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SECTION A

Answer ALL FIVE questions

A1.

(a) Explain what is meant by saying that two bases in E3 have the same orientation.

(b) Let {e, f ,g} be a basis in E3.

Consider the ordered triple {e + f , e− f ,g}.
Show that this triple is a basis.

Show that the bases {e, f ,g} and {e + f , e− f ,g} have opposite orientations.

(c) Let an ordered triple {a,b, c} be a basis in E3.

Explain why either the bases {a,b, c} and {e, f ,g} have the same orientation, or the bases
{a,b, c} and {e + f , e− f ,g} have the same orientation.

[10 marks]

Almost all students have no problems answering this question. Two bases have the same orientation
if determinant of transition matrix is positive. Almost all students answered this question properly.

The new triple {e + f , e − f ,g}. is a basis because the transition matrix is non-degenerate, i.e. its
determinant is not equal to zero, and the bases have opposite orientation since determinant of the
transition matirx is negative. Another way to show that the new triple is a basis, (not the shortest
one) is just to check straightforwardly that vectors {e + f , e− f ,g} are linearly independent. in E3.
Some students did it in this way.

About 10 students called the transition matrix a linear operator. Marks were not decreased for this,
but this is wrong! Transition matrix from one basis to another is not a linear operator, this is just a
matrix; the entries of this matrix define the transition from one basis to another.

A2.

(a) State the Euler Theorem about rotations.

(b) Let P be an orthogonal operator preserving orientation such that, in an orthonormal basis
{e, f ,g}, P has the following appearance

P =

0 ∗ 0
0 ∗ −1
1 ∗ 0

 .

Calculate the entries of this matrix which are denoted by ∗.

2 of 10 P.T.O.



MATH20222

(c) Euler’s Theorem states that the operator P defines a rotation. Calculate the angle of this
rotation.

[10 marks]

The Euler Theorem on rotation states:

Let P be an orthogonal operator preserving an orientation of Euclidean space E3, i.e. operator P
preserves the scalar product and orientation. ((Px, Py) = (x,y), detP > 0 (in fact detP = 1).)
Then it is a rotation operator with respect to an axis l on the angle ϕ. Every vector N directed
along the axis is not changed, i.e. the axis is 1-dimensional space of eigenvectors with eigenvalue 1,
P (N) = N. Every vector orthogonal to axis rotates on the angle ϕ in the plane orthogonal to the
axis and TrP = 1 + 2 cosϕ. (The angle ϕ is defined up to a sign.)

Formulating of Euler Theorem many students gave non-complete formulation. (the role of axis, the
rotation of the vectors in orthogonal plane).

Few students claim the Theorem for arbitrary n-dimesnional Euclidean space. In fact Euler theorem
is wrong for n > 3.

The question about reconstructing the matrix was alright, almost all students did it using orthogonal
matrices. I am very happy that few students did it using just properties of linear orthogonal operators.
I am very happy also that this year almost nobody did mistake confusing orthogonal matrices with
unimodular matrices (matrices with unit determinant).

To calculate the angle α of rotation, we see that TrP = 1 + 2 cosα = 0, hence cosα = −1
2
. This

immediately implies that the angle α = ±2π
3

.

Almost all students calculated correctly that cosα = −1
2
, and this is very sad that almost all students

failed to write the ‘ answer for the angle α. If you do not remember it you can immediately to see
it just drawing the equilateral triangle 4ABC: all the angles of this triangle are equal to π

3
and

cosα = cos
π

3
= cos∠ABC =

|BC|/2
|AB|

=
1

2
, hence cos(π − α) = − cosα = −1

2
.

A3.

(a) Give a definition of a differential 1-form in En.

(b) Calculate the value of the 1-form ω = xdy − ydx on the vector field A = y∂y − x∂x.

(c) Explain what is meant that a differential 1-form is exact. Give an example of an exact 1-form
and give an example of a non-exact 1-form. Justify your answers.
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[10 marks]

Definition od differential form

A differential 1-form ω on En is a function on tangent vectors of En, such that it is linear at each
point: ω(r, λv1 + µv2) = λω(r,v1) + µω(r,v2), λ, µ ∈ R. Here v1,v2 are vectors tangent to En at
the point r, (v1,v2 ∈ TxEn).

Almost all students gave the definition correctly, and caluclated the value of the form on the vector
field.

Answering the second part of this question students have no problems with definition and examples
of exact forms.

Now about example of non-exact form.

E.g. the form ω = xdy is not exact. Why? Suppose it is exact, i.e. ω = xdy = df = fxdx + fydy.

