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1 Euclidean space

1.1 Recollection of vector space and Euclidean vector
space

We recall here important notions from linear algebra of vector space and
Euclidean vector space.

1.1.1 Vector space.

Vector space V' on real numbers is a set of vectors with operations 7 +
”—addition of vector and ” - ”—multiplication of vector Lon real number
(sometimes called coefficients, scalars).
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Remark We denote by 0 real number 0 and vector 0. Sometimes we
have to be careful to distinguish between zero vector 0 and number zero.

1.1.2 Basic example of (n-dimensional) vector space—R"

A basic example of vector space (over real numbers) is a space of ordered
n-tuples of real numbers.
R? is a space of pairs of real numbers. R?* = {(z,v), =,y € R}

!These operations obey the following axioms

e VabeVa+beV,

e VAcR,VacV,daeV.

e Va ba+ b =b + a (commutativity)

e Va,b,c, a+ (b+c)=(a+b)+ c (associativity)

e 30 such that Va,a+0=a

e Va there exists a vector —a such that a+ (—a) = 0.
e VAeR,ANa+b)=Xa+\b

e VA neR(A+pu)a=Xa+ pua

o (An)a = A(ua)

e la=a



R?3 is a space of triples of real numbers. R? = {(z,v, 2), z,y,2 € R}
R* is a space of quadruples of real numbers. R* = {(z,y, 2,t), =,y,2,t,€ R}
and so on...
R"—is a space of n-typles of real numbers:

R" = {(z',2%,...,2"), 2',...,, 2" € R} (1.1)
If x,y € R™ are two vectors, x = (z!,...,2"), y = (y',...,y") then
X_I_y: (x1+y17"'7xn+yn)-

and multiplication on scalars is defined as

X=X (2, ..., 2") =\t .., "), (AER).

1.1.3 Linear dependence of vectors

We often consider linear combinations in vector space:

Z /\ixi = )\1X1 + )\QXQ + -+ /\me ) (12)
where Ay, Ay, ..., A, are coefficients (real numbers), x;,xa, .. ., X, are vectors
from vector space V. We say that linear combination (1.2) is trivial if all
coefficients A1, Ao, ..., A\, are equal to zero.

>\1:/\2::)\m:0

We say that linear combination (1.2) is not trivial if at least one of coefficients
A1, Ao, ..., Ay, is not equal to zero:

A1 # 0,0rA\y # 0,0r...0r\, #0.

Recall definition of linearly dependent and linearly independent vectors:

Definition The vectors {x1,Xa,...,X,;,} in vector space V are linearly
dependent if there exists a non-trivial linear combination of these vectors
such that it is equal to zero.

In other words we say that the vectors {x1,Xs,...,X,,} in vector space V'
are linearly dependent if there exist coefficients uq, po, ..., t, such that at
least one of these coefficients is not equal to zero and

H1X1 + poeXo + -+ 4 Xy = 0. (1.3)
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Respectively vectors {xi, X, ..., X, } are linearly independent if they are
not linearly dependent. This means that an arbitrary linear combination of
these vectors which is equal zero is trivial.

In other words vectors {xi, Xz, X, } are linearly independent if the condi-
tion

P1X1 4 peXo 4 -+ Uy Xy =0

implies that g = ps = -+ = p, = 0.

Very useful and workable

Proposition Vectors {xi,Xs,...,Xn} in vector space V are linearly
dependent if and only if at least one of these vectors is expressed via linear
combination of other vectors:

J#
1.1.4 Dimension of vector space. Basis in vector space.

Definition Vector space V' has a dimension n if there exist n linearly inde-
pendent vectors in this vector space, and any n + 1 vectors in V' are linearly
dependent.

In the case if in the vector space V for an arbitrary N there exist N linearly indepen-
dent vectors then the space V is infinite-dimensional. An example of infinite-dimensional
vector space is a space V of all polynomials of an arbitrary order. One can see that for an

3

arbitrary N polynomials {1,z,z% 23,..., 2V} are linearly idependent. (Try to prove it!).

This implies V is infinite-dimensional vector space.

Basis

Definition Let V' be n-dimensional vector space. The ordered set {ey, es, . ..

of n linearly independent vectors in V' is called a basis of the vector space V.

Remark We say ‘a basis’, not ‘the basis’ since there are many bases in
the vector space (see also Homeworks 1.2).

Remark Focus your attention: basis is an ordered set of vectors, not just
a set of vectors®.

The following Proposition is very useful:

2See later on orientation of vector spaces, where the ordering of vectors of basis will be
highly important.



Proposition Let{ei,...,e,} be an arbitrary basis in n-dimensional vec-
tor space V. Then any vector x € V' can be expressed as a linear combination
of vectors {ey,...,e,} in a unique way, i.e. for every vector x € V there
exists an ordered set of coefficients {z',... a™} such that

x=x'e;+ - +2"e, (1.4)
and if

x=a'e,+---+a'e,=b'e; +---+b,, (1.5)

then at = b',a®> =b?,...,a" = b". In other words for any vector x € V there
exists an ordered n-tuple (z', ..., a™) of coefficients such that x =Y | x'e;
and this n-tuple is unique.

In other words:

Basis is a set of linearly independent vectors in vector space V
which span (generate) vector space V.

Recall that we say that vector space V' is spanned by vectors {xy,...,X,}
(or vectors vectors {xi,...,X,} span vector space V ) if any vector a € V
can be expresses as a linear combination of vectors {xy,...,X,}.

Definition Coefficients {a',...,a"} are called components of the vector
x in the basis {ey,...,e,} or just shortly components of the vector x.

Example Canonical basis in R™

We considered above the basic example of vector space—a space of or-
dered n-tuples of real numbers: R™ = {(z',2%,...,2"),2" € R} (see (1.1)).

One can see that it is n-dimensional vector space. Consider vectors e, e,,...,e, €
R™

e = (1,0,0...,0,0)

eo= (0,1,0...,0,0) (1.6)

e,= (0,0,0...,0,1)

Then for an arbitrary vector R 3 a = (a',a? a3, ..., a"),

a=a'(1,0,0...,0,0)+a*(0,1,0...,0,0)4+a*(0,0,1,0...,0,0)+--+a"(0,1,0...,0,1)

m
E a'e; = a'e; (we will use sometimes condensed notations x = z'e;)
=1
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For every vector a € R™ we have unique expansion via the vectors (1.6).
The set of vectors {ey,...,e,} is a basis of R™. The basis (1.6) is the dis-
tinguished basis. Sometimes it is called canonical basis in R™. One can find
another basis in R"—just take an arbitrary ordered set of n linearly indepen-
dent vectors. (See exercises in Homework 0).

1.1.5 Scalar product. Euclidean space

In vector space one have additional structure: scalar product of vectors.

Definition Scalar product in a vector space V' is a function B(x,y)
on a pair of vectors which takes real values and satisfies the the following
conditions:

B(x,y) = B(y,x) (symmetricity condition)
B(Ax + ux',y) = AB(x,y) + pB(x',y) (linearity condition) (1.7)
B(x,x) >0 ,B(x,x) = 0 < x = 0 (positive-definiteness condition)

Definition Euclidean space is a vector space equipped with a scalar product.

One can easy to see that the function B(x,y) is bilinear function, i.e.
it is linear function with respect to the second argument also. This follows
from previous axioms:
B, Ay+uy') o BOy+mwy',x) = AB(y,x)+uB(y',x) = ABXy)+uB(xy').
SyIIII. linear. SyImim.
A bilinear function B(x,y) on pair of vectors is called sometimes bilinear form on
vector space. Bilinear form B(x,y) which satisfies the symmetricity condition is called
symmetric bilinear form. Scalar product is nothing but symmetric bilinear form on vectors
which is positive-definite: B(x,x) > 0) and is non-degenerate ((x,x) =0=x =0.

Example We considered the vector space R", the space of n-tuples (see
the subsection 1.2). One can consider the vector space R™ as Euclidean space
provided by the scalar product

B(x,y) =a'y' + -+ a™y" (1.8)

This scalar product sometimes is called canonical scalar product.
Exercise Check that it is indeed scalar product.



Example We consider in 2-dimensional vector space V' with basis {e;, es}
and B(X,Y) such that B(e;,e;) = 3, B(ey, e3) = 5 and B(ej,e3) = 0. Then
for every two vectors X = z'e; + 2%e, and Y = y'e; + y?e; we have that

B(X,Y)=(XY) = (1'161 + 2y, y'e; + 3/262) =

wtyt(er, er) + x'y?(er, e2) + 2%y (e, €1) + 2%y (e, €2) = 3u'y! + 52%y? .

One can see that all axioms are obeyed.

Remark Scalar product sometimes is called ”inner” product or ”dot”
product. Later on we will use for scalar product B(x,y) just shorter notation
(x,y) (or (x,y)). Sometimes it is used for scalar product a notation x - y.
Usually this notation is reserved only for the canonical case (1.8).

Counterexample Consider again 2-dimensional vector space V' with ba-
sis {e1, eqx}.

Show that operation such that (e;,e;) = (es,e3) = 0 and (e, e2) = 1 does
not define scalar product. Solution. For every two vectors X = z'e; + z%e,
and Y = y'e; + y?e, we have that

(X,Y) = (z'e; + 2%es, y'er + y'e2) = 'y + 27y

hence for vector X = (1,—1) (X,X) = —2 < 0. Positive-definiteness is not
fulfilled.

1.1.6 Orthonormal basis in Euclidean space

One can see that for scalar product (1.8) and for the basis {ey, ..., e, } defined
by the relation (1.6) the following relations hold:

1 if i=j

0 if i#j (1.9)

(ei,e;) =0y = {

Let {e1,es,...,e,} be an ordered set of n vectors in n-dimensional Eu-
clidean space which obeys the conditions (1.9). One can see that this ordered
set is a basis 3.

3Indeed prove that conditions (1.9) imply that these n vectors are linear independent.
Suppose that Aje; + Aoses + -+ - + Ape, = 0. For an arbitrary ¢ multiply the left and right
hand sides of this relation on a vector e;. We come to condition \; = 0. Hence vectors
(e1,€a,...,e,) are linearly dependent.



Definition-Proposition The ordered set of vectors {ei, es, ..., e,} inn-
dimensional Euclidean space which obey the conditions (1.9) is a basis. This
basis is called an orthonormal basis.

One can prove that every (finite-dimensional) Euclidean space possesses
orthonormal basis.

Later by default we consider only orthonormal bases in Euclidean spaces.
Respectively scalar product will be defined by the formula (1.8). Indeed let
{e1,eq,...,e,} be an orthonormal basis in Euclidean space. Then for an
arbitrary two vectors x,y, such that x = Y 2'e;, y = > y’e; we have:

(x,y) = (Z v'e;, Z?/jej) = ay(ene) =Y Yo=Y 'y
=1

2,j=1 1,j=1

We come to the canonical scalar product (1.8). Later on we usually will
consider scalar product defined by the formula (1.8) i.e. scalar product in
orthonormal basis.

Remark We consider here general definition of scalar product then came
to conclusion that in a special basis, (orthonormal basis), this is nothing but
usual ‘dot’ product (1.8).

1.2 Affine spaces and vector spaces

AFFINE SPACE WITH ORIGIN IS A VECTOR SPACE

Let V be an arbitrary vector space.

Consider a set A whose elements will be called ‘points’ We say that A is
an affine space associated with vector space V' if the following rule is defined:
to every point P € A and an arbitrary vector x € V' a point () is assigned:

VPe A, VxeV, (Px)—QecA (1.10)

We denote ) = P + x.
The following properties must be satisfied:

e For arbitrary two vectors x,y € V and arbitrary point P € A,
P+ (x+y)=(P+x)+y.

e For an arbitrary point P€ A, P+ 0= P.

(Recall that 0 is the zero vector in the vector space V.)
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e For arbitrary two points P, € A there exists unique vector y € V
such that P +y = Q.

If P+ x = () we often denote the vector x =Q — P = PZ) We say that
vector x = PQ starts at the point P and it ends at the point Q.

One can see that if vector X = PQ, then QP = —x; if P,Q, R are three
arbitrary points then PQ + QR PR.

One can reconstruct vector space V' in terms of an affine space A, and
vice versa. Namely, let A be an affine space associated with vector space V.
Choose an arbitrary point O € A as an the origin, and consider the vectors
starting at the origin: We come to the vector space V:

V' = set of vectors O_Q where () is an arbitrary point in A,

which is associated with an affine space A.

