” bases

Definition An oriented vector space is a vector space equipped with ori-
entation.

Consider examples.

Example (Orientation in two-dimensional space). Let {ex, ey} be arbi-
trary two bases in R2 and let a,b be arbitrary two vectors in R2. Consider
an ordered pair {a,b, }. The transition matrix from the basis {ex, ey} to the

ordered pair {a,b} is T =

(
ax bx
ay by

)
:

{a,b} = {ex, ey}T = {ex, ey}
(
ax bx
ay by

)
,

{
a = axex + ayey

b = bxex + byey

One can see that the ordered pair {a,b} also is a basis, (i.e. these two
vectors are linearly independent in R2) if and only if transition matrix is not
degenerate, i.e. detT 6= 0. The basis {a,b} has the same orientation as the
basis {ex, ey} if detT > 0 and the basis {a,b} has the orientation opposite
to the orientation of the basis {ex, ey} if detT < 0.

Example Let {e, f} be a basis in 2-dimensional vector space. Consider
bases {e,−f}, {f ,−e} and {f , e}.

1) We come to basis {e,−f} reflecting the second basis vector. Transition

matrix from initial basis {e, f} to the basis {e,−f} is T{e,−f} =

(
1 0
0 −1

)
.

Its determinant is −1. Bases {e, f} and {e,−f} have opposite orientation.
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2) Transition matrix from initial basis {e, f} to the basis {f ,−e} is

T{f ,−e} =

(
0 −1
1 0

)
. Its determinant is 1. Bases {e, f} and {f ,−e} have

same orientation. We come to basis {f ,−e} rotating the initial basis on the
angle π/2.

3) Transition matrix from initial basis {e, f} to the basis {f , e} is T{f ,e} =(
0 1
1 0

)
. Its determinant is −1. Bases {e, f} and {e,−f} have opposite

orientation.
We come to basis {f , e} reflecting the initial basis.

We see that bases {e, f} and {f ,−e} have the same orientation; i.e. they
belong to the same equivalenceclass. Bases {e,−f} and {f , e} have the same
orientation too, they belong to the another equivalence class. If we say that
bases {e, f} and {f ,−e} are left bases then bases {e,−f} and {f , e} are right
bases.

(There are plenty exercises in the Homework 3.)

Example(Orientation in three-dimensional euclidean space.) Let {ex, ey, ez}
be any basis in E3 and a,b, c are arbitrary three vectors in E3:

a = axex + ayey + azez b = bxex + byey + bzez, c = cxex + cyey + czez .

Consider ordered triple {a,b, c}. The transition matrix from the basis {ex, ey, ez}

to the ordered triple {a,b, c} is T =

ax bx cx
ay by cy
az bz cz

:

{a,b, c} = {ex, ey, ez}T = {ex, ey, ez}

ax bx cx
ay by cy
az bz cz


One can see that the ordered triple {a,b, c} also is a basis, (i.e. these three
vectors are linearly independent) if and only if transition matrix is not de-
generate detT 6= 0. The basis {a,b, c} has the same orientation as the basis
{ex, ey, ez} if

detT > 0 . (1.45)

The basis {a,b, c} has the orientation opposite to the orientation of the basis
{ex, ey, ez} if

detT < 0 . (1.46)
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Remark Note that in the example above we considered in E3 arbitrary
bases not necessarily orthonormal bases.

Relations (1.45),(1.46) define equivalence relations in the set of bases.
Orientation is equivalence class of bases. There are two orientations, every
basis has the same orientation as a given basis or opposite orientation.

If two bases {ei}, {ei′} have the same orientation then they can be transformed

to each other by continuous transformation, i.e. there exists one-parametric family

of bases {ei(t)} such that 0 ≤ t ≤ 1 and {ei(t)}|t=0 = {ei}, {ei(t)}|t=1 = {ei′}.
(All functions ei(t) are continuous) In the case of three-dimensional space the

following statement is true : Let {ei}, {ei′} (i = 1, 2, 3) be two orthonormal bases

in E3 which have the same orientation. Then there exists an axis n such that

basis {ei} transforms to the basis {ei′} under rotation around the axis.(This is

Euler Theorem (see it later).

Exercise Show that bases {e, f ,g} and {f , e,g} have opposite orientation
but bases {e, f ,g} and {f , e,−g} have the same orientation.

Solution. Transformation from basis {e, f ,g} to basis {f , e,g} is “swap-
ping” of vectors ((e, f) 7→ (f , e). This is reflection and this transformation
changes orientation. One can see it using transition matrix:

T : {f , e,g} = {e, f ,g}T = {e, f ,g}

0 1 0
1 0 0
0 0 1

 . detT = −1

Transformation from basis {e, f ,g} to basis {f , e,−g} is composition of two
transformations: “swapping” of vectors ((e, f) 7→ (f , e) and changing direc-
tion of vector g (g 7→ −g). We have two reflections:

{e, f ,g} reflection−→ {f , e,g} reflection−→ {f , e,−g}

Any reflection changes orientation. Two reflections preserve orinetation. One
may come to this result using transition matrix:

T : {f , e,−g} = {e, f ,g}T = {e, f ,g}

0 1 0
1 0 0
0 0 −1

 . detT = 1. Orientation is not changed.

(1.47)
(See also exercises in Homework 3)
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1.10.2 Orientation of linear operator

. Let P be invertible linear operator, i.e. detP 6= 0.
If a linear operator P acting on the space V has positive determinant

then under the action of this operator an arbitrary basis {e1, . . . , en} trans-
forms to the new basis {e′1, . . . , e′n} such that transition matrix from basis
{e1, . . . , en} to the new basis {e′1, . . . , e′n} has positive determinant, i.e. these
bases have the same orientation. Respectively if a linear operator P acting on
the space V has negative determinant then under the action of this operator
an arbitrary basis {e1, . . . , en} transforms to the new basis {e′1, . . . , e′n} such
that transition matrix from basis {e1, . . . , en} to the new basis {e′1, . . . , e′n}
has negative determinant, i.e. these bases have opposite orientation. Thus
we can define does the linear operator P acting in the vector space V changes
an orientation or it does not change an orientation of this vector space.

Definition. Non-degenerate (invertible) linear operator P (detP 6= 0)
acting in vector space V preserves an orientation of the vector space V if
detP > 0. It changes the orientation if detP < 0.

If {e1, . . . , en} is an arbitrary basis which transforms to the new basis
{e′1, . . . , e′n} under the action of nvertible operator P : e′i = P (ei) then these
bases have the same orientation if and only if operator P preserves an orien-
tation, i.e. detP > 0, and these bases have opposite orientation if and only
if the operator P changes an orientation, i.e. detP < 0.

1.11 Rotations and orthogonal operators preserving
orientation of En (n=2,3)

Recall the notion of orthogonal operator (see 1.9.3). We study here orthog-
onal operators in E2 and E3. In particular we will show that orthogonal
oeprators preserving orientations define rotations.

1.11.1 Orthogonal operators in E2— Rotations and reflections

We show that an orthogonal operator in E2 ‘rotates the space’ or makes a
‘reflection’.

LetA be an orthogonal operator acting in Euclidean space E2: (Ax, Ay) =
(x,y). Let {e, f} be an orthonormal basis in 2-dimensional Euclidean space
E2: (e, e) = (f , f) = 1 (i.e. |e| = |f | = 1) and (e, f) = 0–vectors e, f have
unit length and are orthogonal to each other.
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Consider a new basis {e′, f ′}, an image of basis e, f under action of A:

e′ = A(e), f ′ = A(f). Let

(
α β
γ δ

)
be matrix of operator A in the basis e, f ,

(see equation (1.23) and defintion after this equation):

{e′, f ′} = {e, f}A = {e, f}
(
α β
γ δ

)
, i.e. e′ = αe + γf , f ′ = βe + δf

New basis is orthonormal basis also, (e′, e′) = (f ′, f ′) = 1 , (e′, f ′) = 0.
Operator A is orthogonal operator, and its matrix is orthogonal matrix:

ATA =

(
α β
γ δ

)t(
α β
γ δ

)
=

(
α γ
β δ

)(
α β
γ δ

)
=

(
α2 + γ2 αβ + γδ
αβ + γδ β2 + δ2

)
=

(
1 0
0 1

)
.

(1.48)
Remark With some abuse of notation, (if it is not a reason of confusion)

we sometimes use the same letter for linear operator and the matrix of this
operator in orthonormal basis.

We have α2 + γ2 = 1, αβ + γδ = 0 and β2 + δ2 = 1.
Hence one can choose angles ϕ, ψ : 0 ≤ 2π such that α = cosϕ, γ =

sinϕ, β = sinψ, δ = cosψ. The condition αβ + γδ = means that

cosϕ sinψ + sinϕ cosψ = sin(ϕ+ ψ) = 0

Hence sinϕ = − sinψ, cosϕ = cosψ (ϕ + ψ = 0) or sinϕ = sinψ, cosϕ =
− cosψ (ϕ+ ψ = π)

Note that condition (1.48) implies that detA = ±1.
The first case: detA = 1, operator A preserves orientation;
sinϕ = − sinψ, cosϕ = cosψ,

Aϕ =

(
α β
γ δ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
(detAϕ = 1) . (1.49)

The second case: detA = −1, operator A changes orientation;
sinϕ = sinψ, cosϕ = − cosψ,

Ãϕ =

(
α β
γ δ

)
=

(
cosϕ sinϕ
sinϕ − cosϕ

)
(det Ãϕ = −1) (1.50)
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In the first case matrix of operator Aϕ is defined by the relation (1.49).
In this case the new basis is:

(e′, f ′) = (e, f)Aϕ = (e, f)

(
cosϕ − sinϕ
sinϕ cosϕ

)
,

e′ = Aϕ(e) = cosϕ e + sinϕ f
f ′ = Aϕ(f)− sinϕ e + cosϕ f

(1.51)
For an arbitrary vector x = xe + yf x→ Aϕ(x) = Aϕ(xe + yf) = x′e + y′f ,(

x′

y′

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x
y

)
=

(
x cosϕ− y sinϕ
sinϕ+ y cosϕ

)
. (1.52)

Operator Aϕ rotates basis vectors e, f and arbitrary vector x on an
angle ϕ

In the second case a matrix of operator Ãϕ is defined by the relation
(1.50). One can see that

Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
1 0
0 −1

)
= AϕR (1.53)

where we denote by R =

(
1 0
0 −1

)
a transition matrix from the basis {e, f}

to the basis {e,−f}—“reflection”l.
We see that in the second case the orthogonal operator Ãϕ is composition

of rotation and reflection: {e, f}Ãϕ=AϕR−→ {ẽ, f̃}:

{e, f} Aϕ−→{e′ = cosϕ e+sinϕl, f , f ′ = − sinϕ e+cosϕ f} R−→{ẽ = e′, f̃ = −f}
(1.54)

We come to proposition

Proposition. Let A be an arbitrary 2 × 2 orthogonal linear transfor-
mation, ATA = 1, and in particularly detA = ±1. (As usual we consider
matrix of orthogonal operator in the orthonormal basis.)