We see that fx = ∂f(x,y)
∂x

= 0 and fy = ∂f(x,y)
∂y

= x.This immediately leads to contradiction: taking
the second derivative we see that

fyx =
∂2f(x, y)

∂y∂x
=

∂

∂y
(fx) = 0 , and fxy =

∂2f(x, y)

∂x∂y
=

∂

∂x
(fy) = 1 , i.e.0 = fyx = fxy = 1 . (A3.1)

Almost all students gave the correct example of non-exact form which was usually similar to the
example above, but many students have trouble justifying the example, and did not receive the full
mark. Many students considering this (or similar) example have chosen another way to come to
contradiction, amd did not finish the considerations. Consider typical not complete solution:

Show that ω = xdy is not exact. Suppose as above that ω = xdy = df = fxdx + fydy. Hence

fx = ∂f(x,y)
∂x

= 0 and fy = ∂f(x,y)
∂y

= x. At this step instead considerations (A3.1) one can see that

condition fx = 0, implies that f =
∫
fxdx = g(y), and on the other hand condition fy = x, implies

that f =
∫
fydy = xy + r(x), i.e.

f = g(y) = xy + r(x) , (A3.2)

where g is an arbitrary (differentiable) function on y and r is an arbitrary (differentiable) function
on x. Relation (A3.2) possesses contradiction.

Yes, this is right, but it has to be justified. It can be done, for example, in the following way:
differentiate relation (A3.2) with respect to y, we come to

∂g(y)

∂y
= x (A3.3)

Right hand side of this expression is the function on x, and the left hand side is the function on
y. Take two distinct values of x, x1, x2, and an arbitrary value of y, y1. We come to contradiction:
g′(y) at the point y = y1 is equal to x1, on the other hand g′(y) at the point y1 is equal to x2.
Contradiction.

Sure the consideration (A3.1) is much shorter than (A3.2), (A3.3).

A4.
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(a) Give the definition of a hyperbola with foci at the given points F1, F2.

(b) Let H be a hyperbola in the plane E2 such that it passes through the point (3, 8), and has foci
F1 = (3, 0) and F2 = (−3, 0).

Show that this hyperbola intersects the horizontal axis OX at the points (1, 0) and (−1, 0).

(c) Explain why this hyperbola does not intersect the vertical axis OY .

[10 marks]

The hyperbola H with the foci F1, F2 is the locus of the points on the plane such that the difference
of the distances to foci is constant:

H = {K : |d(K,F1)− d(K,F2)| = constant} . (A4.1)

The fact that the point K = (3, 8) implies that

|d((3, 8), (3, 0))− d((3, 8), (−3, 0))| =
∣∣∣|8− 0| −

√
(3− (−3))2 + 82

∣∣∣ = |8− 10| = 2 ,

i.e. constant in relation (A4.1) is equal to 2. This immediately implies that points (±1, 0) belong to
the hyperbola H:

|d((1, 0), (3, 0))− d((1, 0), (−3, 0))| = ||1− 3| − |1− (−3)|| = ||−2| − |4|| = |2− 4| = | − 2| = 2 ,

and

|d((−1, 0), (3, 0))− d((−1, 0), (−3, 0))| = ||−1− 3| − |−1− (−3)|| = ||−4| − |2|| = |4− 2| == 2 ,
(A4.2)

On the other hand one can see that any point M = (0, t) on the axis 0Y does not belong to the
hyperbola. Indeed for K = (0, t) the distances d(K,F1) and d(K,F2) coincide: d(K,F1) = d(K,F2) =√
t2 + 9,

for K = (0, t) |d(K,F1)− d(K,F2)| = 0 6= 2 (A4.3)

Almost all students gave geometrical definition of hyperbola correctly, and about 75 % of students
explain correctly relation (A4.2).

Answering the last question only about 30% of the students did it in the way as above. Many
students have tried to answer this question using analytical definition of hyperbola. This is little bit
long way, but it is not wrong way.

Analytical definition of hyperbola is that it has equation

x2

a2
− y2

b2
= 1 . (A4.4)

in especially chosen (canonical) Cartesian coordinates.
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In particular for the hyperbola H

x2 − y2

8
= 1 , (A4.5)

On the base of this equation one immediately comes to the condition that the hyperbpla H does not
intersect axis OY :

for K = (0, t) , x2 − y2

8
= 0− t2

8
≤ 0 6= 1 .