Let V be an arbitrary vector space. We will define now an affine space
associated with this vector space. Consider two copies of the vector space V.
The elements of the first copy we will call “points”, and the elements of the
second copy we will call as usual “vectors”:

——N— ——Y
first copy of V second copy of V (1.11)
elements of V' are points elements of V' are vectors

Let A = a be an arbitrary point of the affine space, (i.e. an element of
the first copy of vector space V') and let x is an arbitrary vector of the vector
space V (i.e. an element of the second copy of vector space V). We define
the action (1.10) in the following way:

(A,x)»B=A+x=a+x, x=AB.

The point B is the vector a+x € V' belonging to the first copy of the vector
space V.

We assign to two ‘points’ A = a, B = b (elements of the first copy of
vector space V') the vector x = b — a (elements of the second copy of vector
space V).

For example vector space R™ of n-tuples of real numbers can be considered
as a set of points. If we choose arbitrary two points A = (a!,a®. ..., a") and
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B = (b',b%,...,b,), then these two points define a vector AB which is equal
to AB=B— A= (bt —al,b* —a?,... b, — ay).

The associated with each other affine space and vector space R™ we will
usually denote by the same letter.

1.2.1 Eucldiean affine space.

Respectively one can consider Euclidean vector space as a set of points. Let
E™ be n-dimensional Euclidean vector space, i.e. vector space equipped with
scalar product. Let {e;} (i = 1,...,n) be an arbitrary orthonormal basis
in the vector space E™. Now consider this vector space as a set of points.
Choose arbitrary two points (vectors of the first copy of the vector space
E"), A=a'e; +d’e; + - +a"e, and B = ble; + b*ey + -+ + b"e,. These
points define a vector AB (in the second copy of the vector space E™) which
is equal to

AB=B—A=("—a"e; + (1> —a¥)es + -+ (0" — a")e,.

The distance between two points A, B is the length of corresponding vector
AB, and the length of the vector AB is defined by the scalar product:

\A*B\ =/ (4B, 4B) = (T = al)e; -+ (" — a") ey, (BT — al)e; + -

GRS T

We recall very important formula how scalar product is related with the
angle between vectors: if ¢ is an angle between vectors x and y then

(x,y) =2'y" +2°y* + -+ 2"y" = |x||y| cos (1.12)

(We suppose that vectors x,y are defined in orthonormal basis.)
In particulary it follows from this formula that

angle between vectors x,y is acute if scalar product (X,y) is positive
angle between vectors X,y is obtuse if scalar product (x,y) is negative
vectors x,y are perpendicular if scalar product (x,y) is equal to zero
(1.13)
Remark The associated with each other affine space and Euclidean vec-
tor space E" we will denote by the same letter.

9
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Remark Geometrical intuition tells us that cosinus of the angle between two vectors
has to be less or equal to one and it is equal to one if and only if vectors x,y are collinear.
Comparing with (1.12) we come to the inequality:

(X,y)2 _ (ajlyl 4t x"y”)z < (.1’1)2 et (:L‘")Z) ((y1)2 + ( .. +, <yn>2) _ (X, X)(y,y)
and(x,y)? = (x,x)(y,y) if vectors are colinear, i.e. z° = Ay’ 1)
1.14

This is famous Cauchy—Buniakovsky—Schwarz inequality, one of most important inequali-

ties in mathematics. (See for more details the last exercise in the Homework 0)

1.3 Transition matrices. Orthogonal bases and orthog-
onal matrices

1.3.1 Bases and transition matrices

One can consider different bases in vector space.

Let A be n x n matrix with real entries, A = ||a;||, 4,7 =1,2,...,n:
aiq aig ... Q1np
21 a9y . .. QAo
A= asy asy ... asny,
Apn-1)1 An-1)2--- Qn-1)n
Qn 1 Ap2 . .. QAnn
Let {ej,ea,...,€,} be an arbitrary basis in n-dimensional vector space V.
The basis {ej,es,...,e,} can be considered as row of vectors, or 1 x n
matrix with entries—vectors.
Multiplying 1 x n matrix {e;,es,...,e,} on matrix A we come to new
row of vectors {e],€), ..., e/} such that
/ / /
{e],€5,...,e } ={ej, e, ...,e,}A = (1.15)
a1 aig ... A1p
a91 as . .. QAony,
a ass . . . a
/AN / 31 32 3n
{e},e,,...,e.} ={e1,eq,...,e,} (1.16)
Ap-1)1 An-1)2--- Gn-1)n
Ap 1 ap2 . .. Ay,
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’ell = api€; + az1€ + agiez + -+ A(n—1)1€n—1 + an1€n

€] = ape; + azes + azes + -+ + (n_1)2€n—1 + Ayn2€y

€] = ai3e; + ag3es + asses + -+ + A(p—1)3€n—1 + A 1€p
B T e I

/
\en = Q1p€] + A2n€2 1+ a3,€3 + - -+ + A(n—1)n€n—1 + Apn€n

or shortly:
n
e =) e (1.17)
k=1
Definition Matrix A which transforms a basis {e;,es,...,e,} to the row
of vectors {€], €},..., e} (see equation (1.17)) is transition matriz from the
basis {ej, ey, ...,€,} to the row {e},e},..., e, }.

What is the condition that the row {e},e€),... e} } is a basis too? The
row, ordered set of vectors, {€e],€),... €/} is a basis if and only if vectors
(e},€),...,e) are linearly independent. Thus we come to

Proposition 1 Let {ej,ey,...,e,} be a basis in n-dimensional vector
space V', and let A be an n X n matriz with real entries. Then

{e},e,...,e } ={el, e ...,e,}A (1.18)

is a basis if and only if the transition matriz A has rank n, i.e. it is non-
degenerate (invertible) matriz.
Recall that nx matrix A is nondegenerate (invertible) < det A # 0.

Remark Recall that the condition that n x n matrix A is non-degenerate
(has rank n) is equivalent to the condition that it is invertible matrix, or to
the condition that det A # 0.

Example let {e;, e;.e3} be a basis in R?. Consider set of vectors {e, 3e;+
Aeq, 7e1+5es+3es}, where A is an arboitrary parameter. The transtition ma-
trix from the basis {e, f, g} to the row of vectors {ey, 3e;+ ey, Te;+5ex+3e3}
is the following:

1 3 7
{el, 381 + )\62, 781 + 582 + 363} = {el,eg,eg}A = {el, (SHN 83} 0 X 5
00 3

We see that det A = 3\. In the case if 1 # 0 then transition matrix is
non-degenerate and the row {ey, 3e; + ey, 7e; + 5e; + 3e3} is a basis.
(See another examples in the Homework)
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1.4 Orthonormal bases and orthogonal matirces

Now suppose that {e;, ey, ..., e,} is orthonoromal basis in n-dimensional Eu-
clidean vector space. What is the condition that the new basis {€}, €}, ..., e/} =
{e1,es,...,e,}A is an orthonormal basis too?

Definition We say that n x n matrix is orthogonal matrix if its product
on transposed matrix is equal to unity matrix:

ATA=T. (1.19)
Exercise. Prove that determinant of orthogonal matrix is equal to £1:
A'A=T=detA==+1. (1.20)

Solution AT A = I. Hence det(AT A) = det AT det A = (det A)? =det I =
1. Hence det A = £1. We see that in particular orthogonal matrix is non-
degenerate (det A # 0). Hence it is a transition matrix from one basis to
another. The following Proposition is valid:

Proposition 2 Let {ej, ey, ..., e,} be an orthonormal basis in n-dimensional
Euclidean vector space. Then the new basis {€},e},... e} = {e1,eq,...,e,}A
is orthonormal basis if and only if the transition matriz A is orthogonal ma-
triz.

: / / / : / I 5. .
Proof The basis {e],e3,...,e],} is orthonormal means that (e;, e;) = d;;. We have:
n n n
/ / /
511]' = (eia ej) = § emA7rLi7ej = § enAnj = § AmiAnj (emaen) =
m=1 n=1 m,n=1

> Amidnibpn =D AmiAmj =Y AL Ay = (ATA); = (ATA)y; = 6;j,ie. ATA=1T.
m,n=1 m=1 m=1

(1.21)

Remark The set of orthogonal matrices form the group which is called
O(n). This group is a subgroup of the group GL(n,R) of linear invertible
n X n matrices with real entries.

1.5 Linear operators.
1.5.1 Matrix of linear operator in a given basis

Recall here facts about linear operators in vector space

12



Let P be a linear operator in vector space V:

P: V=V, PAx + py) = AP(x) + uP(y).

Let {ey,...,e,} be an arbitrary basis in n-dimensional vector space V.
Consider the action of operator P on basis vectors: €, = P(e;). We denote
by D1k, P2k, - - -, Puk coordinates of vector e}, in the basis {e, eq,...,€,}:

e; = P(e;) = Zekpm‘,

/

e} = P(e1) = epi1 + €po1 +e3ps1 + -+ €,pm

/

e, = P(ey) = e1p12 + €p2o +€3psa + - - + €,Pn0

/

e; = P(e3) = e1pi3 + €xpa3 + €3ps1 + -+ + €,Pu3 (1.22)

efn = P(en) = €1D1n + €2D2n + €3P3n +--+ €nDPnn

Definition-Proposition Let {ej,es,...,e,} be an arbitrary basis in n-
dimensional vector space V', and let P be a linear operator in' V. Then matrix
P = ||pi|| in equation (1.22) is a matriz of linear transformation P in the
basis {e1,es,...,e,}. This matriz coincides with the transition matriz from
the basis {ej,eq,...,e,} to the row of vectors {€}, ey, ... € }.

In the case if linear operator P is non-degenerate (invertible) then vectors
el, ey, e, ... e, form also a basis.

) n)
Does matrix of linear operator change if we change the basis?
See it:

Consider a new basis {fi, ..., f,} in the linear space V. Let A be transition
matrix from the basis {ey,...,e,} to the new basis {f}, ..., f,}:
{fi... . E}={e,....e}A ie fi=) epay (1.23)
k=1

(see equation (1.17)). Find matrix for linear operator P considered above in
(1.22), in the new basis {f;}. According to the formulae (1.23) and (1.22) we
have

fi=Pr)="r (Z eqaqi) - Za‘qip (eg) = Z Aqi (Z erprq) - Z CrPrqtei =
q=1 q=1 q=1 r=1

q,r=1

13



Zer PA Z fk N kr 1 PA) ifk(A_lpA)m
k=1

rk=1

We see that in the new basis {f;} a matrix of linear operator is equal to
AT1PA.

Proposition Let P be a linear operator acting in n-dimensional vector
space V. Let {e;} and {f;} be two arbitrary bases in V. Let P = ||p;|| be a

matriz of the operator P in the basis {e;}, and let P' = ||pl,|| be a matriz of
the operator P in the basis {f;}:

basis {€;} in V — — — — — || pix||matrix of operator P in the basis {e;}
basis {f;} in V — — — — — || Pty | |matrix of operator P in the basis {f;}
Then
n
P =(AToPoA)y = Z @imnDrny ok - (1.24)
m,r=1

Remark Let a matrix ||p;;|| be a matrix of linear operator P in the basis

{e1,...,e,}. Then for an arbitrary vector x
ol
Vx = E e;x' = (e, ey,...,€,) " ,then
, .
o
x? & :
1
P<X>:(elae27"'7en)'P' E :ezy - § €LPriT
x” ik=1
If 2 are components of vector x at the basis {ey,...,e,} and 2/* are compo-

nents of the vector x at the new basis {€]} then 2/ = >7_ | pya®.

1.5.2 Determinant and Trace of linear operator

We recall the definition of determinant and explain what is the trace of linear
operator,

Definition-Proposition Let P be a linear operator in vector space V.,
let {e;} be an arbitrary basis in V', and let ||pix|| be a matriz of operator P

14



in this basis. Then we define determiant of linear operator as a determinant
of its matriz:
det P = det (||pix|]) ,

and in the same way we define we define trace of operator via trace of matrix:
Tr P =Tr (|[pil]) = p11 +poz + P33+ -+ + Pn - (1.25)

Determinant and trace of operator are well-defined. since due to the proposi-
tion above (see equation (1.24)), determinant and trace of transition matrice
do not change if we change the basis in spite of the fact that transition matrix
changes: P+ A~'PA, but

det (A'PA) = det A" det Pdet A = (det A)~' det Pdet A = det P,

and
Tr (A PA) =3 (A PAY = S (A7), ppdpi = 3 Api (A7), by =
i i,k,p ik,p
Z (A AT pkpkp Z5kppkp Zpkk =TrP.