If detA = 1 then there exists an angle ϕ ∈ [0, 2π) such that A = Aϕ is
an operator which rotates basis vectors and any vector (1.49) on the angle ϕ.

If detA = −1 then there exists an angle ϕ ∈ [0, 2π) such that A = Ãϕ is
a composition of rotation and reflection (see (1.54)).

Remark One can show that orthogonal operator Ãϕ is a reflection with respect to
the axis which have the angle ϕ

2 with x-axis.
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Consider just examples:

a)ϕ = 0, Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
1 0
0 −1

)
,

(
e
f

)
7→
(

e
−f

)
(reflection with respect to x-axis)

b)ϕ = π, Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
−1 0
0 1

)
,

(
e
f

)
7→
(
−e
f

)
(reflection with respect to y-axis)

b)ϕ =
π

2
, Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
0 1
1 0

)
,

(
e
f

)
7→
(

f
e

)
(reflection with respect to axis y = x (“swapping” of basis vectors))

Try to do it in general case.

1.11.2 Orthogonal operators in E3 and rotations

We see in the previous paragraph that orthogonal operator preserving orien-
tation of E2 is rotation operator. The same is true in E2. The main result
of this paragraph will be the Euler Theorem about rotation, that every or-
thogonal operator preserving orientation in E3 is rotation around some axis.

We will give an exact formulation of the Euler Theorem at the end of this
paragraph. Now we will formualte just preliminary statement:

The Euler Theorem. (Preliminary statement) An orthogonal operator
in E3 preserving orientation is rotation operator with respect to an axis l
on the angle ϕ. The axis is directed along eigenvector N of the operator P ,
P (N) = N,and angle of rotation is defined by equation

TrP = 1 + 2 cosϕ .

We will come to this statement gradually step by step, and then will
formulate it completely.

Let En be oriented vector space. Recall that oriented vector space means
that it is chosen the equivalence class of bases: all bases in this class have
the same orientation. We call all bases in the equivalence class defining
orientation “left” bases. All “left” bases have the same orientation. To
define an orientation in vector space V one may consider an arbitrary basis
{e(0)

i } in V and claim that this basis is “left” basis. The basis {e(0)

i } defines

equivalence class of “left” bases: all bases {ei} such that {ei} ∼ {e
(0)

i will be

called “left” bases. We can say that basis {e(0)
i } defines the orientation.
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Later on considering oriented vector space we often call all bases defining
the orientation (i.e. belonging to the equivalence class of bases defining
orientation) “left” bases.

Now we define rotation in E3. Recall the definition of rotation in E2 (see
1.11.1):

Definition Let E2 be an oriented Euclidean space. We say that linear
operator P rotates this space on an angle “ϕ” if for a given “left” orthonormal
basis {e, f}{

e′ = P (e) = e cosϕ+ f sinϕ

f ′ = P (f) = −e sinϕ+ f cosϕ
i.e. {e′, f ′} = {e, f}

(
cosϕ − sinϕ
sinϕ cosϕ

)
(1.55)

i.e. transition matrix from basis {e, f} to new basis {e′ = P (e), f ′ = P (f)}
is the rotation matrix (1.49) (see also (1.51)).

Remark One can show that the angle of rotation does not depend on
the choice of “left” basis. If we will choose another left basis ẽ, f̃ then the
angle remains the same

Operator P rotates every vector rotates on the angle ϕ.
If we choose a basis with opposite orientation (“right” basis) then the

angle will change: ϕ 7→ −ϕ.

We already did it in 1.11.1 and we also see from formula (1.55) that the
matrix of operator P is orthogonal matrix such that its determinant equals
1. In 2-dimensional case we came to simple Proposition (see Proposition in
1.11.1) which we will repeat again4:

Proposition Let P be an orthogonal operator in oriented 2-dimensional
Euclidean space. If operator P preserves orientation (detP = 1) then it is a
rotation operator (1.55) on some angle ϕ.

The situation is little bit more tricky in 3-dimensional case.
Let E3 be an Euclidean vector space. (Problem of orientation we will

discuss below.) Let N 6= 0 be an arbitrary non-zero vector in E3. Consider
the line lN, spanned by vector N. This is axis directed along the vector N.
Choose a unit vector

n = ± N

|N|
(1.56)

Vector n fixes an orientation on lN. Changing n 7→ −n changes an orientation on oppo-

site).

4Just here we denote the operator by letter ‘P ′ instead letter ‘A′
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Choose an arbitrary orthonormal basis such that first vector of this basis
is directed along the axis: a basis {n, f ,g}.

Definition We say that a linear operator P rotates the Euclidean space
E3 on the angle ϕ with respect to an axis lN directed along a vector N if the
following conditions are satisfied:

•
P (N) = N

vector N (and all vectors proportional to this vector) are eigenvectors
of operator P with eigenvalue 1, i.e. axis remain intact

• for an orthonormal basis {n, f , g} such that the first vector of this basis
is equal to n, (n is a unit vector, proportional to N){

f ′ = P (f) = f cosϕ+ g sinϕ

g′ = P (f) = −f sinϕ+ g cosϕ
i.e. {f ′,g′} = {f ,g}

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

(1.57)
In other words plane (subspace) orthogonal to axis rotates on the angle
ϕ: linear operator P rotates every vector orthogonal to axis on the angle
ϕ in the plane (subspace) orthogonal to the axis.

Linear operator P transforms the basis {n, , f ,g} to the new basis {n, f ′,g′}
= {n, f cosϕ+g sinϕ,−f sinϕ+g cosϕ}. The matrix of operator P , i.e. the
transition matrix from the basis {n, , f ,g} to the basis {n, f ′,g′} is defined
by the relation:

{n, f ′,g′} = {n, f cosϕ+g sinϕ,−f sinϕ+g cosϕ} = {n, , f ,g}

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


(1.58)

Recalling definition (1.30) of trace of linear operator we come to the following
relation

TrP = 1 + 2 cosϕ (1.59)

where ϕ is angle of rotation. Note that Trace of the operator does not depend
on the choice of the basis. This formula express cosine of the angle of rotation
in terms of operator, irrelevant of the choice of the basis.

Remark This formula defines angle of rotation up to a sign.
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If we change orientation then ϕ 7→ −ϕ. For non-oriented Euclidean space rotation is
defined up to a sign5

Careful reader maybe already noted that even fixing the orientation of E3 does not fix
the “sign” of the angle: If we change the orientation of the axis (changing n 7→ −n) then
changing the corresponding “left” basis will imply that ϕ 7→ −ϕ. In fact angle ϕ is the
angle of rotation of oriented plane which is orthogonal to the axis of rotation. Orientation
on the plane is defined by orientation in E3 and orientation of the axis which is orthogonal
to this plane. In the case of 3-dimensional space sign of the angle depends not only on
orientation of E3 but on orientation of axis. In what follows we will ignore this. This
means that we define rotation on the angle ±ϕ up to a sign.... Rotation is defined for
operators preserving orientation. The difference between angles of rotations ϕ and −ϕ is
depending not only on orientation of E3 but on orientation of axis too. But we ignore this
difference. Note that cosϕ in the formula is defined up to a sign

Rotation operator eviently is orthogonal operator preserving orientation.
Is it true converse implication? We are ready to formulate the following
remarkable result.

Theorem (the Euler Theorem) Let P be an orthogonal operator preserv-
ing an orientation of Euclidean space E3, i.e. operator P preserves the scalar
product and orientation. Then it is a rotation operator with respect to an axis
l on the angle ϕ. Every vector N directed along the axis does not change, i.e.
the axis is 1-dimensional space of eigenvectors with eigenvalue 1, P (N) = N.
Every vector orthogonal to axis rotates on the angle ϕ in the plane orthogonal
to the axis,

TrP = 1 + 2 cosϕ .

The angle ϕ is defined up to a sign. Changing orientation of the Euclidean
space and of the axis change sign of ϕ.

This Theorem can be restated in the following way: every orthogonal
operator P preserving orientation, (detP 6= 0) has an eigenvector N 6= 0 with
eigenvalue 1. This eigenvector defines the axis of rotation. In an orthonormal
basis {n, f ,g} where n is a unit vector along the axis, the transition matrix
of operator has an appearance (1.58). Angle of rotaion can be defined via
Trace of operator by formula TrP = 1 + 2 cosϕ.

Remark If P is an identity operator, P = I then “ there is no rotation”,
more precisely: any line can be considered as an axis of rotation (every vector
is eigenvector of identity matrix with eigenvalue 1) and angle of rotation is
equal to zero. If P 6= I then axis of rotation is defiend uniquely.

Proof of the Euler Theorem. The proof of the Euler Theorem has two parts. First and
central part is to prove the existence of the axis. The rest is trivial: we take an arbitrary

5Does it recall you expressions such as “clockwise”, “anticlock-wise” rotation?
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orthonormal basis n, f ,g such that n is eigenvector and we come to relation (1.57). We
expose here maybe the most beautiful proof which belongs to Coxeter.

Let P be linear orthogonal operator preserving orientation. Note that for any two
not-zero distinct vectors e, f one can consider orthogonal operator Re,f which changes
orientation and swaps the vectors e, f : it is reflection with respect to the plane spanned
by the vectors e + f and a vector e× f .

Let {e, f ,g} be an arbitrary orthonormal basis in E3 and let e′, f ′,g′ be image of this
basis under operator P

P (e) = e′, P (f) = f ′ P (g) = g′ .

If e = e′ nothing to prove (e is eigenvector with eigenvalue 1). If this is not the case,
apply reflection operator Re,e′ to the initial basis {e, f ,g} we come to the orthonormal

basis {e′, f̃ , g̃}, Then applying reflection operator Rf̃ ,f ′ to this basis we come to the basis

e′, f ′, ˜̃g. The third vector has no choice it has to be equal to g′ since in the case if it
is equal to −g′ orientation is opposite. Hence we see that operator P is the product of
two reflections operators. Consider the line l, intersection of these planes, we come to
eigenvectors with eigenvalue 1.

