
Introduction to Geometry (20222)

COURSEWORK 2019

Discussions

Here we discuss the coursework. (The solutions of coursework problems with

returned courseworks are in the Reception)
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a) Let (x1, x2) be coordinates of the vector x, and (y1, y2) be coordinates of the vector

y in R2.

Consider the formula

(x,y) = x1y1 + x2y2 + kx1y2 + kx2y1 , (1.1)

where k is a real parameter. Show that this formula defines a scalar product in R2 in the

case if |k| < 1.

Give an example of orthonormal basis for this scalar product.

Explain why this formula does not define a scalar product on R2 in the case if |k| ≥ 1.

b) Consider the matrix A =

(
cos θ − sin θ
sin θ cos θ

)
.

Calculate the matrix A9 in the case if θ = π
27 .

Calculate the matrix A2019 in the case if θ = π
6 .

c) In Euclidean space E3 consider the following linear operator

A(x) = x + (a,x)a

where the vector a = 3e + 4f + 12g. Here {e, f ,g} is an orthonormal basis in E3.

Find eigenvalues and eigenvectors of operator A.

Calculate the trace and determinant of the operator A.

d) Let {e, f} be an orthonormal basis of Euclidean space E2. Consider a linear oper-

ator P such that a = P (e) = 91e + 50f , b = P (f) = 20e + 11f .

Calculate determinant of the operator P .

Show that P is not an orthogonal operator.

Does this operator preserve ab orientation of E2? Justify you ranswer.
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Consider the parallelogram Πa,b spanned by the vectors a and b attached at the origin.

Find the area of this parallelogram.

Show that the vertices of the parallelogram Πa,b are the only points of Πa,b, whose

coordinates are both integers.

a)

The condition of linearity and symmetricity for ’scalar product’ can be checked almost

automatically. A question is to check the condition of positive defniteness, i.e. the condition

that B(x,x) > 0⇔ x 6= 0. Almost all students had problem to explain clearly and shortly

why the condition |k| < 1 is necessary and sufficient condition for positive definitness.

Recall (see solutions) that this immediately follows from the relation

B(x,x) =
(
x1
)2

+
(
x2
)2

+ 2kx1x2 =
(
x1 + kx2

)2
+ (1− k2)

(
x2
)2
.

Only 10-12 students wrote the orthonormal basis for this scalar product (in the case if

|k| < 1).

Many students insisted that vectors e = (1, 0), f = (0, 1) form orthonormal bbasis, in

spite of the fact that this is obviously not true: (e, f) = k 6= 0.

b) Students have no problems to solve this question

c) Almost ALL students (except two of them) were solving this question straightfor-

wardly: they wrote the matrix A = of the operator in the basis {e, f ,g} and straight-

forwardly caclulated determinant and trace of this 3 × 3 matrix. Almost nobody made

mistakes during these calculations, however all students (except two) missed beautifual

and short solution: it is evident that the vector a and vectors orthogonal to this vector

are eigenvectors of operatrot A: A(x) = x for every vector x which is rothogonal to the

vector a, and A(a) = (1 + (a,a))a = ((1 + (9 + 16 + 144))a = 170a. Hence

detA = 1 · 1 · 170 = 10

and

TrA = 1 + 1 + 170 = 172 .
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This is nice is not it?

I am happy that two students came to this solution.

d) Almost all students calculated the determinant of the operator P and showed that

P is not orthogonal operator, however many (too many!?) students did it using brute

force and calculating straightforwardly the matrix of operator PT ◦P , which possesses big

numbers:

PT ◦ P =

(
91 20
50 11

)(
91 50
20 11

)
6=
(

1 0
0 1

)
However to see that P is not orthogonal operator you do not need to perform these calcu-

lations. E.g. the fact that P is not orthogonal operator follows from the observation that

the length of the vector a is not equal to 1 (see in details solution)

The last part of this question was difficult one.