Dk

Trace of linear operator is an infinitesimal version of its determinant:
det(1 +tP) =1+ tTr P+ O(t?).

This is infinitesimal version for the followiong famous formula which relates trace and det

of linear operator:
det et = T4 (1.26)

where e!4 =S E4A% Eg if A= 0 -1 , then et4 = C9St —sind , detet4 =1 and
nl 1 0 sint  cost

elfTrA _ o0 _

1.5.3 Orthogonal linear operators

Now two words on orthogonal linear operators in Euclidean space.
Recall that linear operator P in Euclidean space E" is called orthogonal
operator if it preserves scalar product:

(Px, Py) = (x,y), for arbitrary vectors X,y (1.27)

In particular if {e;} is orthonormal basis in Euclidean space then due to
(1.27) the new basis {€, = P(e;)} is orthonormal too. Thus we see that

15



matrix of orthogonal operator P in a given orthogonal basis is orthogonal

matrix:
PT.P=1 (1.28)

(see (1.19) in subsection 1.7). In particular we see that for orthogonal linear
operator det P = +1 (compare with (1.20)).

1.6 Orientation in vector space

You have heard a words ‘orientation’, you have heard expressions like:

A basis {a, b, c} have the same orientation as the basis {a’,b’,c'} if they
both obey right hand rule or if they both obey left hand rule. In the other case
we say that these bases have opposite orientation...

When you look in the mirror you know that ‘left’ is changing on the ‘right’

Try to give the exact meaning to these expressions.

1.6.1 Orientation in vector space. Oriented vector space

Consider the set of all bases in the given vector space V.
Let (eq,...ey,), (€],...€),) be two arbitrary bases in the vector space V'
and let T be transition matrix which transforms the basis {e;} to the new

basis {e]}:
{el,...ey ={er,...e,}T, (&) =) eilss) (1.29)
k=1

(see also (1.16)).

Definition We say that two bases {ej,...e,} and {€],...€/,} in V have
the same orientation if the determinant of transition matrix (1.29) from the
first basis to the second one is positive: detT" > 0.

We say that the basis {e,...e,} has an orientation opposite to the orienta-
tion of the basis {€],...€e}} (or in other words these two bases have opposite
orientation) if the determinant of transition matrix from the first basis to the
second one is negative: detT" < 0.

Remark Transition matrix from basis to basis is non-degenerate, hence
its determinant cannot be equal to zero. It can be or positive or negative.

Consider examples.

16



First the simplest example.
Example 0 Consider a line R = R! as 1-dimensional vector space with
an origin at the point 0. Consider on R! vectors

e=(2), e=(-8), &=/(10).

Vector e is a basis of R, as well as vector €’ is a basis, and vector € is a basis
also. (Since space is 1-dimensional every non-zero vector is a basis!)

The basis {e} and the basis {€} have the same orientation since &€ = 5-e:
transition matrix is 1 x 1 matrix, the determinant of transition matrix is
equal to 5 and 5 > 0.

Respectively the basis {e} and the basis {€’} have the opposite orientation
since € = —4-e: determinant of transition matrix is equal to —4 and —4 < 0.

Now example of 2-dimensional space:
Example 1 Consider two dimensional vector space R? with a canonical

e ={(1)-(1)}

Consider in R? another basis

(e}, e}} = {(_02) ’ ((1))}

One can see that {e], e} = {—2e;, e, }, transition matrix 7' = <_02 ?), and

detT = —2 < 0, i.e. bases {€], e} and {—2ey, 2} have opposite orientation.

One can see that orientation establishes the equivalence relation in the
set of all bases. Show it. We say that {e1,...e,} ~ {€],...€}, if two bases
{e1,...e,} and {e€],...€e/,} have the same orientation, i.e. det7 > 0 for
transition matrix.

Proposition Relation 15 an equivalence relation, i.e. this relation
15 reflexive, symmetric and transitive.

Prove it:

143 ”
'~

e Proof of reflexivity

it is reflexive, i.e. for every basis {ey,...e,}

{e1,....,e,} ~{el,...,e,}, (1.30)

because in this case transition matrix T = [ and detl =1 > 0.

17



e Proof of simmetricity
Prove, that relation ”~" is symmetric, i.e. If {e,...,e,} ~ {€],... €}
then {e},....e)) ~{er,...,e,}.

Let T be a transition matrix from the first basis {ey,...,e,} to the sec-
ond basis {e},...,e.}: {e],...,e,} = {e1,...,e,}T, and detT > 0 since
{e1,...,e,} ~ {€],...,€,}. Then the transition matrix from the second
basis {e},...,€e,} to the first basis {ej,...,e,} is the inverse matrix 7'
{ei,...,e,} = {e},...,e,}T71. Hence detT~! = -4~ > 0 since detT > 0.

det T
Hence {€],...,€)) ~ {e1,...,e,}. Symmetricity is proved.

e Proof of transitivity

We have to prove that if {e,...,e,} ~ {€],...,e,} and {€],...,€e]) ~
{él, e ,én}, then {el, R ,en} ~ {él, e ,én}

Do it in detail.

Formulate the following statement:

Proposition-Lemma Let {e;}, {€.} and {&;} be arbitrary three bases
in the vector space V. For convenience call a basis {ey,...,e,} the ‘I-st’
basis, call a basis {€,... €.} the ‘II-nd’ basis and call a basis {&4,...,&,}
the ‘IIl-rd’ basis.

Let T1?) be a transition matriz from the I-st basis to the II-nd basis; let
TO3) be a transition matriz from the I-st basis to the III-rd basis, and let
T@3) be o transition matriz from the II-nd basis to the I1I-rd basis:

{ef,....e.} ={el,...,e,}T1?
{&1,...,8,} ={ei,...,e, )71 (1.31)
{&1,...,8,} ={e)|,...,e }T*) .

Then
T(13) — 7(12) o T(23) -
~— ~— ~—
I-st = IlI-rd I-st — II-nd II-nd — II-rd
det T = det(TU? o T?¥) = det T . det T3 (1.32)

Transitivity immediately follows from this statement: if I-st ~ II and
II-nd ~ III-rd, then determinants of matrices T7(!? and T3 are positive.
Hence according to relation (1.32) det TU%) is positive too, i.e. I-st ~ IIl-rd.
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It remains to prove equation (1.32). This equation follows from equation
(1.31): {eé4,...,e,} ={e€],... ,e;L}T(23) —

({ei,... 7en}T(m)) T = {ey,...,e )T 0T = {e, ..., e,}T".

Thus we proved that relation ~ is equivalence realtion.

Since it is equivalence relation the set of all bases is a union if disjoint
equivalence classes. T'wo bases are in the same equivalence class if and only
if they have the same orientation.

How many equivalence classes exist? One, two or more?

Show first that there are at least two equivalence classes.

Example Let {e;,es...,e,} be an arbitrary basis in n-dimensional vec-
tor space V. Swap the vectors e, e;. We come to a new basis: {€}, e, ..., €/}
€] = ey, €, = e, all other vectors are the same: e3 =€},...,e, =€,

(1.33)
We have:
/ / / /
{e},e5,e5....e,} ={es,er,e;,....e,} ={e,ere;,....€,} Toyap, (1.34)

where one can easy see that the determinant for transition matrix 7°%eP
is equal to —1, i.e. bases {ej,es...,e,} and {es,e;...,e,} have opposite
orientation.

E.g. write down the transition matrix (1.34) in the case if dimension
of vector space is equal to 5, n = 5. Then we have {€], €}, e}, €}, et} =
{es,e1,e3,e4,€5} = {e1, ey, €3,€4,€5}T where

01 00O
1 0000
Towwp =10 0 1 0 0 (det Tyap = —1). (1.35)
00010
00001
We see that bases {ej,ey...,e,} and {e], €, ..., e} have opposite ori-

entation.
We see that there are at least two equivalence classes.
One can see that there are exactly two equivalence classes.

Proposition Let two bases {e1,...,e,} and {€},...,€l} in vector space
V' have opposite orientation. Let {€1,...,€,} be an arbitrary basis in V.
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Then the basis {€1,...,€,} and the first basis {ei,...,e,} have the same
orientation or the basis {€1,...,€,} and the second basis {€,... e} have
the same orientation.

In other words if bases {ei,...,e,}, {e],...,e,} and {&,...,&,} are
three bases in vector space V' such that {ey,...,e,} #£ {e},... €.} then

{&,...,&,} ~{eq,...,e,}or {&,...,&,} ~{€],...,€e}. (1.36)

There are two equivalence classes of bases with respect to orientation.

In the case if bases {&,... &}, {€1,...,&,} have opposite orientation,
then an arbitrary basis belongs to the equivalence class of the basis {e1,es...,e,},
or it belongs to the to the equivalence class of the basis {€}, €, ... el }.

Proof of the statement immediately follows from statement (1.32).

In the same way like in statement (1.32) we call a basis {ej, ez ..., e,} the
”I-st basis”, a basis {€], €} ..., €/ } the ”II-nd basis” and a basis {€;,€;...,€,}
the "IIl-rd basis”. We have to prove that the third basis has the same ori-
entation as the first basis or it has the same orientation as the second basis.

Suppose the third basis has not the same orientation as the first basis,
then for the transition matrix 7% (see equation (1.31)) det 7*3) < 0. On the
other hand det 7% < 0 also since the first and second bases have opposite
orientation. Hence it follows from equation (1.32) that det T** < 0, thus
second and third bases have opposite orientation. n

In the example considered above (see (1.33)) an arbitrary basis {€],...€e}}

have the same orientation as the basis {ej,ey...,e,}, i.e. belongs to the
equivalence class of basis {ej,es...,e,}, or it has the same orientation as
the “swapped” basis {es,e;...,e,}, i.e. it belongs to the equivalence class

of the “swappedd” basis {es,e;...,e,}.

The set of all bases is a union of two disjoint subsets.

Any two bases which belong to the same subset have the same orientation.
Any two bases which belong to different subsets have opposite orientation.

Definition An orientation of a vector space is an equivalence class of
bases in this vector space.

Note that fixing any basis we fix orientation, considering the subset of all
bases which have the same orientation that the given basis.

There are two orientations. Every basis has the same orientation as a
given basis or orientation opposite to the orientation of the given basis.

We choose an arbitrary basis, and call it ’left” basis. Then all bases which
belong to the equivalence class of this basis may be called “left” bases and
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all the bases which do not belong to the equivalence class of this basis may
be called “right” bases

Sure we could call this arbitrary basis “right” basis, (or any other term,
this is just problem of consensus), then all the bases belonging to the equiv-
alence class of this basis woudl be called by the same term.

Definition An oriented vector space is a vector space equipped with ori-
entation.

Consider examples.

Example (Orientation in two-dimensional space). Let {e,,e,} be arbi-
trary two bases in R? and let a, b be arbitrary two vectors in R%. Consider
an ordered pair {a, b, }. The transition matrix from the basis {e,, e, } to the

: . b
ordered pair {a,b} is T' = (Z’C “”):

yby

a, by a = qze, + a,e
{avb} = {exﬂey}T = {exaey} (ay b ) ) { vy

y b = b,e, + bye,

One can see that the ordered pair {a,b} also is a basis, (i.e. these two
vectors are linearly independent in R?) if and only if transition matrix is not
degenerate, i.e. detT # 0. The basis {a, b} has the same orientation as the
basis {e;,e,} if detT > 0 and the basis {a, b} has the orientation opposite
to the orientation of the basis {e,,e,} if detT" < 0.

If we call the basis {e,, e,} left basis then the basis {a, b} will be called
also left basis in the case if detT" > 0, and the basis {a, b} will be called
right basis in the case if det T' < 0; respectively if we call the basis {e,, e,}
right basis then the basis {a,b} will be called also right basis in the case
if detT" > 0, and the basis {a,b} will be called left basis in the case if
detT" < 0.

Example Let {e,f} be a basis in 2-dimensional vector space. Consider
bases {e, —f}, {f, —e} and {f,e}.
1) We come to basis {e, —f} reflecting the second basis vector. Transition

matrix from initial basis {e,f} to the basis {e, —f} is Tc ¢} = ([1) _01>
Its determinant is —1. Bases {e,f} and {e, —f} have opposite orientation.
If {e,f} is left basis then {e, —f} is right basis and vice versa.
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2) Transition matrix from initial basis {e,f} to the basis {f, —e} is
Tie,—e} = ((1] _01) Its determinant is 1. Bases {e,f} and {f, —e} have
same orientation. They both are left bases or they both are right bases.
Note that we come to basis {f, —e} rotating the initial basis (on the angle
7/2).