There are many other proofs, for example:
Another proof: Any non-degenerate 3 × 3 matrix has at least one eigenvector x:

Px = λx, since cubic equation det(P − λI) = 0 has at lest one real root. Since P is
orthogonal operator, then λ = ±1. If λ = 1, then x defines the axis. If λ = −1, Px = −x,
then eigenvector with eigenvalue 1 belongs to the plane orthogonal to x.

Example Consider linear operator P such that for orthonormal basis
{ex, ey, ez}

P (ex) = ey, P (ey) = ex, P (ez) = −ez (1.60)

This is obviously orthogonal operator since it transforms orthogonal ba-
sis to orthogonal one. This operator swaps first two vectors and reflects
the third one. It preserves orientation: matrix of operator in the basis
{ex, ey, ez}, i.e. the transition matrix from the basis {ex, , ey, ez} to the
basis {P (ex), P (ey), P (ez)} is defined by the relation:

{P (ex), P (ey), P (ez)} = {ey, ex,−ez} = {ex, , ey, ez}

0 1 0
1 0 0
0 0 −1


detP = 1. This operator preserves orientation. Hence by Euler Theorem it
is a rotation. Find first axis of rotation. It is easy to see from (1.60) that
N = λ(ex + ey) is eigenvector with eigenvalue 1:

P (N) = P (ex + ey) = ey + ex = N .

Hence axis of rotation is directed along the vector ex+ey. TrP = 1+2 cosϕ =
−1. The angle of rotation ϕ = π.
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One can calculate explicitly angle of rotation: Consider orthonormal basis {n, f,g}
adjusted to the axis (n||N). We have that n =

ex+ey√
2

since n is proportional to N and it

is unit vector. Choose f =
−ex+ey√

2
and g = ez. Then it is easy to see that

{n, f ,g} =

{
ex + ey√

2
,
−ex + ey√

2
,g

}
is orthonormal basis.Using (1.60)one can see that

P (n) = P

(
ex + ey√

2

)
=

ey + ex√
2

= n ,

P (f) = P

(
−ex + ey√

2

)
=
−ey + ex√

2
= −f , P (g) = −g

We see that
{n, f ,g} P−→{n,−f ,−g} .

Comparing with (1.57) and (1.58) we see that the operator P is rotation of E3 on the
angle π with respect to the axis directed along the vector ex + ey.

1.12 Vector product in oriented E3

Now we give a definition of vector product of vectors in 3-dimensional Eu-
clidean space equipped with orientation.

Let E3 be three-dimensional oriented Euclidean space, i.e. Euclidean
space equipped with an equivalence class of bases with the same orientation.
To define the orientation it suffices to consider just one orthonormal basis
{e, f ,g} which is claimed to be left basis. Then the equivalence class of the
left bases is a set of all bases which have the same orientation as the basis
{e, f ,g}.

Definition Vector product L(x,y) = x × y is a function of two vectors
which takes vector values such that the following axioms (conditions) hold

• The vector L(x,y) = x× y is orthogonal to vector x and vector y:

(x× y) ⊥ x , (x× y) ⊥ y (1.61)

In particular it is orthogonal to the the plane spanned by the vectors
x,y (in the case if vectors x,y are linearly independent)

•
x× y = −y × x, (anticommutativity condition) (1.62)
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•

(λx +µy)× z = λ(x× z) +µ(y× z) , (linearity condition) (1.63)

• If vectors x,y are perpendicular each other then the magnitude of the
vector x×y is equal to the area of the rectangle formed by the vectors
x and y:

|x× y| = |x| · | y| , if x ⊥ y , i.e.(x,y) = 0 . (1.64)

• If the ordered triple of the vectors {x,y, z}, where z = x×y is a basis,
then this basis and an orthonormal basis {e, f ,g} defining orientation
of E3 have the same orientation:

{x,y, z} = {e, f ,g}T, where for transition matrix T , detT > 0.
(1.65)

Vector product depends on orientation in Euclidean space.

Comments on conditions (axioms) (1.61)—(1.65):

1. The condition (1.63) of linearity of vector product with respect to
the first argument and the condition (1.62) of anticommutativity imply that
vector product is an operation which is linear with respect to the second
argument too. Show it:

z×(λx+µy) = −(λx+µy)×z = −λ(x×z)−µ(y×z) = λ(z×x)+µ(z×y) .

Hence vector product is bilinear operation. Comparing with scalar prod-
uct we see that vector product is bilinear anticommutative (antisymmetric)
operation which takes vector values, while scalar product is bilinear symmet-
ric operation which takes real values.

2. The condition of anticommutativity immediately implies that vector
product of two colinear (proportional) vectors x,y (y = λx) is equal to zero.
It follows from linearity and anticommuativity conditions. Show it: Indeed

x× y = x× (λx) = λ(x× x) = −λ(x× x) = −x× (λx) = −x× y. (1.66)

Hence x× y = 0, if y = λx .
3. It is very important to emphasize again that vector product depends

on orientation. According the condition (1.65) if z = x × y and we change
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the orientation of Euclidean space, then z → −z since the basis {x,y,−z}
as an orientation opposite to the orientation of the basis {x,y, z}.

You may ask a question: Does this operation (taking the vector product) which obeys

all the conditions (axioms) (1.61)—(1.65) exist? And if it exists is it unique? We will

show that the vector product is well-defined by the axioms (1.61)—(1.65), i.e. there exists

an operation x × y which obeys the axioms (1.61)—(1.65) and these axioms define the

operation uniquely.

We will assume first that there exists an operation L(x,y) = x×y which
obeys all the axioms (1.61)—(1.65). Under this assumption we will construct
explicitly this operation (if it exists!). We will see that the operation that
we constructed indeed obeys all the axioms (1.61)—(1.65).

Let {ex, ey, ez} be an arbitrary left orthonormal basis of oriented Eu-
clidean space E3, i.e. a basis which belongs to the equivalence class of the
basis {e, f ,g} defining orientation of E3. Then it follows from the consider-
ations above for vector product that

ex × ex = 0, ex × ey = ez, ex × ez = −ey
ey × ex = −ez, ey × ey = 0, ey × ez = ex
ez × ex = ey, ez × ey = −ex, ez × ez = 0

(1.67)

E.g. ex×ex = 0, because of (1.62), ex×ey is equal to ez or to −ez according
to (1.64), and according to orientation arguments (1.65) ex × ey = ez.

Now it follows from linearity and (1.67) that for two arbitrary vectors
a = axex + ayey + azez, b = bxex + byey + bzez

a×b = (axex+ayey+azez)×(bxex+byey+bzez) = axbyex×ey+axbzex×ez+

aybxey × ex + aybzey × ez + azbxez × ex + azbyez × ey =

(aybz − azby)ex + (azbx − axbz)ey + (axby − aybx)ez . (1.68)

It is convenient to represent this formula in the following very familiar way:

L(a,b) = a× b = det

ex ey ez
ax ay az
bx by bz

 (1.69)

We see that the operation L(x,y) = x× y which obeys all the axioms (1.61)—(1.65),
if it exists, has an appearance (1.69), where {ex, ey, ez} is an arbitrary orthonormal basis
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(with rightly chosen orientation). On the other hand using the properties of determinant
and the fact that vectors are orthogonal if and only if their scalar product equals to zero
one can easy see that the vector product defined by this formula indeed obeys all the
conditions (1.61)—(1.65).

Thus we proved that the vector product is well-defined by the axioms (1.61)—(1.65)

and it is given by the formula (1.69) in an arbitrary orthonormal basis (with rightly chosen

orientation).

Remark In the formula above we have chosen an arbitrary orthonormal
basis which belongs to the equivalence class of bases defining the orientation.
What will happen if we choose instead the basis {ex, ey, ez} an arbitrary
orthonormal basis {f1, f2, f3}. We see that such that answer does not change
if both bases {ex, ey, ez} and {f1, f2, f3} have the same orientation, Formulae
(1.67) are valid for an arbitrary orthonormal basis which have the same
orientation as the orthonormal basis {ex, ey, ez}.— In oriented Euclidean
space E3 we may take an arbitrary basis from the equivalence class of bases
defining orientation. On the other hand if we will consider the basis with
opposite orientation then according to the axiom (1.65) vector product will
change the sign. (See also the question 6 in Homework 4)

1.12.1 Vector product—area of parallelogram

The following Proposition states that vector product can be considered as
area of parallelogram:

Proposition 2 The modulus of the vector z = x× y is equal to the area
of parallelogram formed by the vectors x and y.:

S(x,y) = S(Π(x,y)) = |x× y| , (1.70)

where we denote by S(x,y) the area of parallelogram Π(x,y) formed by the
vectors x,y.

Proof: Consider the expansion y = y|| + y⊥, where the vector y⊥ is
orthogonal to the vector x and the vector y|| is parallel to to vector x. The
area of the parallelogram formed by vectors x and y is equal to the product of
the length of of the vector x on the height. The height is equal to the length
of the vector y⊥. We have S(x,y) = |x||y⊥|. On the other z = x × y =
x × (y|| + y⊥) = x × y|| + x × y⊥. But x × y|| = 0, because these vectors
are colinear. Hence z = x× y⊥ and |z| = |x||y⊥| = S(x,y) because vectors
x,y⊥ are orthogonal to each other.
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This Proposition is very important to understand the meaning of vector
product. Shortly speaking vector product of two vectors is a vector which is
orthogonal to the plane spanned by these vectors, such that its magnitude is
equal to the area of the parallelogram formed by these vectors. The direction
is defined by orientation.

Remark It is useful sometimes to consider area of parallelogram not as a positive

number but as an real number positive or negative (see the next subsubsection.)

It is not worthless to recall the formula which we know from the school
that area of parallelogram formed by vectors x,y equals to the product of
the base on the height. Hence

|x× y| = |x| · |y|| sin θ| , (1.71)

where θ is an angle between vectors x,y.

Finally I would like again to stress:
Vector product of two vectors is equal to zero if these vectors are colinear

(parallel). Scalar product of two vectors is equal to zero if these vector are
orthogonal.

Exercise†Show that the vector product obeys to the following identity:

((a× b)× c) + ((b× c)× a) + ((c× a)× b) = 0 . (Jacoby identity) (1.72)

This identity is related with the fact that heights of the triangle intersect in the one point.