Many students were trying to do the right considerations, and few students came to

the right solution. I will present here two nice geometrical solutions.

First solution Consider the parallelogram Πe,f formed by basis vectors. This paral-

lelogram is a unit square. It obviously does not possess integer points except vertices. The

linear operator P with matrix transforms the square Πe,f onto the paralellogram Πa,b. The

inverse operator P−1 transforms the parallelogram Πa,b onto the square Πex,ey
. The idea

of the proof is the following: the matrix of the operator P and the matrix of the inverse

operator P−1 in the basis e, f have integer entries. This implies that all integer points

of the unit square are in one-one correspondence with integer points of the parallelogram

Πa,b, and the unit square has no integer points in it except vertices.

Second solution The proof follows from

Lemma Any triangle with vertices in integer points has area equal or bigger than 1
2 .

Proof of the lemma: Let triangle be formed by two vectors c,d. Take the parallelogram

Πc,d corresponding to this triangle. This parallelogram has vertices in integer points.

Hence by determinant formula its area is bigger or equal to 1. Hence the area of triangle

is bigger or equal to 1/2.

Now based on the lemma prove that the parallelogram Πa,b has no a point with

integer coordinates except vertices. Take any point A in this parallelogram. In the case

if A does not coincide with one of vertices, then one can form at least three triangles in

this parallelogram which do not interesect (and even 4 triangles if this point is an interior
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point). Suppose that A has integer coefficients. Then by lemma we see that area of

parallelogram is bigger or equal than 3 · 12 = 3
2 > 1. Contradiction with the fact that

parallelogram has an area 1 1).

2

We consider in this question 3-dimensional Euclidean space E3. We suppose that

{e, f ,g} is an orthonormal basis in this space.

a) Let P be a linear orthogonal operator acting in E3 such that its matrix in the basis

{e, f ,g} has the following appearance

P =
1

7

 3 ∗ 6
−6 −3 2
2 −6 ∗

 .

Find the entries of the matrix denoted by *.

Show that the operator P preserves orientation.

We know that due to the Euler Theorem the linear operator P considered above is a

rotation operator. Find the axis and the angle of this rotation.

b) Let P1 be a rotation operator on the angle θ around the axis directed along the

vector g, and P2 be a rotation operator on the same angle θ around the axis directed along

the vector e:

{e, f , g} P1−→{cos θe + sin θf , − sin θe + cos θf , g} ,

{e, f , g} P2−→{e, cos θf + sin θg, − sin θf + cos θg} .

1) There are another beautiful proofs of this fact. It has to be mentioned that all this

stuff is related with continuous fractions. and the Pick formula that states that any convex

polygon with vertices in integer points has the area

S =
E

2
+ I − 1 ,

where E is a number of points which belong to edges (including vertices), and I the number

of points which belong to interior of the polygon. (In fact we are on the way to prove the

Pick formula).
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Show that the operator P = P1 ◦ P2 is also a rotation operator. Find the axis of rotation

and the angle Φ = Φ(θ) of rotation for the operator P .

Calculate the angle Φ = Φ(θ) in the case θ = π
2 .

Show that in the case if θ is small, then Φ(θ) ≈
√

2θ, i.e.

lim
θ→0

Φ(θ)

θ
=
√

2 .

2

Almost nobody had problems to answer the question 2a)

Answering question 2b) students had no problems to calculate the matrix P of the

operator P1 · P2

Some students when proving the fact that P1◦P2 is also orthogonal operator preserving

orientation did it using brute force: they just calculated straightforwardly that PT ·P = id

and detP = 1 for matrix P of operator P1 ◦ P2. Instead doing these calculations one can

deduce it from the properties of operators P1, P2 or corresponidng matrices. E.g. an

operator P = P1 ◦ P2 is orthogonal because it is product of two orthogonal operators:

PT · P = (P1 · P2)T · (P1 · P2) = PT2 · (PT1 · P1) · P2 = PT2 · P2 = id

and its determionant is equal to 1 because

detP = det(P1 · P2) = detP1 detP2 = 1 · 1 = 1 .