3) Transition matrix from initial basis {e, f} to the basis {f, e} is Tis e} =

0 1

1 0)°
orientation. Basis {e, —f} is right basis in the case if basis {e, f} is left
basis, and vice versa, Basis {e, —f} is left basis in the case if basis {e, f} is
right basis.

Notice that we come to basis {f, e} reflecting the initial basis.

Its determinant is —1. Bases {e,f} and {e, —f} have opposite

(There are plenty exercises in the Homework 2.)

Example(Orientation in three-dimensional euclidean space.) Let {e,, e, e.}
be any basis in E? and a, b, ¢ are arbitrary three vectors in E?:

a=a,e, +aye, +a.e, b=>0be, +be,+b.e, c=ce,+ce +ce,.

Consider ordered triple {a, b, c}. The transition matrix from the basis {e,, e,, e, }

a; by cg

to the ordered triple {a,b,c}is T = | a, b, ¢,
a; by ¢y
{a,b,c} = {ex,ey,e,}T = {ex,ey.€,} | a, b, ¢,
a: b. c

One can see that the ordered triple {a, b, c} also is a basis, (i.e. these three
vectors are linearly independent) if and only if transition matrix is not de-
generate det 7" # 0. The basis {a, b, ¢} has the same orientation as the basis
{es, ey €.} if

detT > 0. (1.37)

The basis {a, b, ¢} has the orientation opposite to the orientation of the basis

{es, ey €.} if
det T < 0. (1.38)
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The usage of words ”left” "right” is defined as always: if basis {e,,e,,e.}
is left basis, then basis {a, b, c} is also left if determinant of transition
matrix is positive, and basis {a,b,c} is right if determinant of transition
matrix is negative, and vice versa: if basis {e,, e,,e,} is right basis, then
basis {a, b, c} is also right if determinant of transition matrix is positive,
and basis {a, b, c} is left if determinant of transition matrix is negative.

Remark Note that in the example above we considered in E?* arbitrary
bases not necessarily orthonormal bases.

I would like to emphasize again:

relations (1.37),(1.38) define equivalence relations in the set of bases. Ori-
entation is equivalence class of bases. There are two orientations, every basis
has the same orientation as a given basis or opposite orientation.

If two bases {e;}, {ey } have the same orientation then they can be transformed
to each other by continuous transformation, i.e. there exists one-parametric family
of bases {e;(t)} such that 0 < ¢ < 1 and {e;(t)}|i=0 = {ei}, {ei(t)}|i=1 = {ew}.
(All functions e;(t) are continuous) In the case of three-dimensional space the
following statement is true : Let {e;},{ey} (i = 1,2,3) be two orthonormal bases
in E3 which have the same orientation. Then there exists an axis n such that
basis {e;} transforms to the basis {ey} under rotation around the axis.(This is
Euler Theorem (see it later).

Exercise Show that bases {e, f,g} and {f, e, g} have opposite orientation
but bases {e, f, g} and {f,e, —g} have the same orientation.

Solution. Transformation from basis {e, f, g} to basis {f, e, g} is “swap-
ping” of vectors ((e,f) — (f,e). This is reflection and this transformation
changes orientation. One can see it using transition matrix:

T: {f,eg} = {e.f,8}7 = {e.f,g}

o = O

10
0 0] .detT'=-1
0 1

Transformation from basis {e, f, g} to basis {f, e, —g} is composition of two
transformations: “swapping” of vectors ((e,f) — (f,e) and changing direc-
tion of vector g (g — —g). We have two reflections:

{e7 f, g} reﬂiti)on {f7 e, g} reﬂﬂon {f, e, _g}
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Any reflection changes orientation. Two reflections preserve orinetation. One
may come to this result using transition matrix:

01 0
T:{f,e,—g}={ef,g}T={ef, g} |1 0 0 | .detT =1. Orientation is not changed.
00 -1
(1.39)
(See also exercises in Homework 2)
1.6.2 Orientation of linear operator
. Let P be a linear operator acting in vector space V.

Let {eq,...,e,} be an arbitrary basis in V. Linear operator P transforms
this basis to another basis {e],..., e/} in the case if det P # 0. Bearing in
mind that determinant of transition matrix from basis {ej,...,e,} to the
basis {e€],...,€/,} is a matrix of operator P in the basis {e;,...,e,} we see

that these both bases

{er,...,e,}, {€],...,e.}, el =P(e;)

have the same orientation if and only if det P > 0 and they have opposite
orientation if and only if det P < 0.

In the case if det P = 0, P is not invertible matrix, and it does not
transform bases to bases.

If a linear operator P acting on the space V has positive determinant then
under the action of this operator an arbitrary basis transforms to the basis
with the same orientation. Respectively if a linear operator P acting on the
space V' has negative determinant then under the action of this operator an
arbitrary basis transforms to the new basis which has opposite orientation.

Definition. Non-degenerate (invertible) linear operator P (det P # 0)
acting in vector space V preserves an orientation of the vector space V if
det P > 0. It changes the orientation if det P < 0.

1.7 Rotations and orthogonal operators preserving ori-
entation of E" (n=2,3)

Recall the notion of orthogonal operator (see 1.5.3). We study here orthog-
onal operators in E? and E3. In particular we will show that orthogonal
operators preserving orientations define rotations.

24



1.7.1 Orthogonal operators in E>— Rotations and reflections

We show that an orthogonal operator in E? ‘rotates the space’ or makes a
‘reflection’.

Let A be an orthogonal operator acting in Euclidean space E?: (Ax, Ay) =
(x,¥y). Let {e,f} be an orthonormal basis in 2-dimensional Euclidean space
E% (e,e) = (f,f) =1 (i.e. |e| = |f| = 1) and (e,f) = 0-vectors e, f have
unit length and are orthogonal to each other.

Consider a new basis {€’,f'}, an image of basis e,f under action of A:

e = A(e), ' = A(f). Let (: g) be matrix of operator A in the basis e, f,

(see equation (1.22) and defintion after this equation):
{e,f'} = {e, f}A = {e, f} (/C; ?) ,ie.e =ae+f ' = Pe+f

New basis is orthonormal basis also, (e/,€') = (f',f) =1, (e,f')=0.
Operator A is orthogonal operator, and its matrix is orthogonal matrix:

(69606 DG 5 -6)
“\y d) \y &) \pB §)\y §) \aB+y5 B2+62)  \0 1)
(1.40)
Remark With some abuse of notation, (if it is not a reason of confusion)

we sometimes use the same letter for linear operator and the matrix of this
operator in orthonormal basis.

Remark Note that condition (1.40) implies that det A = +1.
We have a®? +92 =1, af +v0 = 0 and 5% + 6 = 1.
Hence one can choose angles ¢,v: 0 < 27 such that « = cosp, v =
sinp, [ =cosy, § =sinty. The condition aff + v = means that
cos p cos ) + sin psiny = cos(p — ) =0
We have

A= (2 5) = (GF ) with costio - w) =0.

Condition cos(¢ — 1) =0 means ) — o = T+ 7k (k =0,£1,%£2,...)
We have

I-st case i) = o+ 5 +mm (m = 0,£2,£4...), hence cosy) = —sinp, sin) = cos ¢
II-nd case ¥ = ¢ + 5 + 7k (m = £1,£3...), hence cost = sin ¢, siny = —cos g
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In the I-st case cos®) = —sin g, siny = cos vy, and

A, = (C.OS('D gos;/;) _ (CF)SQO —s1n<,0) , detA,=1. (1.41)

siny siny singp  cosp

i.e. operator A preserves orientation.
In the II-nd case cos vy = sin g, siny = — cos v, and

Acp _ (cosap cos1/1> _ (cosgp sin ¢ ) . det A, = —1. (1.42)

sinp siny sing —cosp

i.e. operator A changes orientation.

In the first case matrix of operator A, is defined by the relation (1.41).
In this case the new basis is:

©8) = e, — (en) (o7 )T e e e e

Ag(e

A,(f) = —sinpe+cospf
(1.43)

For an arbitrary vector x = ze + yf x = A, (x) = A, (ve + yf) = 2’e + y'f,

'\  [cosp —sing) (z\ [xcosep —ysing (1.44)

y' )] \sinp cosp y) \sinp+ycosp |’ '
Operator A, rotates basis vectors e,f and arbitrary vector x on an
angle ¢

singp  cosp

In the second case a matrix of operator f~1¢ is defined by the relation
(1.42). See how transforms the basis {e, f} in this case. We have in analogy
with (1.43) that in this case

&) = (e,))A, = (e.f) (C.OW Sl )

singp —cosy

Ay(e) = cospe+sinpf
A (f) = sinp e — cos of
(1.45)
Comparing this equation with equation (1.43) we see that the difference
between the basis {¢, f} in this equation with the basis {€/,f’} in equation
rotationofbasisontheangle is the following: the vectors €’ and € coincide, and

= D
I

vector f = —f’, i.e. these bases have opposite orientation.
One can see that
v f[cosp sing \ [(cose —sinp) (1 0\
e <Sin‘p _COW> a (Sinso cos ¢ ) <0 —1> = A,R (1.46)
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1

where we denote by R = < 0 -1

{e, —f}—*“reflection”l. 5
We see that in the second case the orthogonal operator A, is composition of rotation

and reflection: {e, f}A“’:—AfR{é, f1:

) a transition matrix from the basis {e,f} to the basis

{e,f}g{e’ = cospe+singf, f' = —sinpe+cospfl—>{6 =€ ,Ff=—f}  (147)

We come to proposition

Proposition. Let A be an arbitrary 2 x 2 orthogonal linear transfor-
mation, ATA = 1, and in particularly det A = £1. (As usual we consider
matriz of orthogonal operator in the orthonormal basis.)

If det A = 1 then there exists an angle ¢ € [0,2m) such that A = A, is
an operator which rotates basis vectors and any vector (1.41) on the angle .

If det A = —1 then there exists an angle ¢ € [0,27) such that A = A, is
a composition of rotation and reflection (see (1.47)).

Remark One can show that orthogonal operator fl@ is a reflection with respect to

the axis which have the angle £ with 2-axis.
Consider just examples:

_ v [cosep sing )\ (1 O
a)p =0, A“’_(singo coscp>_(0 1)’

(reflection with respect to z-axis)

. v f[cosp sinp \ (=1 0
b =m, A”_<sin<p —cosgz))_(O 1)’

(reflection with respect to y-axis)

_m 5 _fcosp singp \ (0 1 e f
b)w_Q’A“’_(singo cos<p>_<1 O)’ (f)H(e

(reflection with respect to axis y = z (“swapping” of basis vectors))

Try to do it in general case.

1.7.2 Orthogonal operators in E? and rotations

We see in the previous paragraph that orthogonal operator preserving orien-
tation of E? is rotation operator. The same is true in E?. The main result
of this paragraph will be the Euler Theorem about rotation, that every or-
thogonal operator preserving orientation in E? is rotation around some axis.
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We will give an exact formulation of the Euler Theorem at the end of this
paragraph. Now we will formualte just preliminary statement:

The Euler Theorem. (Preliminary statement) An orthogonal operator
in E? preserving orientation is rotation operator with respect to an axis [
on the angle ¢. The axis is directed along eigenvector N of the operator P,
P(N) = N,and angle of rotation is defined by equation

TrP=1+2cosyp.

We will come to this statement gradually step by step, and then will
formulate it completely.

Let E™ be oriented vector space. Recall that oriented vector space means
that it is chosen the equivalence class of bases: all bases in this class have
the same orientation. We call all bases in the equivalence class defining
orientation “left” bases. All “left” bases have the same orientation. To
define an orientation in vector space V' one may consider an arbitrary basis
{ego)} in V and claim that this basis is “left” basis. The basis {e|" } defines
equivalence class of “left” bases: all bases {e;} such that {e;} ~ {e|” will be
called “left” bases. We can say that basis {ego)} defines the orientation.

Later on considering oriented vector space we often call all bases defining
the orientation (i.e. belonging to the equivalence class of bases defining
orientation) “left” bases.