Exercise† Show that a× (b× c) = b(a, c)− c(a,b).

1.12.2 Area of parallelogram in E2 and determinant of 2 × 2 ma-
trices

.
Let a,b be two vectors in 2-dimensional vector space E2.
One can consider E2 as a plane in 3-dimensional Euclidean space E3. Our

aim is to calculate the area of the parallelogram Π(a,b) formed by vectors
a,b. Let n be a unit vector in E3 which is orthogonal to E2. Then it is
obvious that the vector product a × b is proportional to the normal vector
n to the plane E2:

a× b = A(a,b)n , (1.73)

and the area of the parallelogram Π(a,b) equals to the modulus of the coef-
ficient A(c,b):

S (Π (a,b)) = |a× b| = |A(a,b)| . (1.74)
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The normal unit vector n and coefficient A(a,b) are defined up to a sign: n → −n,

A → −A. On the other hand the vector product a × b is defined up to a sign too:

vector product depends on orientation. The answer for a×b is not changed if we perform

calculations for vector product in an arbitrary basis {e′x, e′y, e′z} which have the same

orientation as the the basis {e, f ,n} and a×b 7→→ −a×b. If we consider an arbitrary basis

{e′x, e′y, e′z} which have the orientation opposite to the orientation of the basis {e, f ,n}
(e.g. the basis {e, f ,−n}) then A(a,b) → −A(a,b). The magnitude A(a,b) is so called

algebraic area of parallelogram. It can positive and negative.

If (a1, a2), (b1, b2) are coordinates of the vectors a,b in the basis {e, f}:
a = a1e + a2f , b = b1e + b2f and according to (1.69)

a× b = det

 e f n
a1 a2 0
b1 b2 0

 = n det

(
ax ay
bx by

)
(1.75)

Thus A(a,b) in equation (1.74) is equal to det

(
ax ay
bx by

)
, and we come to

the following formula for area of parallelogram

S(Π(a,b)) = |a× b| =
∣∣∣∣det

(
ax ay
bx by

)∣∣∣∣ . (1.76)

This is an important formula for relation between determinant of 2×2 matrix,
area of parallelogram and vector product.

One can deduce this relation in other way:
Let E2 be a 2-dimensional Euclidean space. The function A(a,b) defined by the

relation (1.76) obeys the following conditions:

• It is anticommutative:
A(a,b) = −A(a,b) (1.77)

• It is bilinear

A(λa+µb, c) = λA(a, c)+µA(b, c); A(c, λa+µb) = λA(c,a)+µA(c,b) . (1.78)

• and it obeys normalisation condition:

A(e, f) = ±1 (1.79)

for an arbitrary orthonormal basis.

(Compare with conditions (1.61)—(1.65).)

One can see that these conditions define uniquely A(a,b) and these are the conditions

which define the determinant of the 2× 2 matrix.
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1.12.3 Volumes of parallelograms and determinnants of linear op-
erators in E2

Let A be an arbitrary linear operator in E2. One can see that the following
formula holds.

Let a,b be two arbitrary vectors in E2. Let a′,b′ be two vectors such
that

a′ = A(a) , b = A(b′) .

Consider two parallelograms: Parallelogram Π(a,b) formed by vectors a,b,
and the second parallelogram Π(a′,b′) formed by vectors α′.b′. Then one can
deduce from equation (1.76) that

Area of Π(a′,b′) = |detA| · Area of Π(a,b) . (1.80)

This formula relates volumes of parallelograms Π(a,b), Π(a′,b′) with de-
terminant of linear operator which transforms the first parallelogram to the
second one. (See also exercise 9 in Homework 4).

1.12.4 Volume of parallelepiped

The vector product of two vectors is related with area of parallelogram. What
about a volume of parallelepiped formed by three vectors {a,b, c}?

Consider parallelepiped Π(a,b, c) formed by vectors {a,b, c}. The par-
allelogram Π(a,b) formed by vectors b, c can be considered as a base of this
parallelepiped.

Let θ be an angle between height and vector a. It is just the angle between
the vector b× c and the vector a. Then the volume is equal to the length of
the height multiplied on the area of the parallelogram, V = Sh = S|a| cos θ,
i.e. volume is equal to scalar product of the vectors a on the vector product
of vectors b and c:

V ({a,b, c}) = |(a,b× c)| =

∣∣∣∣∣∣
axex + ayey + azez, det

ex ey ez
bx by bz
cx cy cz

∣∣∣∣∣∣
= |(axex + ayey + azez, (bycz − bzcy)ex + (bzcx − bxcz)ey + (bxcy − bycx)ez)| =

|ax(bycz − bzcy) + ay(bzcx − bxcz) + az(bxcy − bycx)| =

∣∣∣∣∣∣det

ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ .
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We come to beautiful and useful formula:

volume of Π(a,b, c) = |(a, [b× c])| =

∣∣∣∣∣∣det

ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ . (1.81)

Compare this formula for the formula (1.76) for the area of parallelogram.
Remark In these formulae we consider the volume of the parallelepiped as a positive

number. It is why we put the sign of ‘modulus’ in all the formulae above. On the other
hand often it is very useful to consider the volume as a real number (it could be positive
and negative).

Exercise Consider the function F (a,b, c) = (a,b× c).
1. Show that F (a,b, c) = 0 if and only if vectors a,b, c are linear dependent.

2. Show that for an arbitrary vector a, F (a,a, c) = 0.

3. Show that for arbitrary vectors a,b, F (a,b, c) = −F (a,b, c). Can you deduce 3)

from the 2)?

1.12.5 Volumes of parallelepipeds and determinnants of linear op-
erators in E3

Write down an equation for the volumes of parallelepipeds analogous to equa-
tion (1.80) for the the areas of parallelograms. Now instead parallelogram
we consider parallelepiped, and instead linear operator A in E2 we consider
linear operator A in E3.

Let A be an arbitrary linear operator in E3. In the same way as in formula
(1.80) the following formula holds:

Let a,b, c be three arbitrary vectors in E3. Linear operator A transforms
these three vectors to three vectors a′,b′, c′ where

a′ = A(a) , b = A(b′) , c′ = P (c′) .

Consider two parallelepipeds: Parallelepiped Π(a,b c) formed by vectors
a,b, c and the second parallelepiped Π(a′,b′ c′) formed by vectors α′.b′, c′.
Then it follows from (1.81) the following formula and determinant of operator
A:

Volume of Π(a′,b′, c′) = |detA| · Volume of Π(a,b, c) . (1.82)

This formula relates volumes of parallelepipeds Π(a,b, c), Π(a′,b′, c′) with
determinant of linear operator which transforms the first parallelepiped to
the second one. (See also exercise 9 in Homework 4).
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2 Differential forms

2.1 Tangent vectors, curves, velocity vectors on the
curve

Tangent vector is a vector v applied at the given point p ∈ En.
The set of all tangent vectors at the given point p is a vector space. It is

called tangent space of E3 at the point p and it is denoted Tp(En).
One can consider vector field on En, i.e.a function which assigns to every

point p vector v(p) ∈ Tp(En).
It is instructive to study the conception of tangent vectors and vector

fields on the curves and surfaces embedded in En. In this course we mainly
consider tangent vectors to curves.

A curve in En with parameter t ∈ (a, b) is a continuous map

C : (a, b)→ En r(t) = (x1(t), . . . , xn(t)), a < t < b (2.1)

For example consider in E2 the curve

C : (0, 2π)→ E2 r(t) = (R cos t, R sin t), 0 ≤ t < 2π .

The image of this curve is the circle of the radius R. It can be defined by
the equation:

x2 + y2 = R2 .

To distinguish between curve and its image we say that curve C in (2.1)
is parameterised curve or path. We will call the image of the curve unpa-
rameterised curve (see for details the next subsection). It is very useful to
think about parameter t as a ”time” and consider parameterised curve like
point moving along a curve. Unparameterised curve is the trajectory of the
moving point. It is locus of the points. The using of word ”curve” without
adjective ”parameterised” or ”nonparameterised” sometimes is ambiguous.

Vectors tangent to curve—velocity vector

Let r(t) r = r(t) be a curve in En.
Velocity v(t) it is the vector

v(t) =
dr

dt
=
(
ẋ1(t), . . . , . . . ẋn(t)

)
=
(
v1(t), . . . , vn(t)

)
in En. Velocity vector is tangent vector to the curve.
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Let C : r = r(t) be a curve and r0 = r(t0) any given point on it. Then
the set of all vectors tangent to the curve at the point r0 = r(t0) is one-
dimensional vector space Tr0C. It is linear subspace in vector space Tr0C.
The points of the tangent space Tr0C are the points of tangent line.

Remark We consider by default only smooth, regular curves. Curve r(t)
= (x1(t), . . . , xn(t)) is called smooth if all functions xi(t), (i = 1, 2, . . . , n) are
smooth functions (Function is called smooth if it has derivatives of arbitrary

order.) Curve r(t) is called regular if velocity vector v(t) = dr(t)
dt

is not equal
to zero at all t.

2.2 Reparameterisation

One can move along trajectory with different velocities, i.e. one can consider
different parameterisation. E.g. consider

C1 :

{
x(t) = t

y(t) = t2
0 < t < 1 , C2 :

{
x(t) = sin t

y(t) = sin2 t
0 < t <

π

2

Images of these two parameterised curves are the same. In both cases
point moves along a piece of the same parabola but with different velocities.

Definition
Two smooth curves C1 : r1(t) : (a1, b1)→ En and C2 : r2(τ) : (a2, b2)→

En are called equivalent if there exists reparameterisation map:

t(τ) : (a2, b2)→ (a1, b1),

such that
r2(τ) = r1(t(τ)) (2.2)

Reparameterisation t(τ) is diffeomorphism, i.e. function t(τ) has derivatives
of all orders and first derivative t′(τ) is not equal to zero.

E.g. curves in (2.2) are equivalent because a map ϕ(t) = sin t transforms
first curve to the second.

Equivalence class of equivalent parameterised curves is called non-parameterised
curve.

Equivalent curves have the same image.

It is useful sometimes to distinguish curves in the same equivalence class
which differ by orientation.
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Definition Let C1, C2 be two equivalent curves. We say that they have
same orientation (parameterisations r1(t and r(τ) have the same orientation)
if reparameterisation t = t(τ) has positive derivative, t′(τ) > 0. We say that
they have opposite orientation (parameterisations r1(t and r(τ) have the
opposite orientation) if reparameterisation t = t(τ) has negative derivative,
t′(τ) < 0.