This is right conclusion and many students did it. Sure the statements (A4.4) and (A4.5) are
correct, but equation (A4.5) holds only in special Cartesian coordinates, not in arbitrary Cartesian
coordinates, and one has to prove that the coordinates that we work with are such coordinates.
Many students use equation (A4.5) without justifying it, and did not receive the full mark. Only
one student who used analytical definition did calculations completely.

A5.

(a) Explain what is meant by the cross-ratio of four collinear points on the projective plane RP2.

(b) Four points A,B,C,D ∈ RP2 are given in homogeneous coordinates by

A = [3 : 3 : 3] , B = [14 : 8 : 2] , C = [5 : 3 : 1] , D =

[
13

7
: 1 :

1

7

]
.

Show that these points are collinear.

(c) Calculate their cross-ratio.

[10 marks]

Students have not special problems answering this question.

This year the question on projective geometry was easy question.
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SECTION B

Answer TWO of the THREE questions

B6.

(a) Let a 6= 0 be a vector in E3.

Give examples of two orthogonal operators such that the first operator preserves the orientation
of E3, the second changes the orientation, and both operators have the eigenvector a with
eigenvalue −1: P (a) = −a.

(b) Show that an arbitrary orthogonal operator P in E3 which preserves the orientation and has
eigenvector a with eigenvalue −1 is a rotation operator with respect to an axis which is orthog-
onal to the vector a.

[15 marks]

Answering this question you have to understand clear that operator and matrix represented this
operator are different objects.

Many students tried to write the orthogonal matrices represented operators, ignoring the fact that
these operators have to obey the condition

P (a) = −a . (B6.1)

and, that vector a is not necessarily a unit vector.

For example some students have considered matrices

P1 =

−1 0 0
0 −1 0
0 0 1

 , P2 =

−1 0 0
0 1 0
0 0 1

 . (B6.2)

Of course if you take the orthonormal basis e, f ,n such that the first vector is proportional to the
vector a, e = a

|a| , then the matrices P1, P2 are matrices of linear orthogonal operators which both

obey condition (B6.1), such that the P1 preserves orientation, and P2 changes orientation.

Some students have considered the matrices (B6.2) without making any relation of these matrices
with orthogonal operators, and with condition (B6.1)

By the way one can notice that the simplest example of orthogonal operator which changes orientation
and obeys the condition (B6.1) is the operator P = −id : P (x) = −x, and it has the matrix−1 0 0

0 −1 0
0 0 −1

 in an arbitrary basis.
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Some students trying to construct examples have used the linear operators

P1(x) = 2(x,n)n− x , P2(x) = −P1 = x− 2(x,n)n , (B6.3)

which we considered in homeworks. This is right idea, but you have to bother about the fact, that
in these examples n is a unit vector, and it makes these operators orthogonal. If you put n = a it
will not be orthogonal oprator. Moreover you have to choose the operators such that the vector a is
an eigenvector with eigenvalue −1. If you choose n = a

|a| , then the operator P2 will be orthogonal

operator which does not preserve orientation and condition (B6.1) is obeyed, but for operator P1 it
is not obeyed. (You may choose for P1 the vector n a unit vector which is orthogonal to the vector
a.)

One student have considered an “operator” P (x = 2(n,x)x− x This is not a linear operator at all!
(the first term is quadratic over componets of x).

The second part of this question was really difficult question. It has the following ‘one line’ solution:
Let N be a non-zero vector directed along axis of rotation (it exists due to Euler Theorem) We know
that orthogonal operator preserves scalar product ( , ). Hence relations P (N) = n, P (a) = −a imply

(a,N) = (P (a), P (N)) = (−a,N) = −(a,N)⇒ (a,N) = 0 i.e. a ⊥ N . (B6.4)

Nice is not it?

About 10—15 students were trying to solve this problem, but the succesfull attempts were done only
by few students. Two students came to the solution which is very close to the solution above. Two
students were solving this problem in the following way: Analyzing the operator, they come first to
conclusion that if the orthonormla basis is chosen such that first vector of this basis is directed along
the vector a, then in this orthonormal basis the operator has the matrix−1 0 0

0 cos θ sin θ
0 sin θ − cos θ


(In other words it is the operator of reflection in the plane which is orthogonal to the vector a). Then
if N is the vector directed along axis, then condition P (n) = n means that in the chosen orthonormal
basis the first component of the vetor N vanishes. Hence it is orthogonal to vector a. This way to
solution was not easy, especially during exam, when time is limited. One of students who was trying
it, did it completely, (second did it almost completely.) My congratulations.

B7.

(a) Formulate the theorem about an integral of an exact 1-form over a curve in En and prove this
theorem.