Now we define rotation in E3. Recall the definition of rotation in E? (see
1.7.1):

Definition Let E? be an oriented Euclidean space. We say that linear
operator P rotates this space on an angle “p” if for a given “left” orthonormal

basis {e, f}

e =Ple) = ecos'go + fsing e, {ef} = {e.f} (09590 —sin gp)
f'=P(f) = —esinp + fcosp Sl cosp

(1.48)
i.e. transition matrix from basis {e,f} to new basis {&’ = P(e),f’ = P(f)}
is the rotation matrix (1.41) (see also (1.43)).

Remark One can show that the angle of rotation does not depend on
the choice of “left” basis. If we will choose another left basis €, f then the
angle remains the same

Operator P rotates every vector rotates on the angle .
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If we choose a basis with opposite orientation (“right” basis) then the
angle will change: ¢ — —¢.

We already did it in 1.7.1 and we also see from formula (1.48) that the
matrix of operator P is orthogonal matrix such that its determinant equals
1. In 2-dimensional case we came to simple Proposition (see Proposition in
1.7.1) which we will repeat again®:

Proposition Let P be an orthogonal operator in oriented 2-dimensional
Euclidean space. If operator P preserves orientation (det P = 1) then it is a
rotation operator (1.48) on some angle .

The situation is little bit more tricky in 3-dimensional case.

Let E3 be an Euclidean vector space. (Problem of orientation will be
discussed latter.) Let N # 0 be an arbitrary non-zero vector in E?. Consider
the line I, spanned by vector N. This is axis directed along the vector N.
Choose a unit vector

n—=-4+—— (1.49)

Vector n fixes an orientation on lny. Changing n — —n changes an orientation on oppo-
site).

Choose an arbitrary orthonormal basis such that first vector of this basis
is directed along the axis: a basis {n,f, g}.

Definition We say that a linear operator P rotates the Euclidean space
E3 on the angle ¢ with respect to an axis In directed along a vector N if the
following conditions are satisfied:

P(N) =N

vector N (and all vectors proportional to this vector) are eigenvectors
of operator P with eigenvalue 1, i.e. axis remain intact

e for an orthonormal basis {n, f, g} such that the first vector of this basis
is equal to n, (n is a unit vector, proportional to IN)

f'=Pf)="f i — s
(f) cos'cp+gsmgo e, {f.g} = {f.g) (C?S(p sin go) '
g'=P(g)=—fsinp+gcosy sing  cosp

(1.50)

4Just here we denote the operator by letter ‘P’ instead letter ‘A’
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In other words plane (subspace) orthogonal to axis rotates on the angle
@: linear operator P rotates every vector orthogonal to axis on the angle
¢ in the plane (subspace) orthogonal to the axis.

Linear operator P transforms the basis {n,, f, g} to the new basis {n, f’, g’}
= {n,fcosp+gsinp, —fsinp+gcosy}. The matrix of operator P, i.e. the
transition matrix from the basis {n,,f, g} to the basis {n,f’, g’} is defined
by the relation:

1 0 0
{n,f' g'} = {n,fcosp+gsiny, —fsinpt+gcosp}t ={n,,f,g} | 0 cosp —sinyp
0 sinp cose
(1.51)
Recalling definition (1.25) of trace of linear operator we come to the following
relation
TrP =1+2cosyp (1.52)

where ¢ is angle of rotation. Note that Trace of the operator does not depend
on the choice of the basis. This formula express cosine of the angle of rotation
in terms of operator, irrelevant of the choice of the basis.

Remark This formula defines angle of rotation up to a sign.

If we change orientation then ¢ — —p. For non-oriented Euclidean space rotation is
defined up to a sign®

Careful reader maybe already noted that even fixing the orientation of E? does not fix
the “sign” of the angle: If we change the orientation of the axis (changing n — —n) then
changing the corresponding “left” basis will imply that ¢ — —p. In fact angle ¢ is the
angle of rotation of oriented plane which is orthogonal to the axis of rotation. Orientation
on the plane is defined by orientation in E® and orientation of the axis which is orthogonal
to this plane. In the case of 3-dimensional space sign of the angle depends not only on
orientation of E? but on orientation of axis. In what follows we will ignore this. This
means that we define rotation on the angle £¢ up to a sign.... Rotation is defined for
operators preserving orientation. The difference between angles of rotations ¢ and —¢ is
depending not only on orientation of E3 but on orientation of axis too. But we ignore this
difference. Note that cos ¢ in the formula is defined up to a sign

Rotation operator (1.51) evidently is orthogonal operator preserving ori-
entation. Is it true converse implication? At the beginning of this paragraph
we formulated the Euler Theorem. It gives the positive answer on this ques-
tion. We will formulate this Theorem again in more detail:

5Does it recall you expressions such as “clockwise”, “anticlock-wise” rotation?
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Theorem (the Euler Theorem) Let P be an orthogonal operator, preserv-
ing an orientation of Euclidean space E3, and which is not identical operator,
i.e. operator P preserves the scalar product and orientation, and P # id.
Then it is a rotation operator with respect to an axisl on the angle p, (v # 0).

Fvery vector N directed along the axis does not change, i.e. the axis is
1-dimensional space of eigenvectors with eigenvalue 1, P(N) = N. FEuvery
vector orthogonal to axis rotates on the angle ¢ in the plane orthogonal to
the axis, and

TrP=1+2cosp.

The angle ¢ is defined up to a sign. Changing orientation of the Euclidean
space and of the axis change sign of .

This Theorem can be restated in the following way: every orthogonal
operator P preserving orientation, (det P # 0) has an eigenvector N # 0 with
eigenvalue 1. This eigenvector defines the axis of rotation. In an orthonormal
basis {n, f, g} where n is a unit vector along the axis, the transition matrix
of operator has an appearance (1.51). Angle of rotaion can be defined via
Trace of operator by formula Tr P = 1 + 2 cos ¢.

Remark If P is an identity operator, P = I then “ there is no rotation”,
more precisely: any line can be considered as an axis of rotation (every vector
is eigenvector of identity matrix with eigenvalue 1) and angle of rotation is
equal to zero. If P # I then axis of rotation is defined uniquely.

Proof of the Euler Theorem.

The proof of the Euler Theorem has two parts. First and central part
is to prove the existence of the axis. The rest is easy: we take an arbitrary
orthonormal basis n, f, g such that n is eigenvector, and we come to relations

(1.50), (1.51).

There are many different proofs of existence of axis of rotation. We expose here sketchs
of two proofs. The first which maybe is most beautiful proof which belongs to Coxeter.
The second proof-using standard methods of linear algebra.

Coxeter’s proof.

Let P be linear orthogonal operator preserving orientation. Note that for any two
unit vectors e, f one can consider orthogonal operator Re ¢ which swaps the vectors e, f,
(it is reflection with respect to the plane spanned by the vectors e +f and a vector e x f).

Let {e,f,g} be an arbitrary orthonormal basis in E* and let €, f’, g’ be image of this

basis under operator P
Ple)=¢', P(f)=1f P(g) =g’

If e = €' nothing to prove (e is eigenvector with eigenvalue 1). If this is not the case,
apply reflection operator Rees to the initial basis {e,f,g} we come to the orthonormal
basis {€’,f, g}, Then applying reflection operator R; ; to this basis we come to the basis
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e, f',g. The third vector has no choice: it has to be equal to g. Indeed it may be equal
to =g, since all operator are orthogonal, but it cannot be equal to —g’ since orientation
will be opposite. orientation is opposite. Hence we see that operator P is the product of
two reflections operators:

P = Rl o R2 .

Reflection operator is identical operator, on the plane.

Let oy be a plane such that R; is invariant on «y, and let as be a plane such that Ry is
invariant on ay. Consider the line [, intersection of these planes, we come to eigenvectors
with eigenvalue 1. m

linear algebra proof

Any linear operator L in 3-dimensional vector space has at least one eigenvector x: x
is non-zero solution of homogeneous equation Lx = Alx, where eigenvalue 1 is a solution
of cubic equation det(L — 1) = 0, and this cubic equation has at least one root.

Hence orthogonal operator P has at least one eigenvector x: Px = Ax, Since P is
orthogonal operator, then A = +1. If A = 1, then x defines the axis since P preserves
orientation. If A = —1, Px = —x, then eigenvector with eigenvalue 1 belongs to the plane
orthogonal to x. m

Example Consider linear operator P such that for orthonormal basis

{es ey e}
P(e;) =e,, P(e,) =e,, Ple,) = —e, (1.53)

This is obviously orthogonal operator since it transforms orthogonal ba-
sis to orthogonal one. This operator swaps first two vectors and reflects
the third one. It preserves orientation: matrix of operator in the basis
{e;, ey, e.}, i.e. the transition matrix from the basis {e,,,e,, e.} to the
basis {P(e,), P(e,), P(e.)} is defined by the relation:

{P(ew)v P(ey)’ P(eZ)} = {ey7ex; _ez} = {exa 7ey7ez}

o = O

1 0
0 O
0 -1

det P = 1. This operator preserves orientation. Hence by Euler Theorem it
is a rotation. Find first axis of rotation. It is easy to see from (1.53) that
N = A(e, + e,) is eigenvector with eigenvalue 1:

P(N)=P(e, +e,) =e,+e, =N.

Hence axis of rotation is directed along the vector e, +e,. Tr P = 1+2cosp =
—1. The angle of rotation ¢ = 7.
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One can calculate explicitly angle of rotation: Consider orthonormal basis {n, f,g}

adjusted to the axis (n||IN). We have that n = % since n is proportional to N and it

is unit vector. Choose f = _e%gey and g = e,. Then it is easy to see that

{nyf,g}—{

e, +e, —e;+e g}

V2 V2

is orthonormal basis.Using (1.53)one can see that

P(n):P(egC\J/%ey) _ ey\%ew o,
P(f) _P<_ei};ey) = _ei};ez =-f, Plg)=-g

We see that b,
{Il, f7 g}g){nv 7f7 7g} .

Comparing with (1.50) and (1.51) we see that the operator P is rotation of E3 on the
angle 7 with respect to the axis directed along the vector e, + e,.

1.8 Area of parallelogram, volume of parallelepiped,
and determinant of linear operator

You know that area of parallelogram and volume of parallelepiped can be
calculated in terms of vector (cross) product. These formulae explain geo-
metrical meaning of determinant of linear operator.

1.8.1 Vector product in oriented E?

Now we give a definition of vector product of vectors in 3-dimensional Eu-
clidean space equipped with orientation.

Let E3 be three-dimensional oriented Euclidean space, i.e. Euclidean
space equipped with an equivalence class of bases with the same orientation.
To define the orientation it suffices to consider just one orthonormal basis
{e,f, g} which is claimed to be left basis. Then the equivalence class of the
left bases is a set of all bases which have the same orientation as the basis

{e.f,g}.
Definition Vector product L(x,y) = x X y is a function of two vectors
which takes vector values such that the following axioms (conditions) hold
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The vector L(x,y) = x X y is orthogonal to vector x and vector y:
(xxy)lx, (xxy) ly (1.54)

In particular it is orthogonal to the the plane spanned by the vectors
x,y (in the case if vectors x,y are linearly independent)

XXy =-y XX, (anticommutativity condition) (1.55)

(Ax+puy)xz=ANxxz)+puly xz), (linearity condition) (1.56)

If vectors x,y are perpendicular each other then the magnitude of the
vector x X y is equal to the area of the rectangle formed by the vectors
x and y:

xxy|= x|y, if x Ly,ie(x,y)=0. (1.57)

If the ordered triple of the vectors {x,y,z}, where z = x X y is a basis,
then this basis and an orthonormal basis {e, f, g} defining orientation
of E? have the same orientation:

{x,y,z} = {e,f,g}T, where for transition matrix 7', det T" > 0.
(1.58)

Vector product depends on orientation in Euclidean space.

Comments on conditions (axioms) (1.54)—(1.58):
The condition (1.56) of linearity of vector product with respect to

the first argument and the condition (1.55) of anticommutativity imply that
vector product is an operation which is linear with respect to the second
argument too. Show it:

ZX (AX+py) = —(Ax+puy)xz = —Axxz)—pu(lyxz) = AMzxx)+u(zxy).

Hence vector product is bilinear operation. Comparing with scalar prod-
uct we see that vector product is bilinear anticommutative (antisymmetric)
operation which takes vector values, while scalar product is bilinear symmet-
ric operation which takes real values.
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2. The condition of anticommutativity immediately implies that vector
product of two colinear (proportional) vectors x,y (y = Ax) is equal to zero.
It follows from linearity and anticommuativity conditions. Show it: Indeed

XXYy=XX(AX)=AXXX)=-AxXXx)=—-xX (AXx) = —x xy. (1.59)

Hence x x y =0, ify:)\x..