Changing orientation means changing the direction of ”walking” around
the curve.

Equivalence class of equivalent curves splits on two subclasses with respect
to orientation.

Non-formally: Two curves are equivalent curves (belong to the same
equivalence class) if these parameterised curves ( paths) have the same im-
ages. Two equivalent curves have the same image. They define the same set
of points in En. Different parameters correspond to moving along curve with
different velocity. Two equivalent curves have opposite orientation If two pa-
rameterisations correspond to moving along the curve in different directions
then these parameterisations define opposite orientation.

What happens with velocity vector if we change parameterisation? It
changes its value, but it can change its direction only on opposite (If these
parameterisations have opposite orientation of the curve):

v(τ) =
dr2(τ)

dτ
=
dr(t(τ))

dτ
=
dt(τ)

dτ
· dr(t)

dt

∣∣
t=t(τ)

(2.3)

Or shortly: v(τ)
∣∣
τ

= tτ (τ)v(t)
∣∣
t=t(τ)

We see that velocity vector is multiplied on the coefficient (depending on
the point of the curve), i.e. velocity vectors for different parameterisations
are collinear vectors.
(We call two vectors a,b collinear, if they are proportional each other, i,e, if
a = λb.)

Example Consider following curves in E2:

C1 :

{
x = cos θ

y = sin θ
, 0 < θ < π, C2 :

{
x = u

y =
√

1− u2
,−1 < u < 1,

{
x = tan t

y =
√
cos 2t
cos t

,−π
4
< t <

π

4
(2.4)
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These three parameterised curves,(paths) define the same non-parameterised
curve: the upper piece of the circle: x2 + y2 = 1, y > 0. The reparameterisa-
tion u(θ) = cos θ transforms the second curve to the first one.

The reparameterisation u(θ) = cos θ transforms the second curve to the
first one.

The reparameterisation u(θ) = tan t transforms the second curve to the

third one one:
√
cos 2t
cos t

=

√
cos2 t−sin2 t

cos t
=
√

1− tan2 t.
Curves C1, C2 have opposite orientation because u′(θ) < 0. Curves C2, C3

have the same orientation, because u′(t) > 0. Curves C1 and C2 have opposite
orientations too (Why?).

In the first case point moves with constant pace |v(θ)| = 1 anti clock-wise
”from right to left” from the point A = (1, 0) to the point B = (−1, 0). In the
second case pace is not constant, but vx = 1 is constant. Point moves clock-
wise ”from left to right”, from the point B = (−1, 0) to the point A = (1, 0).
In the third case point also moves clock-wise ”from the left to right”.

There are other examples in the Homeworks.

2.3 Differential 0-forms and 1-forms

2.3.1 Definition and examples of 0-forms and 1-formsf

Most of considerations of this and next subsections can be considered only for E2 or E3.

All examples for differential forms is only for E2, E3.

0-form on En it is just function on En (all functions under consideration
are differentiable)

Now we define 1-forms.
Definition Differential 1-form ω on En is a function on tangent vectors

of En, such that it is linear at each point:

ω(r, λv1 + µv2) = λω(r,v1) + µω(r,v2) . (2.5)

Here v1,v2 are vectors tangent to En at the point r, (v1,v2 ∈ TxE
n) (We

recall that vector tangent at the point r means vector attached at the point
r). We suppose that ω is smooth function on points r.

If X(r) is vector field and ω-1-form then evaluating ω on X(r) we come
to the function w(r,X(r)) on E3.
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Let e1, . . . , en be a basis in En and (x1, . . . , xn) corresponding coordinates:
an arbitrary point with coordinates (x1, . . . , xn) is assigned to the vector
r = x1e1 + x2e2 + . . . xnen starting at the origin.

Translating basis vectors ei (i = 1, . . . , n) from the origin to other points
of En we come to vector field which we also denote ei (i = 1, . . . , n). The
value of vector field ei at the point (x1, . . . , xn) is the vector ei attached at
this point (tangent to this point).

Let ω be an 1-form on En. Consider an arbitrary vector field A(r) =
A(x1, . . . , xn):

A(r) = A1(r)e1 + · · ·+ An(r)en =
n∑
i=1

Ai(r)ei

Then by linearity

ω(r,A(r)) = ω
(
r, A1(r)e1 + · · ·+ An(r)en

)
= A1ω(r, e1) + · · ·+Anω(r, en) .

Consider basic differential forms dx1, dx2, . . . , dxn such that

dxi(ej) = δij =

{
1 if i = j

0 if i 6= j
. (2.6)

Then it is easy to see that

dx1(A) = A1, dx2(A) = A2, ...., i.e.dxi(A) = Ai

Hence

ω(r,A(r)) =
(
ω1(r)dx1 + ω2(r)dx2 + · · ·+ ωn(r)dxn

)
(A(r))

where components ωi(r) = ω(r, ei).
In the same way as an arbitrary vector field on En can be expanded over

the basis {ei} (see (2.3.1)), an arbitrary differential 1-form ω can be expanded
over the basis forms(2.3.1)

ω = ω1(x
1, . . . , xn)dx1 + ω2(x

1, . . . , xn)dx2 + · · ·+ ωn(x1, . . . , xn)dxn .

Example Consider in E3 a basis ex, ey, ez and corresponding coordinates
(x, y, z). Then

dx(ex) = 1, dx(ey) = 0, dx(ez) = 0
dy(ex) = 0, dy(ey) = 1, dy(ez) = 0
dz(ex) = 0, dz(ey) = 0, dz(ez) = 1

(2.7)
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The value of a differential 1-form ω = a(x, y, z)dx+ b(x, y, z)dy+ c(x, y, z)dz
on vector field X = A(x, y, z)ex +B(x, y, z)ey + C(x, y, z)ez is equal to

ω(r,X) = a(x, y, z)dx(X) + b(x, y, z)dx(X) + c(x, y, z)dx(X) =

a(x, y, z)A(x, y, z) + b(x, y, z)B(x, y, z) + c(x, y, z)C(x, y, z)

It is very useful (see below ) introduce for basic vectors new notations:

ei 7→
∂

∂xi
for basic vectors ex, ey, ez in E3 ex 7→

∂

∂x
ey 7→

∂

∂y
ez 7→

∂

∂z
.

(2.8)
In these new notations the formula (2.3.1) looks like

dxi
(

∂

∂xj

)
= δij =

{
1 if i = j

0 if i 6= j
.

and the formula (2.7) looks like

dx
(
∂
∂x

)
= 1, dx

(
∂
∂y

)
= 0, dx

(
∂
∂z

)
= 0

dy
(
∂
∂x

)
= 0, dy

(
∂
∂y

)
= 1, dy

(
∂
∂z

)
= 0

dz
(
∂
∂x

)
= 0, dz

(
∂
∂y

)
= 0, dz

(
∂
∂z

)
= 1

It is very useful to introduce new notation for vectors ex, ey, ez.
In the next subsection we will consider the directional derivative of func-

tion along vector fields. The directional derivative will justify our new nota-
tions (2.8).

2.3.2 Vectors—directional derivatives of functions

Let R be a vector in En tangent to the point r = r0 (attached at a point
r = r0). Define the operation of derivative of an arbitrary (differentiable)
function at the point r0 along the vector R— directional derivative of function
f along the vector R

Definition
Let r(t) be a curve such that

• r(t)
∣∣
t=0

= r0
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• Velocity vector of the curve at the point r0 is equal to R: dr(t)
dt

∣∣
t=0

= R

Then directional derivative of function f with respect to the vector R at the
point r0 ∂Rf

∣∣
r0

is defined by the relation

∂Rf
∣∣
r0

=
d

dt
(f (r(t)))

∣∣
t=0

. (2.9)

Using chain rule one come from this definition to the following important
formula for the directional derivative:

If R =
n∑
i=1

Riei then ∂Rf
∣∣
r0

=
n∑
i=1

Ri ∂

∂xi
f(x1, . . . , xn)

∣∣
r=r0

(2.10)

It follows form this formula that
One can assign to every vector R =

∑n
i=1R

iei the operation ∂R = R1 ∂
∂x1 +

R2 ∂
∂x2 + · · ·+Rn ∂

∂xn
of taking directional derivative:

R =
n∑
i=1

Riei 7→ ∂R =
n∑
i=1

Ri ∂

∂xi
(2.11)

Thus we come to notations (2.8). The symbols ∂x, ∂y, ∂z correspond to partial
derivative with respect to coordinate x or y or z . Later we see that these new
notations are very illuminating when we deal with arbitrary coordinates, such
as polar coordinates or spherical coordinates, The conception of orthonormal
basis is ill-defined in arbitrary coordinates, but one can still consider the
corresponding partial derivatives. Vector fields ex, ey, ez (or in new notation
∂x, ∂y, ∂z) can be considered as a basis6 in the space of all vector fields on
E3 .

An arbitrary vector field (2.3.1) can be rewritten in the following way:

A(r) = A1(r)e1 + · · ·+ An(r)en = A1(r)
∂

∂x1
+ A2(r)

∂

∂x2
+ · · ·+ An(r)

∂

∂xn
(2.12)

6Coefficients of expansion are functions, elements of algebra of functions, not numbers
,elements of field. To be more careful, these vector fields are basis of the module of vector
fields on E3
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2.3.3 Differential acting 0-forms → 1-forms

Now we introduce very important operation: Differential d which acts on
0-forms and transforms them to 1 forms.

Differential
0-forms

d−→ Differential
1-forms

Later we will learn how differential acts on 1-forms transforming them to
2-forms.

Definition Let f = f(x)-be 0-form, i.e. function on En. Then

df =
n∑
i=1

∂f(x1, . . . , xn)

∂xi
dxi . (2.13)

The value of 1-form df on an arbitrary vector field (2.12) is equal to

df(A) =
n∑
i=1

∂f(x1, . . . , xn)

∂xi
dxi(A) =

n∑
i=1

∂f(x1, . . . , xn)

∂xi
Ai = ∂Af (2.14)

We see that value of differential of 0-form f on an arbitrary vector field A
is equal to directional derivative of function f with respect to the vector A.

The formula (2.14) defines df in invariant way without using coordinate expansions.

Later we check straightforwardly the coordinate-invariance of the definition (2.13).