(b) Show that for an arbitrary closed curve C in E3,∫
C

y cos zdx+ x cos z dy =

∫
C

xy sin zdz .
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The 1-form ω = y cos zdx+ x cos zdy − xy sin zdz is an exact form: ω = d(xy cos z), hence∫
C

ω =

∫
C

y cos zdx+ x cos zdy − xy sin zdz = 0⇒
∫
C

y cos zdx+ x cos zdy =

∫
C

xy sin zdz = 0 .

About half of students who were solving this question did it correctly: Typical mistake of another
half was that they desperately were trying to prove that 1-forms ω1 = y cos zdx + x cos zdy and
ω2 = xy sin zdz both are exact forms. Of course this is wrong. It is their difference, the form ω1−ω2

is exact form.

[15 marks]

B8.

(a) Let C be a curve in E3, defined by the intersection of the conic surface k2x2 + k2y2 − z2 = 0
with the plane z + x = 1. Show that if |k| > 1 then this curve is an ellipse.

(b) In the case if k = 2, choose a parameterisation of this ellipse and calculate the integral of the
1- form ω = xdy − ydx over this ellipse.

To what extent does the answer depend on a choice of parameterisation?

[15 marks]

If z = 1− x, then

k2x2 + k2y2 − z2 = k2x2 + k2y2 − (1− x)2 = (k2 − 1)x2 + k2y2 + 2x− 1 = 0 ,

i.e.

(k2 − 1)

(
x+

1

k2 − 1

)2

+ k2y2 =

(
1 +

1

k2 − 1

)
=

k2

k2 − 1
,

or
(k2 − 1)2

k2

(
x+

1

k2 − 1

)2

+ (k2 − 1)y2 = 1 . (B8.1)

Equation (k2 − 1)x2 + k2y2 − 2x = 1 defines on the plane z = 0 the orthogonal projection of the
curve C (which belongs to the plane z = 1− x) on the plane OXY :

C :

{
(k2 − 1)x2 + k2y2 − 2x = 1

z = 1− x
, and its orthogonal projection Cprooj. :

{
(k2 − 1)x2 + k2y2 − 2x = 1

z = 0

(B8.1a)
Due to the Theorem (in non-degenerate cases) they define the same conics: Cproj is ellipse, parabpla
or hyperbola if and only if C is respectively ellipse or parabola or hyperbola.
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We see that If k2 > 1, then due to (B8.1) this projection of the curve is an ellipse. Hence the curve
is an ellipse also.

b) Now fix k = 2. Then our curve is C :

{
9
4

(
x+ 1

3

)2
+ 3y2 = 1

z = 1− x
Choose parameterisation of the

ellipse:

C :


x = −1

3
+ 2

3
cos t

y = 1√
3

sin t

z = 1− x = 4
3
− 2

3
cos t

, 0 ≤ t < 2π . (B8.2)

(in fact it is not necessary to choose the parameterisation of z(t) since differential form does not
depend on dz) ∫

C

xdy − ydx =

∫
(x(t)dy(vy(t))− y(t)dx(vx(t))) dt.

For components of velocity vector we have

vx(t) =
dx(t)

dt
= −2

3
sin t , vy(t) =

dy(t)

dt
=

cos t√
3
, (v = vx∂x + vy∂y + vz∂z)

and
∫
C
xdy − ydx =∫ 2π

0

((
−1

3
+

2

3
cos t

)
cos t√

3
−
(

1√
3

sin t

)(
−2 sin t

3

))
dt =

√
3

9

∫ 2π

0

(2− cos t)dt =
4π
√

3

9
,

(
∫ 2π

0
cos tdt = 0 since the function cos t is periodical function).

c) Under changing the parameterisation integral does not change (if orientation of new parameteri-
sation is the same), or it changes the sign, if new parameterisation has opposite orientation.

Almost all students who did this exercise, did not focus the attention on the fact that there are two
conics in equations (B8.1, B8.1a) , the conic C, the intersection of plane with conic surface, and the
conic, which is the projection of the conic C on the plane z = 0. Due to the Theorem the conic C is
the ellipse in the case |k| > 1 because its orthogonal projection is the ellipse also.

Respectively the same problem for the second exercise: Many students did not bother about the fact
that the form ω = xdy − ydx has to be integrated over the curve C (see the parameterisation of the
curve C in equation (B8,2)) not over the curve Cproj. Of course these integrals coincide, since the
form ω does not depend on z, but this has to be justified.

I am very happy, that this year almost nobody did mistake, answering on the question about how
the answer depends on reparameterisation.
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