3. It is very important to emphasize again that vector product depends
on orientation. According the condition (1.58) if z = x x y and we change
the orientation of Euclidean space, then z — —z since the basis {x,y, —z}
as an orientation opposite to the orientation of the basis {x,y,z}.

You may ask a question: Does this operation (taking the vector product) which obeys
all the conditions (axioms) (1.54)—(1.58) exist? And if it exists is it unique? We will
show that the vector product is well-defined by the axioms (1.54)—(1.58), i.e. there exists
an operation x x y which obeys the axioms (1.54)—(1.58) and these axioms define the

operation uniquely.

We will assume first that there exists an operation L(x,y) = x X y which
obeys all the axioms (1.54)—(1.58). Under this assumption we will construct
explicitly this operation (if it exists!). We will see that the operation that
we constructed indeed obeys all the axioms (1.54)—(1.58).

Let {e,, ey, €.} be an arbitrary left orthonormal basis of oriented Eu-
clidean space E?, i.e. a basis which belongs to the equivalence class of the
basis {e, f, g} defining orientation of E3. Then it follows from the consider-
ations above for vector product that

e, Xxe, =0, e, Xe, =e, e Xe, =—¢,
e, X e, =—e, e, xe =0, e, X e, =e, (1.60)
e, Xe, =e, e, Xe =—e, e, xe, =0

E.g. e, xe, =0, because of (1.55), e, X e, is equal to e, or to —e, according
to (1.57), and according to orientation arguments (1.58) e, X e, = e,.

Now it follows from linearity and (1.60) that for two arbitrary vectors
a=aze, +aye, +a.e;, b=>be, +be,+b.e,

axb = (a,e,+aye,+a.e,)x (be,+be,+b.e,) = abe, xe,+a,b.e, xe,+
aybye, X e, +ayb.e, X e, +a.bye, X e, +abe, X e, =

(ayb, — asby)e, + (a.b, — azb,)e, + (azby, — aybr)e, . (1.61)
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It is convenient to represent this formula in the following very familiar way:

e, e e,
L(a,b)=axb=det [a, a, a, (1.62)
b, b, b.

We see that the operation L(x,y) = x x y which obeys all the axioms (1.54)—(1.58),
if it exists, has an appearance (1.62), where {e,,e,,e.} is an arbitrary orthonormal basis
(with rightly chosen orientation). On the other hand using the properties of determinant
and the fact that vectors are orthogonal if and only if their scalar product equals to zero
one can easy see that the vector product defined by this formula indeed obeys all the
conditions (1.54)—(1.58).

Thus we proved that the vector product is well-defined by the axioms (1.54)—(1.58)
and it is given by the formula (1.62) in an arbitrary orthonormal basis (with rightly chosen
orientation).

Remark In the formula above we have chosen an arbitrary orthonormal
basis which belongs to the equivalence class of bases defining the orientation.
What will happen if we choose instead the basis {e,,e,,e,} an arbitrary
orthonormal basis {f;, f, f3}. We see that such that answer does not change
if both bases {e,, e, e.} and {f}, f5, f3} have the same orientation, Formulae
(1.60) are valid for an arbitrary orthonormal basis which have the same
orientation as the orthonormal basis {e,,e,, e,}.— In oriented Euclidean
space E? we may take an arbitrary basis from the equivalence class of bases
defining orientation. On the other hand if we will consider the basis with
opposite orientation then according to the axiom (1.58) vector product will
change the sign. (See also the question 6 in Homework 4)

1.8.2 Vector product—area of parallelogram

The following Proposition states that vector product can be considered as
area of parallelogram:

Proposition 2 The modulus of the vector z = x X y is equal to the area
of parallelogram formed by the vectors x and y.:

S(x,y) = S(Il(x,y)) =[x x y|, (1.63)

where we denote by S(x,y) the area of parallelogram I1(x,y) formed by the
vectors X,y.
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Proof: Consider the expansion y = y) + y., where the vector y, is
orthogonal to the vector x and the vector y) is parallel to to vector x. The
area of the parallelogram formed by vectors x and y is equal to the product of
the length of of the vector x on the height. The height is equal to the length
of the vector y,;. We have S(x,y) = [x||yL|- On the other z = x xy =
XX (yj+yL) =xxy;+xxy;. But xxy; =0, because these vectors
are colinear. Hence z = x Xy, and |z| = |x||y .| = S(x,y) because vectors
x,y. are orthogonal to each other.

This Proposition is very important to understand the meaning of vector
product. Shortly speaking vector product of two vectors is a vector which is
orthogonal to the plane spanned by these vectors, such that its magnitude is
equal to the area of the parallelogram formed by these vectors. The direction
1s defined by orientation.

Remark It is useful sometimes to consider area of parallelogram not as a positive
number but as an real number positive or negative (see the next subsubsection.)

It is not worthless to recall the formula which we know from the school
that area of parallelogram formed by vectors x,y equals to the product of
the base on the height. Hence

x X y| = x| [y[[sinf], (1.64)

where 6 is an angle between vectors x,y.

Finally I would like again to stress:

Vector product of two vectors is equal to zero if these vectors are colinear
(parallel). Scalar product of two vectors is equal to zero if these vector are
orthogonal.

Exercise!Show that the vector product obeys to the following identity:
(axb)xc)+((bxc)xa)+((cxa)xb)=0. (Jacoby identity) (1.65)

This identity is related with the fact that heights of the triangle intersect in the one point.
Exercise’ Show that a x (b x c) = b(a,c) — c(a, b).

1.8.3 Area of parallelogram in E? and determinant of 2x2 matrices

Let a, b be two vectors in 2-dimensional vector space E?.
One can consider E? as a plane in 3-dimensional Euclidean space E3. Our
aim is to calculate the area of the parallelogram II(a, b) formed by vectors
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a,b. Let n be a unit vector in E® which is orthogonal to E?. Then it is
obvious that the vector product a x b is proportional to the normal vector
n to the plane E%:

axb=A(a,b)n, (1.66)

and the area of the parallelogram Il(a, b) equals to the modulus of the coef-
ficient A(c,b):
S(Il(a,b)) = |a x b| = |A(a,b)]|. (1.67)

The normal unit vector n and coefficient A(a,b) are defined up to a sign: n — —n,
A — —A. On the other hand the vector product a x b is defined up to a sign too:

vector product depends on orientation. The answer for a X b is not changed if we perform

/

calculations for vector product in an arbitrary basis {e]

,€,,€,} which have the same
orientation as the the basis {e,f,n} and axb —— —axb. If we consider an arbitrary basis
{e}, e}, e’} which have the orientation opposite to the orientation of the basis {e,f,n}
(e.g. the basis {e,f, —n}) then A(a,b) - —A(a,b). The magnitude A(a,b) is so called
algebraic area of parallelogram. It can positive and negative.

If (a1, az), (b1, by) are coordinates of the vectors a, b in the orthonormal

basis {e,f}: a = aje + axf, b = bje + bof and according to (1.62)

e f n
axb=det|a a 0] =ndet (‘“ “2) (1.68)
bi bo
by by 0

a1

Thus A(a,b) in equation (1.67) is equal to det (b
1

a2
b ), and we come to
2

the following formula for area of parallelogram

a; as
det (b1 bQ)‘. (1.69)

This is an important formula for relation between determinant of 2 x 2 matrix,
area of parallelogram and vector product.

S(I1(a,b)) =|a x b| =

One can deduce this relation in other way:
Let E? be a 2-dimensional Euclidean space. The function A(a,b) defined by the
relation (1.69) obeys the following conditions:

e It is anticommutative:
A(a,b) = —A(a,b) (1.70)

e It is bilinear

A(Aa+ pub,c) = M(a,c) + pA(b,c); A(c,\a+ ub) = AA(c,a)+ pA(c,b). (1.71)
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e and it obeys normalisation condition:
Ale,f) = £1 (1.72)

for an arbitrary orthonormal basis.
(Compare with conditions (1.54)—(1.58).)

One can see that these conditions define uniquely A(a,b) and these are the conditions
which define the determinant of the 2 x 2 matrix.

1.8.4 Areas of parallelograms and determinants of linear opera-
tors in E?

Let A be an arbitrary linear operator in E2. One can see that the following
formula holds.

Let a,b be two arbitrary vectors in E2. Let a’, b’ be two vectors such
that

a’'=A(a), b=A(D).

Consider two parallelograms: Parallelogram Il(a, b) formed by vectors a, b,
and the second parallelogram II(a’, b’) formed by vectors o.b’. Then one can
deduce from equation (1.69) that

Area of II(a’,b’) = |det A| - Area of II(a,b) . (1.73)

This formula relates volumes of parallelograms II(a, b), II(a’, b") with de-
terminant of linear operator which transforms the first parallelogram to the
second one. (See also exercise 9 in Homework 4).

Prove straightforwardly equation (1.73). Let vectors a, b be linearly independent (if
they are dependent, then area of both parallelograms in (??) evidently vanish). We have:

r_ : ary _ ai A A Aqrar + Ajzas
a=4), ie <a’2) =4 (az) <A21 Ago Agray + Aszaz )’
. b, b A A Aq1b1 + Ag0b
r 1) _ 1\ _ (A A 1 1101 1202
)2 )R

As21b1 + Agaby
Hence

a _ A _ Anar + Arpas Asiar + Azas ap az\ A Ao — (&) yr
b’ by bh A11by + Araby Agiby 4 Agabo b1 by Ap Agp b '

Taking determinants we come to: Area of IIa’, b’ =

i (8- () ) e () ) -
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1.8.5 Volume of parallelepiped

The vector product of two vectors is related with area of parallelogram. What
about a volume of parallelepiped formed by three vectors {a,b,c}?

Consider parallelepiped II(a, b, c) formed by vectors {a, b,c}. The par-
allelogram II(a, b) formed by vectors b, ¢ can be considered as a base of this
parallelepiped.

Let 6 be an angle between height and vector a. It is just the angle between
the vector b x ¢ and the vector a. Then the volume is equal to the length of
the height multiplied on the area of the parallelogram, V' = Sh = S|a| cos ¥,
i.e. volume is equal to scalar product of the vectors a on the vector product
of vectors b and c:

e, e e,
V({a,b,c}) =|(a,b x c)| = || aye, + aye, +a.e,,det [ b, b, b,
Cx Cy Cp

= |(aye, + aye, + aze,, (byc, — b.cy)e, + (bycy — bycy)ey + (bocy — byci)e,)| =

ay a, a,
laz(byc, —bycy) + ay(bycy — bycy) + ay(byey — byc,)| = |det | b, b, b,
Cx €y Cp
We come to beautiful and useful formula:
a; a, a,
volume of II(a,b,c) = |(a,[b x c])| = |det | b, b, b, || . (1.74)
Co Cy Cy

Compare this formula with the formula (1.69) for the area of parallelogram.

Remark In these formulae we consider the volume of the parallelepiped as a positive
number. It is why we put the sign of ‘modulus’ in all the formulae above. On the other
hand often it is very useful to consider the volume as a real number (it could be positive
and negative).

1.8.6 Volumes of parallelepipeds and determinants of linear op-
erators in E3

Write down an equation for the volumes of parallelepipeds analogous to equa-
tion (1.73) for the the areas of parallelograms. Now instead parallelogram
we consider parallelepiped, and instead linear operator A in E? we consider
linear operator A in E3.
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Let A be an arbitrary linear operator in E3. In the same way as in formula
(1.73) the following formula holds:

Let a, b, ¢ be three arbitrary vectors in E3. Linear operator A transforms
these three vectors to three vectors a’, b’, ¢’ where

a'=A(a), b=AD),c=P().

Consider two parallelepipeds: Parallelepiped II(a,bc¢) formed by vectors
a, b, c and the second parallelepiped II(a’, b’ ¢’) formed by vectors o'.V/, c'.
Then it follows from (1.74) the following formula and determinant of operator
A:

Volume of II(a’,b’,c¢’) = |det A| - Volume of II(a, b, c) . (1.75)

This formula relates volumes of parallelepipeds Il(a, b, c), II(a’,b’, ¢’) with
determinant of linear operator which transforms the first parallelepiped to
the second one. (See also exercise 9 in Homework 4).