Exercise Check that
dxi(A) = ∂Ax

i (2.15)

Example If f = f(x, y) is a function (0− form) on E2 then

df =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy

and for an arbitrary vector field A = A = Axex + Ayey = Ax(x, y)∂x +
Ay(x, y)∂y

df(A) =
∂f(x, y)

∂x
dx(A) + Ay(x, y)

∂f(x, y)

∂y
dy(A) =

Ax(x, y)
∂f(x, y)

∂x
+ Ay(x, y)

∂f(x, y)

∂y
= ∂Af .
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Example Find the value of 1-form ω = df on the vector field A =
x∂x + y∂y if f = sin(x2 + y2).

ω(A) = df(A). One can calculate it using formula (2.13) or using formula
(2.14).

Solution (using (2.13)):

ω = df =
∂f

∂x
dx+

∂f

∂y
dy = 2x cos(x2 + y2)dx+ 2y cos(x2 + y2)dy .

ω(A) = 2x cos(x2 + y2)dx(A) + 2y cos(x2 + y2)dy(A) =

2x cos(x2 + y2)Ax + 2y cos(x2 + y2)dAy = 2(x2 + y2) cos(x2 + y2) ,

Another solution (using (2.14))

df(A) = ∂Af = Ax
∂f

∂x
+ Ax

∂f

∂y
= 2(x2 + y2) cos(x2 + y2) .

See other examples in Homeworks.

2.4 Differential 1-form in arbitrary coordinates

Why differential forms? Why so strange notations for vector fields.
If we use the technique of differential forms we in fact do not care about

what coordinates we work in: calculations are the same in arbitrary coordi-
nates.

Consider first some examples
Example (Polar coordinates) Consider polar coordinates in E2:{

x(r, ϕ) = r cosϕ

y(r, ϕ) = r sinϕ
(0 ≤ ϕ < 2π, 0 ≤ r <∞),

We have that for basic 1-forms

dr = rxdx+ rydy =
x√

x2 + y2
dx+

y√
x2 + y2

dy =
xdx+ ydy

r
(2.16)

Respectively
dx = xrdr + xϕdϕ = cosϕdr − r sinϕdϕ

and
dy = yrdr + yϕdϕ = sinϕdr + r cosϕdϕ (2.17)
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For basic vector fields

∂r =
∂x

∂r
∂x +

∂y

∂r
∂y = cosϕ∂x + sinϕ∂y =

x∂x + y∂y
r

,

∂ϕ =
∂x

∂ϕ
∂x +

∂y

∂ϕ
∂y = −r sinϕ∂x + r cosϕ∂y = x∂y − y∂x, (2.18)

Example Calculate the value of forms ω = xdx+ydy and σ = xdy−ydx
on vector fields A = x∂x + y∂y, B = x∂y − y∂x. Perform calculations in
Cartesian and in polar coordinates.

In Cartesian coordinates:

ω(A) = xdx(x∂x+y∂y)+ydy(x∂x+y∂y) = x2+y2, ω(B) = xdx(B)+ydy(B) = 0,

σ(A) = xdy(A)− ydx(A) = 0, σ(B) = xdy(B)− ydx(B) = x2 + y2 .

Now perform calculations in polar coordinates. According to relation (2.16)

ω = xdx+ ydy = rdr, σ = xdy − ydx = r2dϕ

and according to relations (2.18) and (??)

A = x∂x + y∂y = r∂r, B = x∂y − y∂x = ∂ϕ

Hence ω(A) = rdr(A) = r2 = x2 + y2, ω(B = rdr(∂ϕ) = 0,

σ(A) = r2dϕ(r∂r) = 0, σ(B) = r2dϕ(∂ϕ) = r2 = x2 + y2 .

Answers coincide.

2.4.1 Calculations in arbitrary coordinates ∗

Consider an arbitrary (local) coordinates u1, . . . , un on En: ui = ui(x1, . . . , xn), i =
1, . . . , n. Show first that

dui =

n∑
k=1

∂ui(x1, . . . , xn)

∂xk
dxk . (2.19)

It is enough to check it on basic fields:

dui
(

∂

∂xm

)
= ∂( ∂

∂xm )u
i =

∂ui(x1, . . . , xn)

xm
=

n∑
k=1

∂ui(x1, . . . , xn)

∂xk
dxk

((
∂

∂xm

))
.
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because (see (2.3.1)):

dxi
(

∂

∂xj

)
= δij =

{
1 if i = j

0 if i 6= j
. (2.20)

(We rewrite the formula (2.3.1) using new notations ∂i instead ei). In the previous formula
(2.3.1) we considered cartesian coordinates.

Show that the formula above is valid in an arbitrary coordinates.
One can see using chain rule that

∂

∂ui
=
∂x1

∂ui
∂

∂x1
+
∂x2

∂ui
∂

∂x2
+ · · ·+ ∂xn

∂ui
∂

∂xn
=

n∑
k=1

∂xk

∂ui
∂

∂xk
(2.21)

Calculate the value of differential form dui on vector field ∂
∂uj using (2.19) and (2.21):

dui
(

∂

∂uj

)
=

n∑
k=1

∂ui(x1, . . . , xn)

∂xk
dxk

(
n∑
r=1

∂xr

∂uj
∂

∂xr

)
= (2.22)

n∑
k,r=1

∂ui(x1, . . . , xn)

∂xk
∂xr(u1, . . . , un)

∂uj
dxk

(
∂

∂xr

)
=

n∑
k,r=1

∂ui(x1, . . . , xn)

∂xk
∂xr(u1, . . . , un)

∂uj
δkr =

n∑
k=1

∂xk

∂uj
∂ui

∂xk
= δji

We come to

dui
(

∂

∂uj

)
= δij =

{
1 if i = j

0 if i 6= j
. (2.23)

We see that formula (2.20) has the same appearance in arbitrary coordinates. In other
words it is invariant with respect to an arbitrary transformation of coordinates.

Exercise Check straightforwardly the invariance of the definition (2.13). In coordi-
nates (u1, . . . , un)

Solution We have to show that the formula (2.13) does not changed under changing
of coordinates ui = ui(x1, . . . , xn).

df =

n∑
i=1

∂f(x1, . . . , xn)

∂xi
dxi =

n∑
i=1,k

∂f(x1, . . . , xn)

∂xi
∂xi

∂uk
duk ==

n∑
i=1

∂f

∂uk
duk ,

because
∑n
i=1

∂f(x1,...,xn)
∂xi

∂xi

∂uk = ∂f
∂uk

Example
Consider more in detail E2. (For E3 considerations are the same, just calculations little

bit more complicated) Let u, v be an arbitrary coordinates in E2, u = u(x, y), v = v(x, y).

du =
∂u(x, y)

∂x
dx+

∂u(x, y)

∂y
dy, dv =

∂v(x, y)

∂x
dx+

∂v(x, y)

∂y
dy (2.24)
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and

∂u =
∂x(u, v)

∂u
∂x +

∂y(u, v)

∂u
∂y, ∂v =

∂x(u, v)

∂v
∂x +

∂y(u, v)

∂v
∂y (2.25)

(As always sometimes we use notation ∂u instead ∂
∂u , ∂x instead ∂

∂x e.t.c.) Then

du(∂u) = 1, du(∂v) = 0

dv(∂w) = 0, dv(∂v) = 1
(2.26)

This follows from the general formula but it is good exercise to repeat the previous calcu-
lations for this case:

du(∂u) =

(
∂u(x, y)

∂x
dx+

∂u(x, y)

∂y
dy

)(
∂x(u, v)

∂u
∂x +

∂y(u, v)

∂u
∂y

)
=

∂u(x, y)

∂x

∂x(u, v)

∂u
+
∂u(x, y)

∂y

∂y(u, v)

∂u
=
∂x(u, v)

∂u

∂u(x, y)

∂x
+
∂y(u, v)

∂u

∂u(x, y)

∂y
= 1

We just apply chain rule to the function u = u(x, y) = u(x(u, v), y(u, v)):
Analogously

du(∂v) =

(
∂u(x, y)

∂x
dx+

∂u(x, y)

∂y
dy

)(
∂x(u, v)

∂v
∂x +

∂y(u, v)

∂v
∂y

)
∂u(x, y)

∂x

∂x(u, v)

∂v
+
∂u(x, y)

∂y

∂y(u, v)

∂v
=
∂x(u, v)

∂v

∂u(x, y)

∂x
+
∂y(u, v)

∂v

∂u(x, y)

∂y
= 0

The same calculations for dv.

2.4.2 Calculations in polar coordinates ∗

Example. Let f = x4− y4 and vector field A = r∂r. Calculate 1-form ω = df and ω(A).
We have ω = df = 4x3dx − 4y3dy. One has transforms form from Cartesian coordinates
to polar or vector field from polar coordinates to Cartesian.
In Cartesian coordinates: A = r ∂∂r = x ∂

∂x + y ∂
∂y . Hence ω(A) = df(A) =

(4x3dx−4y3dy)

(
x
∂

∂x
+ y

∂

∂y

)
= 4x3dx

(
x
∂

∂x
+ y

∂

∂y

)
−4y3dy

(
x
∂

∂x
+ y

∂

∂y

)
= 4x4−4y4 .

Or using (2.14) , ω(A) = df(A) = ∂Af =

(
x
∂

∂x
+ y

∂

∂y

)
(x4 − y4) = 4x4 − 4y4

In polar coordinates f = x4− y4 = (x2− y2)(x2 + y2) = r2(r2 cosϕ−r2 sin2 ϕ) = r4 cos 2ϕ,
ω = df = 4r3 cos 2ϕdr − 2r4 sin 2ϕdϕ, and ω(A) = ω(r∂r) = 4r4 cos 2ϕ since dr(∂r) =
1, dϕ(∂r) = 0. Or using (2.14)

ω(A) = df(A) = ∂Af = r
∂

∂r

(
r4 cosϕ

)
= 4r4 cos 2ϕ .
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Example Calculate the value of form ω = xdy−ydx
x2+y2 on the vector field A = ∂ϕ . ∂AF =

r ∂∂r (r4 cos 2ϕ) = 4r4 cos 2ϕ = 4(x4 − y4). Or using 1-forms: We have to transform form
from Cartesian coordinates to polar or vector field from polar to Cartesian.

xdy − ydx
x2 + y2

= dϕ, ω(A) = dϕ(∂ϕ) = 1

or

∂ϕ = x∂y − y∂x, ω(A) =
xdy(x∂y − y∂x)− ydx(x∂y − y∂x)

x2 + y2
= 1 .