One does not need to do straightworward calculations of determinant of the matrix P .

Some students came to the conclusion that P = P1 ·P2 is rotation operator just on the

base that this operator preserves orientation, This is not enough: operator P is rotation

operator since

1) it preserves orientation

2) and it is orthogonal operator.

Both conditions have to be checked.

This is a mistake to think that detP = 1 implies that P is orthogonal

operator. Please avoid it!

Some students just ignored to calculate the axis of rotation operator P .
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The answer on the last question: that for small θ, Φ ≈
√

2θ can be done by study of

the formula

cos Φ = cos θ +
1

2
(cos2 θ − 1) . (∗)

Many students came the answer, but only few analyzed it properly. Few students were

trying to use L’Hopital’s rule. Using this rule one has to be carreful with the fact that

derivative of the function arccosx (cos−1 x) at the point x = 1 is not well-defined.

Recall that the short and clear solutions avoiding the long calculations follows from

the formula

cos θ = 1− θ2

2
+ o(θ2)

(see solutions).

I wold like to show another simple and clear solution, which does not use much calculus:

We have to solve equation

Φ(θ): cos Φ = cos θ − 1

2
sin2 θ .

Transform it:

cos Φ = 1− 2 sin2 Φ

2
= cos θ − 1

2
sin2 θ = 1− 2 sin2 θ

2
− 2 sin2 θ

2
cos2

θ

2
.

i.e.

sin2 Φ

2
=

(
1 + cos2

θ

2

)
sin2 θ

2
=

(
2− sin2 θ

2

)
sin2 θ

2
,

and

Φ = 2arcsin

√2−
sin2 θ

2

2
sin

θ

2

 = 2 ·
√

2
1

2
θ + 0(θ) =

√
2θ + o(θ) .

Remark The geometrical interpretation of this result is the following: If angle θ is

very small, then infinitesimally, action of rotation operator is P (x) = x + θw × x, where

w is the vector of angular velocity. Hence the result of infinitesimal rotations around axis

w1 and w2 is the rotation around axis w1 + w2, and the length of the vector ex + ez is

equal to
√

2.

Angular velocity is the vector, two infinitesimal rotations are described by the sum of

two vectors of angular velocity!

Unfortunately nobody even tried to do this.
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a) Consider the curve r(t):

{
x = Rt
y = R

√
1− t2 , 0 ≤ t ≤ 1.

Draw the image of this curve.

Give an example of a parameterisation of this curve with opposite orientation.

b) Let f be a function in E2 given by f = r2 cos 2ϕ, where r, ϕ are polar coordinates

in E2 (x = r cosϕ, y = r sinϕ). Consider vector fields which are given in Cartesian

coordinates by A = x∂x + y∂y, B = x∂y − y∂x.

Calculate ∂Af , ∂Bf .

Let g be a function on E2 such that differential form ω = df vanishes at the vector

field B = x∂y − y∂x: ω(B) ≡ 0. Find a function g if it is known that

g(x, y)
∣∣
y=0

= x6 .

a) Almost all studnets answerd this question right.

b)

One can calculate directional derivatives ∂Af, ∂Bf in Cartesian as well in polar coor-

dinates. It is very illuminating to perform calculations in polar coordinates, still for vector

fields A and B have the following appearance in poalr coordinates:

A = r
∂

∂r
, B =

∂

∂ϕ

This comment is especially improtant for finding a function g which is invariant with

respect to the field B, i.e. ∂g ≡ 0 and which obeys boundary condition g(x, y)
∣∣
y=0

= x6.

The condition ∂Bg = 0 in polar coordinates implies that function g does not depend

on ϕ, hence g = r6 = (x2 + y2)3. We come so quick to the nice answer since we use polar

coordinates.
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