2 Differential forms

2.1 Tangent vectors, curves, velocity vectors on the
curve

Tangent vector is a vector v applied at the given point p € E".

The set of all tangent vectors at the given point p is a vector space. It is
called tangent space of E" at the point p and it is denoted T, (E").

One can consider vector field on E"| i.e.a function which assigns to every
point p vector v(p) € T,(E").

Here we consider on an equal footing vectors of vector space E™ and points of associated
affine space E™ (as usual we denote them by the same letter (see for details subsection
1.2)

It is instructive to study the conception of tangent vectors and vector
fields on the curves and surfaces embedded in E™. In this course we mainly
consider tangent vectors to curves.

A curve in E" with parameter ¢ € (a,b) is a continuous map

C: (a,b) — E" r(t) = (*(t),...,2"(t)), a<t<b (2.1)
For example consider in E? the curve

C: (0,27) — E? r(t) = (Rcost, Rsint), 0 <t < 2m.
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The image of this curve is the circle of the radius R. It can be defined by
the equation:

2? +y* = R%.

To distinguish between curve and its image we say that curve C' in (2.1)
is parameterised curve or path. We will call the image of the curve unpa-
rameterised curve (see for details the next subsection). It is very useful to
think about parameter ¢ as a "time” and consider parameterised curve like
point moving along a curve. Unparameterised curve is the trajectory of the
moving point. It is locus of the points. The using of word ”curve” without
adjective "parameterised” or "nonparameterised” sometimes is ambiguous.

Vectors tangent to curve—welocity vector

Let r(t) r=r(t) be a curve in E".
Velocity v(t) it is the vector

v(t) = % = (&'(t),...,...a"(1) = (v'(2),...,v"(1))

in E". Velocity vector is tangent vector to the curve.

Let C: r = r(t) be a curve and ry = r(ty) any given point on it. Then
the set of all vectors tangent to the curve at the point ro = r(ty) is one-
dimensional vector space T;,C. It is linear subspace in vector space 1,,C"
T,,C < T, E". The points of the tangent space 7,,C are the points of tangent
line.

Remark We consider by default only smooth, reqular curves. Curve r(t)
= (z'(t),...,2"(t)) is called smooth if all functions z'(t), (i = 1,2,...,n) are
smooth functions (Function is called smooth if it has derivatives of arbitrary
order.) Curve r(t) is called regular if velocity vector v(t) = d’;(tt) is not equal
to zero at all ¢.

2.2 Reparameterisation

One can move along trajectory with different velocities, i.e. one can consider
different parameterisation. E.g. consider

t)=1 t) =sint
Ch: z(?) 0<t<1, Csy: z(?) S,mQ 0<t<=™
y(t) =t y(t) =sin“t 2
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Images of these two parameterised curves are the same. (These curves
have the same loci.) In both cases point moves along a piece of the same
parabola but with different velocities.

Definition
Two smooth curves Cy: r1(t): (a1,b1) = E"and Cy:  ro(7): (az, b)) —
E" are called equivalent if there exists reparameterisation map:

t(1): (ag,by) — (aq,b1),

such that

ro(T) = r1(t(7)) (2.2)
Reparameterisation ¢(7) is diffeomorphism, i.e. function #(7) has derivatives
of all orders and first derivative ¢'(7) is not equal to zero.

E.g. curves in (2.2) are equivalent because a map ¢(t) = sint transforms
first curve to the second.

Equivalence class of equivalent parameterised curves is called non-parameterised
curve.
FEquivalent curves have the same image.(They have the same loci.)

It is useful sometimes to distinguish curves in the same equivalence class
which differ by orientation.

Definition Let C, Cy be two equivalent curves. We say that they have
same orientation (parameterisations ry (¢ and r(7) have the same orientation)
if reparameterisation ¢ = ¢(7) has positive derivative, t'(7) > 0. We say that
they have opposite orientation (parameterisations ri(t and r(7) have the
opposite orientation) if reparameterisation ¢ = ¢(7) has negative derivative,
t'(r) < 0.

Changing orientation means changing the direction of ”walking” around
the curve.

Equivalence class of equivalent curves splits on two subclasses with respect
to orientation.

Non-formally: Two curves are equivalent curves (belong to the same
equivalence class) if these parameterised curves ( paths) have the same im-
ages. Two equivalent curves have the same image. They define the same set
of points in E™. Different parameters correspond to moving along curve with
different velocity. Two equivalent curves have opposite orientation If two pa-
rameterisations correspond to moving along the curve in different directions
then these parameterisations define opposite orientation.
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What happens with velocity vector if we change parameterisation? It
changes its value, but it can change its direction only on opposite (If these
parameterisations have opposite orientation of the curve):

() = dr;f) _ dr(;iT)) _ dii(:) | dx;l(tt) . 2.3

Or shortly: V(T)|T = tT(T)V(t)‘t:t(T)

We see that velocity vector is multiplied on the coefficient (depending on
the point of the curve), i.e. velocity vectors for different parameterisations
are collinear vectors.

(We call two vectors a, b collinear, if they are proportional each other, i,e, if
a= \b.)

Example Consider following three curves in E?:
= Rcosf —Rsi
- x C.OS O<f<n. v= Ug\ _ (®o) _ Rsinf v =R,
y = Rsinf Uy Yo Rcos
= Rcos4 — i
- T c.os © ,O<g0<ﬁ, v (P) = (Te) 2 4Rsin Iv| = 4R,
y = Rsindyp 4 Uy (. 4R cos 0

o TR cen e (%) () - ()
3- y:R 1_u2 ) I - Uu - yu - \/% )
(2.4)

These three parameterised curves,(paths) define the same non-parameterised
curve: the upper piece of the circle: 22 4+ y? = 1,y > 0. The reparametersia-
tion 6 = 4y transforms the first curve, to the second curve. The reparame-
terisation u(f) = cos # transforms the third curve to the first one.

Curves C, Cy have the same orientation, because ¢'(¢) =4 > 0.
Curves C1, C3 have opposite orientation because u'(6) < 0.
Curves (5 and (5 have opposite orientations too since the curves Cy and
C7 have the same orientation, and the curves C5 and C have the opposite
orientation.

In the first case point moves with constant pace |v(#)| = R anti clock-wise
?from right to left” from the point A = (R, 0) to the point B = (—R,0).

In the second case point moves with constant pace |v(0)| = 4R anti clock-
wise ”from right to left” from the point A = (R, 0) to the point B = (—R, 0).
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In the third case pace is not constant, but v, = 1 is constant. Point
moves clock-wise ”from left to right”, from the point B = (—R,0) to the
point A = (R,0). In the third case point also moves clock-wise ”from the
left to right”.

There are other examples in the Homeworks.

2.3 Differential O-forms and 1-forms
2.3.1 Definition and examples of O-forms and 1-forms

Most of considerations of this and next subsections can be considered only for
E2. All examples for differential forms is only for E?.

O-form on E™ it is just function on E™ (all functions under consideration
are differentiable)

Now we define 1-forms.
Definition Differential 1-form w on E" is a function on tangent vectors
of E™, such that it is linear at each point:

w(r, Avy + pve) = dw(r, vi) + pw(r, va). (2.5)

Here vy, vy are vectors tangent to E™ at the point r, (vy,vy € T,E") (We
recall that vector tangent at the point r means vector attached at the point
r). We suppose that w is smooth function on points r.

If X(r) is vector field and w-1-form then evaluating w on X(r) we come
to the function w(r, X(r)) on E".

Let e, ..., e, beabasisin E® and (z', ..., 2") corresponding coordinates:
an arbitrary point with coordinates (z!,...,z") is assigned to the vector
r = z'e, +2%e, + ... 2", starting at the origin.

Translating basis vectors e; (¢ = 1,...,n) from the origin to other points
of E" we come to vector field which we also denote e; (i = 1,...,n). The
value of vector field e; at the point (z!,...,2") is the vector e; attached at
this point (tangent to this point).

Let w be an 1-form on E". Consider an arbitrary vector field A(r) =

Azt .. ")
A(r) = Al(r)e; + -+ A"(r)e, = ZAi(r)ei
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Then by linearity

w(r,A(r)) =w (r, A'(r)e; + -+ A"(r)e,) = A'w(r,e1) + -+ A"w(r,e,).

Consider basic differential forms da!, dz?, ..., dx™ such that
A A Lif i =
diie;) =i =4 "0 (2.6)
0if i #£

Then it is easy to see that
dr'(A) = Al dr*(A) = A%, ... iedr'(A) = A
Hence
w(r,A(r)) = (wi(r)dz' + wa(r)dz® + - - - + wy,(r)dz"™) (A(r))
where components w;(r) = w(r, ;).

In the same way as an arbitrary vector field on E™ can be expanded over the basis {e;}
(see (2.3.1)), an arbitrary differential 1-form w can be expanded over the basis forms(2.3.1)

w=uwi(z!, ... 2" de' +wy(zt, ..., 2™)d2x® 4+ - Fw, (2, ..., 2")dz" .

Example Consider in E? a basis e,, e, and corresponding coordinates (z, y).

Then
(2.7)

The value of a differential 1-form w = a(z,y)dx + b(z,y)dy on vector field
X = A(z,y)e, + B(z,y)e, is equal to

w(r,X) = a(z,y)dz(X) + bz, y)dz(X) =

a(z,y)A(z,y) + b(x,y)B(z,y) .

It is very useful (see below ) introduce for basic vectors new notations:

er—>—8 for basic vectors e, e,. e, in E3 e |—>—e|—>—e|—>a

7 - Vi i) ) ©z x z a_

oz v or Y " Oy 0z
(2.8)
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In these new notations the formula (2.3.1) looks like

ey ' Lifi— i
o (e I
Oz / 0ifi#j
and the formula (2.7) looks like
o\ _ 0\ _
9\ _ 0\ _
The notations which we introduce look ’odd’. However they are powerful,
since uisng these notations we can work in arbitrary coordinates.
We will try to demonstrate it later. Now in the next subsection we will
consider the directional derivative of function along vector fields. The formula

which will be introduced can be written in arbitrary coordinates; it will be
another justification of notations (2.8).

2.3.2 Vectors—directional derivatives of functions

Let R be a vector in E™ tangent to the point r = ry (attached at a point
r = rg). Define the operation of derivative of an arbitrary (differentiable)
function at the point rg along the vector R— directional derivative of function
f along the vector R

Definition
Let r(t) be a curve such that

[ I‘(t)|t:0 =TIy

e Velocity vector of the curve at the point rg is equal to R: dzl(tt) o =R

Then directional derivative of function f with respect to the vector R at the
point rg Or f ‘ro is defined by the relation

Orll,, = (7 ()], (29

Using chain rule one come from this definition to the following important
formula for the directional derivative:

0

ox’

flat, .2 (2.10)

r=ro

IfR= iRiei then or f|, = ZHIRZ'

47



It follows form this formula that
One can assign to every vector R = Z?:l Rie; the operation Or, = RI%—i—
R*2 + -+ R"5% of taking directional derivative:

R—iRiei H@R—iRiaii (2.11)
=1 i=1

Thus we come to notations (2.8). The symbols 0,, d,, 0, correspond to partial
derivative with respect to coordinate x or y or z . Later we see that these new
notations are very illuminating when we deal with arbitrary coordinates, such
as polar coordinates or spherical coordinates, The conception of orthonormal
basis is ill-defined in arbitrary coordinates, but one can still consider the
corresponding partial derivatives. Vector fields e,, ey, e, (or in new notation
Oy, 0y, 0,) can be considered as a basis® in the space of all vector fields on
E3 .
An arbitrary vector field (2.3.1) can be rewritten in the following way:

A(r) = Alr)er + -+ A'(r)e, = A1<r>% * AQ(r>% et A"(r>ain
(2.12)

2.3.3 Differential acting 0-forms — 1-forms

Now we introduce very important operation: Differential d which acts on
0-forms and transforms them to 1 forms.

Differential 4 | Differential
S
0-forms 1-forms

Later we will learn how differential acts on 1-forms transforming them to
2-forms.

Definition Let f = f(x)-be O-form, i.e. function on E™. Then

df =" af(xlé;c'i' ) i (2.13)
=1

6Coefficients of expansion are functions, elements of algebra of functions, not numbers
,elements of field. To be more careful, these vector fields are basis of the module of vector
fields on E3
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The value of 1-form df on an arbitrary vector field (2.12) is equal to

n 1 n n 1 n
df(A) = Zaf@ ag;x ) dw(A) :Zaf(x axx J A —onf (214)

i=1 i=1

We see that value of differential of O-form f on an arbitrary vector field A
15 equal to directional derivative of function f with respect to the vector A.