2.5 Integration of differential 1-forms over curves

Let ω = ω1(x
1, . . . , xn)dx1 + · · · + ω1(x

1, . . . , xn)dxn =
∑n

i=1 ωidx
i be an

arbitrary 1-form in En

and C : r = r(t), t1 ≤ t ≤ t2 be an arbitrary smooth curve in En.
One can consider the value of one form ω on the velocity vector field

v(t) = dr(t)
dt

of the curve:

ω(v(t)) =
n∑
i=1

ωi
(
x1(t), . . . , xn(t))dxi(v(t)

)
=

n∑
i=1

ωi
(
x1(t), . . . , xn(t)

) dxi(t)
dt

We define now integral of 1-form ω over the curve C.
Definition The integral of the form ω = ω1(x

1, . . . , xn)dx1+· · ·+ωn(x1, . . . , xn)dxn

over the curve C : r = r(t) t1 ≤ t ≤ t2 is equal to the integral of the func-
tion ω(v(t)) over the interval t1 ≤ t ≤ t2:∫

C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
n∑
i=1

ωi
(
x1(t), . . . , xn(t)

) dxi(t)
dt

)
dt . (2.27)

Proposition The integral
∫
C
ω does not depend on the choice of coordi-

nates on En. It does not depend (up to a sign) on parameterisation of the
curve: if C : r = r(t) t1 ≤ t ≤ t2 is a curve and t = t(τ) is an arbitrary
reparameterisation, i.e. new curve C ′ : r′(τ) = r(t(τ)) τ1 ≤ τ ≤ τ2, then∫
C
ω = ±

∫ ′
C
ω:∫

C

ω =

∫
C′
ω, if orientaion is not changed, i.e. if t′(τ) > 0
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and ∫
C

ω = −
∫
C′
ω, if orientaion is changed, i.e. if t′(τ) < 0

If reparameterisation changes the orientation then starting point of the
curve becomes the ending point and vice versa.

Proof of the Proposition Show that integral does not depend (up to a sign) on the
parameterisation of the curve. Let t(τ) (τ1 ≤ t ≤ τ2) be reparameterisation. We come to

the new curve C ′ : r′(τ) = r(t(τ)). Note that the new velocity vector v′(τ) = dr(t(τ))
dτ =

t′(τ)v(t(τ)). Hence ω(v′(τ)) = w(v(t(τ)))t′(τ). For the new curve C ′∫
C′
ω =

∫ τ2

τ1

ω(v′(τ))dτ =

∫ τ2

τ1

ω(v(t(τ))
dt(τ)

dτ
dτ =

∫ t(τ2)

t(τ1)

ω(v(t))dt

t(τ1) = t1, t(τ2) = t2 if reparameterisation does not change orientation and t(τ1) = t2,
t(τ2) = t1 if reparameterisation changes orientation.

Hence
∫
C′
w =

∫ t2)
t1

ω(v(t))dt =
∫
C
ω if orientation is not changed and

∫
C′
w =∫ t1)

t2
ω(v(t))dt = −

∫ t2)
t1

ω(v(t))dt = −
∫
C
ω is orientation is changed.

Example
Let

ω = a(x, y)dx+ b(x, y)dy

be 1-form in E2 (x, y–are usual Cartesian coordinates). Let C : r =

r(t)

{
x = x(t)

y = y(t)
, t1 ≤ t ≤ t2 be a curve in E2.

Consider velocity vector field of this curve

v(t) =
dr(t)

dt
=

(
vx(t)
vy(t)

)
=

(
xt(t)
yt(t)

)
= xt∂x + yt∂y (2.28)

(xt = dx(t)
dt

, yt = dy(t)
dt

).
One can consider the value of one form ω on the velocity vector field v(t)

of the curve: ω(v) = a(x(t), y(t))dx(v) + b(x(t), y(t))dy(v) =

a(x(t), y(t))xt(t) + b(x(t), y(t))yt(t) .

The integral of the form ω = a(x, y)dx + b(x, y)dy over the curve C : r =
r(t) t1 ≤ t ≤ t2 is equal to the integral of the function ω(v(t)) over the
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interval t1 ≤ t ≤ t2:∫
C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
a(x(t), y(t))

dx(t)

dt
+ b(x(t), y(t))

dy(t)

dt

)
dt .

(2.29)

Example Consider an integral of the form ω = 3dy+3y2dx over the curve

C : r(t)

{
x = cos t

y = sin t
, 0 ≤ t ≤ π/2. (C is the arc of the circle x2 + y2 = 1

defined by conditions x, y ≥ 0).

Velocity vector v(t) = dr(t)
dt

=

(
vx(t)
vy(t)

)
=

(
xt(t)
yt(t)

)
=

(
− sin t
cos t

)
. The

value of the form on velocity vector is equal to

ω(v(t)) = 3y2(t)vx(t) + 3vy(t) = 3 sin2 t(− sin t) + 3 cos t = 3 cos t− 3 sin3 t

and∫
C

ω =

∫ π
2

0

w(v(t))dt =

∫ π
2

0

(3 cos t−3 sin3 t)dt = 3

(
sin t+ cos t− cos3 t

3

) ∣∣π2
0

Example Now consider the integral of 1-form over the curve C which is

the upper half of the circle x2 + y2 = 1: C :

{
x2 + y2 = 1

y ≥ 0
. Curve is given

as an image. We have the image of the curve not the parameterised curve.
We have to define a parameterisation ourself.

We consider three different parameterisations of this curve. Sure to cal-
culate the integral it suffices to calculate

∫
C
ω in an arbitrary given parame-

terisation r = r(t) of the curve C, then note that for an arbitrary reparame-
terisation t = t(τ), the integral will remain the same or it will change a sign
depending on the reparameterisation t = t(τ) preserves orientation or not.

r1(t) :

{
x = R cos t

y = R sin t
, 0 ≤ t ≤ π , r2(t) :

{
x = R cos Ωt

y = R sin Ωt
, 0 ≤ t ≤ π

Ω
, (Ω > 0)

and

r3(t) :

{
x = t

y =
√
R2 − t2

,−R ≤ t ≤ R, , (2.30)
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All these curves are the same image. If Ω = 1 the second curve coincides
with the first one. First and second curve have the same orientation (repa-
rameterisation t 7→ Ωt) The third curve have orientation opposite to first and
second (reparameterisation t 7→ cos t, the derivative d cos t

dt
< 0).

Calculate integrals
∫
C1
ω,
∫
C2
ω,
∫
C3
ω in the case if ω = xdy − ydx and

check straightforwardly that these integrals coincide if orientation is the same
or they have different signs if orientation is opposite. For the form ω =
xdy − ydx. ω(v) = xyt − yxt. We have∫

C1

ω =

∫ π

0

(xyt − yxt)dt =

∫ π

0

(R2 cos2 t+R2 sin2 t)dt = πR2

∫
C2

ω =

∫ π
Ω

0

(xyt − yxt)dt =

∫ π

0

(R2Ω cos2 Ωt+R2Ω sin2 Ωt)dt = πR2 .

These answers coincide: both parameterisation have the same orientation.
For the third parameterisation:∫

C3

ω =

∫ R

0

(xyt − yxt)dt =

∫ R

0

(
t

(
−t√
R2 − t2

)
−
√
R2 − t2

)
dt =

−R2

∫ R

0

dt√
R2 − t2

= −R2

∫ 1

0

du√
1− u2

= −πR2

We see that the sign is changed.
Finally consider the integral of the form ω = xdy − ydx over the semicircle in polar

coordinates instead Cartesian coordinates, We have that in polar coordinates semicircle is{
r(t) = R

ϕ(t) = t
, 0 ≤ t ≤ π. The form ω = xdy − ydx = r cosϕd(r sinϕ)− r sinϕd(r sinϕ) =

r2dϕ and v(t) = (rt, ϕt) = (0, 1), i.e. v(t) = ∂ϕ. We have that ω(v(t)) = r(t)2dϕ(∂ϕ) =

R2. Hence
∫
C
ω =

∫ π
0
R2dt = πR2. Answer is the same: The value of integral does not

change if we change coordinates in the plane.

For other examples see Homeworks.

2.6 Integral over curve of exact form

1-form ω is called exact if there exists a function f such that ω = df .
Of course not any form is an exact form (see exercises in Homeworks.) E.g.

1-form xdy − ydx is not an exact form. Indeed suppose that this is an exact
form, i.e. xdy − ydx = df = fxdx+ fydy, then fy = x and fx = −y. We see
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that on one hand fxy = (fx)y = −1 and on the other hand fyx = (fy)x = 1.
Contradiction.

Theorem
Let ω be an exact 1-form in En, ω = df .
Then the integral of this form over an arbitrary curve C : r = r(t) t1 ≤

t ≤ t2 is equal to the difference of the values of the function f at starting and
ending points of the curve C:∫

C

ω = f
∣∣
∂C

= f(r2)− f(r1) , r1 = r(t1), r2 = r(t2) . (2.31)

Proof:
∫
C
df =

∫ t2
t1
df(v(t)) =

∫ t2
t1

d
dt
f(r(t))dt = f(r(t))|t2t1 .

Example Calculate an integral of the form ω = 3x2(1 +y)dx+x3dy over
the arc of the semicircle x2 + y2 = 1, y ≥ 0.

One can calculate the integral naively using just the formula (2.29):
Choose a parameterisation of C,e.g., x = cos t, y = sin t, then v(t) =
− sin t∂x + cos t∂x and ω(v(t)) = (3x2(1 + y)dx+x3dy)(− sin t∂x + cos t∂y) =
−3 cos2 t(1 + sin t) sin t+ cos3 t · cos t and∫

C

ω =

∫ π

0

(−3 cos2 t sin t− 3 cos2 t sin2 t+ cos4 t)dt = ...

Calculations are little bit long.
But for the form ω = 3x2(1 + y)dx+ x3dy one can calculate the integral

in a much more efficient way noting that it is an exact form:

ω = 3x2(1 + y)dx+ x3dy = d
(
x3(1 + y)

)
(2.32)

Hence it follows from the Theorem that∫
C

ω = f(r(π))− f(r(0)) = x3(1 + y)
∣∣x=−1,y=0

x=1,y=0
= −2 (2.33)

Remark If we change the orientation of curve then the starting point be-
comes the ending point and the ending point becomes the starting point.—
The integral changes the sign in accordance with general statement, that in-
tegral of 1-form over parameterised curve is defined up to reparameterisation.

Corollary The integral of an exact form over an arbitrary closed curve
is equal to zero.

57



Proof. According to the Theorem
∫
C
ω =

∫
C
df = f

∣∣
∂C

= 0, because the
starting and ending points of closed curve coincide.

Example. Calculate the integral of 1-form ω = x5dy + 5x4ydx over the
ellipse x2 + y2

9
= 1 .

The form ω = x5dy+ 5x4ydx is exact form because ω = x5dy+ 5x4ydx =
d(x5y). Hence the integral over ellipse is equal to zero, because it is a closed
curve.

2.7 †Differential 2-forms (in E2)

2.7.1 † 2-form–area of parallelogram

We give first general ideas about what is it differential k-form (k = 2, 3)
1-form is a linear function on vectors:

ω(A) : ω(λA + µB) = λω(A) + µω(B) ,

2-form is a bilinear function on two vectors:

ω(A,K) : ω(λA+µB,K) = λω(A, K)+µω(B, K) , ω(K, λA+µB) = λω(K,A)+µω(K,B)

which obey to the following condition

ω(A,B) = −ω(B.A) (2.34)

This condition implies that the value of of 2-form on vectors A,B is pro-
portional to the area of parallelogram ΠA,B formed vy these vectors. Explain
it on a simple example.

Consider differential 2-form dx ∧ dy in E2:

dx ∧ dy
(
∂

∂x
,
∂

∂y

)
= 1

(In the same way as 1-forms dx, dy are basic forms for 1-form.)
Linearity conditions and condition (2.34) imply that for an arbitrary 2-

form ω in E2 ω = a(x, y)dx ∧ dy.
Take two vector fields A,B, A = Ax

∂
∂x

+ Ay
∂
∂y

, Then due to conditions

(2.34) above we have

ω(A,B) = ω

(
Ax

∂

∂x
+ Ay

∂

∂y
,Bx

∂

∂x
+By

∂

∂y

)
=

58



AxBxω(∂x, ∂x)AxByω(∂x, ∂y)AyBxω(∂y, ∂x)AyByω(∂y, ∂y) =

a

AxBx dx ∧ dy(∂x, ∂x)︸ ︷︷ ︸
=0

AxBy dx ∧ dy(∂x, ∂y)︸ ︷︷ ︸
=1

AyBx dx ∧ dy(∂y, ∂x)︸ ︷︷ ︸
=−1

AyBy dx ∧ dy(∂y, ∂y)︸ ︷︷ ︸
=0

 =

a(AxBy − AyBx) = a · area of parallelogram ΠA,B = a det

(
Ax Ay
Bx By

)
In a analogous way 3-forms are related with volume of parallelipiped, .... k-form with

volume of k-parallelipiped...

2.7.2 † Wedge product

We considered detailed definition of 1-forms. Now we give some formal approach to de-
scribe 2-forms. Differential forms on E2 is an expression obtained by adding and multi-
plying functions and differentials dx, dy. These operations obey usual associativity and
distributivity laws but multiplications is not moreover of one-forms on each other is anti-
commutative:

ω ∧ ω′ = −ω′ ∧ ω if ω, ω′ are 1-forms (2.35)

In particular
dx ∧ dy = −dy ∧ dx, dx ∧ dx = 0, dy ∧ dy = 0 (2.36)

Example If ω = xdy + zdx and ρ = dz + ydx then

ω ∧ ρ = (xdy + zdx) ∧ (dz + ydx) = xdy ∧ dz + zdx ∧ dz + xydy ∧ dx

and

ρ ∧ ω = (dz + ydx) ∧ (xdy + zdx) = xdz ∧ dy + zdz ∧ dx+ xydx ∧ dy = −ω ∧ ρ

Changing of coordinates. If ω = a(x, y)dx ∧ dy be two form and x = x(u, v), y = y(u, v)

new coordinates then dx = xudu + xvdv, dy = yudu + yvdv (xu = ∂x(u,v)
∂u , xv = ∂x(u,v)

∂v ,

yu = ∂y(u,v)
∂u , yv = ∂y(u,v)

∂v ). and

a(x, y)dx ∧ dy = a (x(u, v), y(u, v)) (xudu+ xvdv) ∧ (yudu+ yvdv) = (2.37)

a (x(u, v), y(u, v)) (xudu+ xvdv) (xuyvdu ∧ dv + xvyudv ∧ du) =

a (x(u, v), y(u, v)) (xuyv − xvyu)du ∧ dv

Example Let ω = dx ∧ dy then in polar coordinates x = r cosϕ, y = r sinϕ

dx ∧ dy = (cosϕdr − r sinϕdϕ) ∧ (sinϕdr + r cosϕdϕ) = rdr ∧ dϕ (2.38)
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2.7.3 † 0-forms (functions)
d−→ 1-forms

d−→ 2-forms

We introduced differential d of functions (0-forms) which transform them to 1-form. It
obeys the following condition:

• d : is linear operator: d(λf + µg) = λdf + µdg

• d(fg) = df · g + f · dg

Now we introduce differential on 1-forms such that

• d : is linear operator on 1-forms also

• d(fω) = df ∧ ω + fdω

• ddf = 0

Remark Sometimes differential d is called exterior differential.

Perform calculations using this definition and (2.35):

dω = d(ω1dx+ ω2dy) = dw1 ∧ dx+ dw2 ∧ dy =

(
∂ω1(x, y)

∂x
dx+

∂ω1(x, y)

∂y
dy

)
∧ dx+

(
∂ω2(x, y)

∂x
dx+

∂ω2(x, y)

∂y
dy

)
∧ dy =

(
∂ω2(x, y)

∂x
− ∂ω1(x, y)

∂y

)
dx ∧ dy

Example Consider 1-form ω = xdy. Then dω = d(xdy) = dx ∧ dy.

2.7.4 †Exact and closed forms

We know that it is very easy to integrate exact 1-forms over curves (see the sub-
section ”Integral over curve of exact form”)

How to know is the 1-form exact or no?
Definition We say that one form ω is closed if two form dω is equal to zero.
Example 1-form xdy + ydx is closed because d(xdy + ydx) = 0.

It is evident that exact 1-form is closed:

ω = dρ⇒ dω = d(dρ) = d ◦ dρ = 0 (2.39)

We see that the condition that form is closed is necessary condition that form is
exact.

So if dω 6= 0, i.e. the form is not closed, then it is not exact.
Is this condition sufficient? Is it true that a closed form is exact?
In general the answer is: No.
E.g. we considered differential 2-form

ω =
xdy − ydx
x2 + y2

(2.40)
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defined in E2\0. It is closed, but it is not exact (See non-compulsory exercises 11,12,13 in
the Homework 6).

How to recognize for 1-form ω is it exact or no?
Inverse statement (Poincaré lemma) is true if 1-form is well-defined in E2:
A closed 1-form ω in En is exact if it is well-defined at all points of En, i.e. if it is

differentiable function at all points of En.

Sketch a proof for 1-form in E2: if ω is defined in whole E2 then consider the function

F (r) =

∫
Cr

ω (2.41)

where we denote by Cr an arbitrary curve which starts at origin and ends at the point r.
It is easy to see that the integral is well-defined and one can prove that ω = df .

The explicit formula for the function (2.41) is the following: If ω = a(x, y)dx+b(x, y)dy

then F (x, y) =
∫ 1

0
(a(tx, ty)x+ b(tx, ty)y) dt.

Exercise Check by straightforward calculation that ω = dF (See exercise 14 in Home-
work 6).

2.7.5 † Integration of two-forms. Area of the domain

We know that 1-form is a linear function on tangent vectors. If A,B are two vectors
attached at the point r0, i.e. tangent to this point and ω, ρ are two 1-forms then one
defines the value of ω ∧ ρ on A, B by the formula

ω ∧ ρ(A,B) = ω(A)ρ(B)− ω(B)ρ(A) (2.42)

We come to bilinear anisymmetric function on tangent vectors. If σ = a(x, y)dx ∧ dy
is an arbitrary two form then this form defines bilinear form on pair of tangent vectors:
σ(A,B) =

a(x, y)dx ∧ dy(A,B) = a(x, y) (dx(A)dy(B)− dx(B)dy(A)) = a(x, y)(AxBy −AyBy)
(2.43)

One can see that in the case if a = 1 then right hand side of this formula is nothing but
the area of parallelogram spanned by the vectors A,B.

This leads to the conception of integral of form over domain.
Let ω = a(x)dx ∧ dy be a two form and D be a domain in E2. Then by definition∫

D

ω =

∫
D

a(x, y)dxdy (2.44)

If ω = dx ∧ dy then ∫
D

w =

∫
D

(x, y)dxdy = Area of the domain D (2.45)
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The advantage of these formulae is that we do not care about coordinates7

Example Let D be a domain defined by the conditions{
x2 + y2 ≤ 1

y ≥ 0
(2.47)

Calculate
∫
D
dx ∧ dy.∫

D
dx ∧ dy =

∫
D
dxdy = area of the D = π

2 .
If we consider polar coordinates then according (2.38)

dx ∧ dy = rdr ∧ dϕ

Hence
∫
D
dx ∧ dy =

∫
D
rdr ∧ dϕ =

∫
D
rdrdϕ =

∫ 1

0

(∫ π
0
dϕ
)
rdr = π

∫ 1

0
rdr = π/2.

Another example
Example Let D be a domain in E2 defined by the conditions{

(x−c)2
a2 + y2

b2 ≤ 1

y ≥ 0
(2.48)

D is domain restricted by upper half of the ellipse and x-axis. Ellipse has the centre
at the point (c, 0). Its area is equal to S =

∫
D
dx ∧ dy. Consider new variables x′, y′:

x = c + ax′, y = by′. In new variables domain D becomes the domain from the previous
example:

(x− c)2

a2
+
y2

b2
= x′

2
+ y′

2

and dx ∧ dy = abdx′ ∧ dy′. Hence

S =

∫
(x−c)2

a2 + y2

b2
≤1,y≥0

dx ∧ dy = ab

∫
x′2+y′2≤1,y′≥0

dx′ ∧ dy′ =
πab

2
(2.49)

Theorem 2 ( Green formula) Let ω be 2-form such that ω = dω′ and D be a domain–
interior of the closed curve C. Then ∫

D

ω =

∫
C

ω′ (2.50)

7If we consider changing of coordinates then jacobian appears: If u, v are new coordi-
nates, x = x(u, v), y = y(u, v) are new coordinates then∫

a(x, y)dxdy =

∫
a(x(u, v), y(u, v)) det

(
xu xv
xu xv

)
dudv (2.46)

In formula(2.44) it appears under as a part of coefficient of differential form.
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