The formula (2.14) defines df in invariant way without using coordinate expansions.
Later we check straightforwardly the coordinate-invariance of the definition (2.13).

Exercise Check that

dz'(A) = Oax’ (2.15)
Example If f = f(x,y) is a function (0 — form) on E? then
if = (3‘1‘(90,y)d36+ 5’f(w,y)dy
ox Jy

and for an arbitrary vector field A = A = A,e, + Aye, = A, (2,y)0, +
Ay<l’,y)ay

i) = L Das(a) + 4,000 L) -
Al ) LD s (o) B 0y

Example Find the value of 1-form w = df on the vector field A =
z0, + y0o, if f = sin(z? + y?).

w(A) = df(A). One can calculate it using formula (2.13) or using formula
(2.14).

Solution (using (2.13)):

w=df = %dm + %dy = 2z cos(x? + y?)dx + 2y cos(z® + y*)dy .

w(A) = 2z cos(z® + y?)dz(A) + 2y cos(z® + y*)dy(A) =
2x cos(z® + y?) A, + 2y cos(2® + y*)dA, = 2(2* + y?) cos(2® + y°),
Another solution (using (2.14))

df (A) =0af = Am% + Ax% = 2(x? + y?) cos(z? + 32) .

See other examples in Homeworks.
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2.3.4 Exact forms

1-form w is called exact if there exists a function f such that w = df.

E.g. aform w = zdy+ydr = d(xy) is an exact form, a form w = xdx+ydy
is also exact form: w = xdx + ydy = d <%2 + y—; )

Of course not any form is an exact form (see exercises in Homeworks.)
E.g. 1-form w = xdy is not an exact form. Indeed suppose that this is an
exact form, i.e. zdy = dF = Fydx + F,dy, then F, = v and F, = 0. We see
that on one hand F,, = (f,), = 0 and on the other hand f,, = (f,). = 1.
Contradiction.

Another example:

Example Consider 1-form w = 2ydx + xdy and another 1-form o = zw =
2zydz + 2%dy. One can easy to see that 1-form w is not exact 1-form, and
1-form o is an exact 1-form.

Later we will see that exact 1-forms are easy to integrate over curves.

2.3.5 Differential forms in arbitrary coordinates

We learnt how to calculate directional derivative of functions along vector
fields, we learnt how to calculate values of differential 1-forms on vector fields,
We did the calculations in Cartesian coordinates in E™ (In examples above
we considered Cartesian coordinates (z,y) in E2) One of the reasons why
differential forms are so important is that in fact our calculations may be
performed in arbitrary coordinates. The power of applications of differential
forms is that the constructions are invariant, they do not depend on choice
of coordinates we are working with. Here we consider just few examples (see
for more details Appendices.).

Example Calculate the value of differential forms w = zdy — ydx, o =
xdx + ydy on vector fields A = 20, + y0, and B = 20, — y0,

We solved this execise (see 2 in Homework 5). Now we will do the same
exerices but in polar coordinates

{xzrco&p o {r:\/:v2+y2 . (2.16)

Yy =rsing ¢ = arctan £
We have for differential forms

w = xdy — ydx = 1 cos pd(rsin p) — rsin pd(r cos ) =
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7 cos p(sin wdr+r cos pdp)—r sin p(cos pdr—r sin pdp) = r?(cos® p+sin’ p)dp = r’dyp .
(2.17)
and
o = xdz + ydy = r cos @d(r cos ) + 7 sin pd(r sin p) =
7 cos @(cos pdr—r sin pdp)+r sin p(sin pdr+r cos edyp) = r(cos? p+sin® )dr = rdr .
(2.18)
and for vector fields we have:

0 0 or 0 0Oy 0 or 0 0Oy 0
A =20,4+y0, = x—+y <T + <p_>+y( "9y 30_):

o, Yoy~ “\ozor " orop Ay or | By oy
x 0 Y 0 y 0 Y g\ 0
‘C(W x2+y2%>+y(FE+x2+y2% =5 1)
and
0 0 ar 0  Oyp 0 or 0 Oy 0
B = —yoy=r——Y— =2 ——+ —— |-y ——=—F+ L — | =
0, ~y0 xay Y ou x<3y3r+3y8go> y(@x@r+8x8¢)
y 0 x 0 x 0 x g\ 0
v (7" or + x? 4 2 8@) Y (T or  x2+y? 84,0) 0y (2.20)
We have

Now we see we can calculate the values of differential forms on vector
fields in Cartesian and in polar coordinates, and answers are the same:

Cartesian coordinates Polar coordinates
w=ady —ydr o=xdr+ydy w=r%dp o = rdr

_ .0 d _ .0 d _ .9 _ 9

w(A)=0 wB)=224+9y> wA)=0 w(B)=r?
o(A) = 2% + 9 c(B) = o(A) =r? c(B) =
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We used in the calculations for vector fields the chain rule. Pay attention
how useful for these calculations are notations of vector fields as derivatives.
We also used the matrices for partial derivatives of changing of coordinates
(polarcoordinates) Calculations for vector fields were not very easy, but an-
swers are beautiful”!

2.4 Integration of differential 1-forms over curves

Differential forms are natural objects of integration over surfaces. We con-
sider integration of differential 1-forms over curves.

Let w = wi (2!, ..., 2")dat + - +wi (2, ..., 2")da™ = > wida' be an
arbitrary 1-form in E"

and C: r =r(t),t; <t <ty be an arbitrary smooth curve in E".

One can consider the value of one form w on the velocity vector field

v(t) = dii—(tt) of the curve:

wv(t) =Y wi(a'(t),...,2a"(t)da' (v(t)) = Y _wi (¢'(t),...,2" (1)) —
i=1 i=1
We define now integral of 1-form w over the curve C.
Definition The integral of the form w = wy (2!, ... 2")dz'+- - 4w, (2!, ...

over the curve C':  r=r(t) t; <t <tyisequal to the integral of the func-
tion w(v(t)) over the interval ¢; <t < ty:

t2 2 (T L ooy Azt (1)
/Cw = /t1 w(v(t))dt :/t1 (Zzlw, (z'(t),...,2"(t)) pn )dt. (2.22)

Proposition The integral fcw does not depend on the choice of coordi-
nates on E". It does not depend (up to a sign) on parameterisation of the
curve: if C: r=r(t) t; <t <tyisa curve and t = t(7) is an arbitrary
reparameterisation, i.e. new curve C':  r'(1) =r(t(r)) 7 <7 < T, then

fcw = :l:f(;w:

/ W= / w, if orientaion is not changed, i.e. if t'(1) >0
C !

"Paris, vaut bien une messe!
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and

/ w= —/ w, if orientaion is changed, i.e. if t'(T) <0
C !

If reparameterisation changes the orientation then starting point of the
curve becomes the ending point and vice versa.

Proof of the Proposition Show that integral does not depend (up to a sign) on the
parameterisation of the curve. Let ¢(7) (11 <t < 72) be reparameterisation. We come to

the new curve C’: r'(7) = r(¢(7)). Note that the new velocity vector v/(7) = dr(;y))
t'(7)v(t(7)). Hence w(v'(1)) = w(v(¢(7)))t'(r). For the new curve C’
T2 t(TQ)
/ w= / ))dr = / w(v(t(r) P g = / w(v())dt
/ 1 dT t(Tl)

t(m1) = t1, t(m2) = to if reparameterisation does not change orientation and ¢(71) = ts,
t(re) =t if reparameterlsatmn changes orientation.

Hence fc, ftQ) Ydt = fcw if orientation is not changed and fC, =
ftl) (v(t))dt = f12) (v(t ))dt = — [, w is orientation is changed.

ta
Example
Let
w = a(z,y)dx + b(x,y)dy
be 1-form in E? (z,y-are usual Cartesian coordinates). Let C: r =
x = x(t)

y=y(t)
Consider velocity vector field of this curve

v(t) = dz(t” _ (;8) _ @8) — 20, + 0, (2.23)

dx d
(*Tt = dgf)) Y = %)

One can consider the value of one form w on the velocity vector field v(t)
of the curve: w(v) = a(z(t),y(t))dx(v) + b(z(t), y(t))dy(v) =

a(w(t), y(6))w(t) + b(x(t), y(t))y(t) -

The integral of the form w = a(x,y)dz + b(z,y)dy over the curve C: r =
r(t) t; <t < tyis equal to the integral of the function w(v(t)) over the

r(t) , 11 <t <ty beacurve in E%
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interval t; <t <ts:

/Cw:/th(v(t))dt:/tQ (a(x(t),y(t))dxd(tt) +b(:v(t),y(t))d‘7ii—?>> it
1 1 (2.24)

Example Consider an integral of the form w = 3dy+3y?dz over the curve
— cost
C:r(t) {x C_OS ,0 <t < 7/2. (Cis the arc of the circle 2% + y? = 1
Yy =sint
defined by conditions =,y > 0).

Velocity vector v(t) = dtl—gt) = (%(t)) = (It(t)) = (_ smt) The

vy (%) Y (1) cost
value of the form on velocity vector is equal to

w(v(t)) = 3y*(t)ve(t) + 3v,(t) = 3sin®¢(—sint) + 3cost = 3cost — 3sin’ ¢

and
B B 3 , cos’t |z
w= w(v(t))dt = (3cost—3sin”t)dt = 3 | sint + cost — 3 |02
c 0 0

Change parameterisation: ¢ = 27. Reparameterisation does not change
orientation (¢, = 2 > 0), hence the answer has to be the same. Check it: We

= 2
come to C": r(t(7)) v C.OS ! ,0 <7 < 7m/4. (C" has the same locus.)
Yy = sin 27
—2sin 27

Velocity vector v(7) == < 2 cos 21

). The value of the form on velocity

vector is equal to

w(v(7)) = 3y*(t)v,(7)+3v, (1) = 3sin? 27(—2sin 27)+6 cos 27 = 6 cos 27—6 sin® 27,

and
! i 1 cos® 27 =
/Cw = /0 w(v(r))dr = /0 (6 cos 27 —6 sin® 27)dr = 3 (sin 27 + cos 2T — 3 ) ‘6‘
One can see that the answer is the same,
Example Now consider the integral of 1-form over the curve C' which
24yt =1
y=>0

is the upper half of the circle 22 +y?> = R?: C': { . Curve is
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given as an image. We have the image of the curve not the parameterised
curve. We have to define a parameterisation ourself.

We consider three different parameterisations of this curve. Sure to cal-
culate the integral it suffices to calculate | oW in an arbitrary given parame-
terisation r = r(t) of the curve C, then note that for an arbitrary reparame-
terisation t = ¢(7), the integral will remain the same or it will change a sign
depending on the reparameterisation ¢t = ¢(7) preserves orientation or not.

x = Rcost Tz = RcosQr

01—1'1 (t) : {

y = Rsint y = RsinQr
and
r=u

C3 —r3(u): {y Y

All these curves are the same image. If {2 = 1 the second curve coincides
with the first one. First and second curve have the same orientation (repa-
rameterisation ¢ = 7) The third curve has orientation opposite to first and
second (reparameterisation u = cost, the derivative % < 0).

Calculate integrals [, w, [, w, [, w in the case if w = zdy — ydz and
check straightforwardly that these integrals coincide if orientation is the same
or they have different signs if orientation is opposite.

I Calculation for the first curve (.

We have v = 2,0, +y:0,. For the form w = zdy —ydzr w(v) = 2y, —yx, =
Rcost(Rsint) — Rsint(—Rcost) = R?. We have

/ w= / (xyy — yxy)dt = / R%dt = TR*.
Cq 0 0

IT Calculation for the second curve C,.
We have v = .0, +y,0, = —RQsin Qr+RQ cos Q7. Thus w(v) = (xdy—
ydz)(v) = 2y, — yr, = RcosQrRQcos Q1 — Rsin Qr(—RQsin Q7 = R2Q.

We have _ _
a a
/ w= / (xy, — yx,)dr = / R*Q = 1R,
Co 0 0

These answers coincide: both parameterisation have the same orientation.
III Calculation for the third curve Cj.

,—R<u<R,, (2.25)
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We have v = 2,0, + 4,0, = 0, — \/%. Thus w(v) = (zdy —ydz)(v) =
R2

TYu = YTu = — Zpr—0s We have that for the third parameterisation:

R R R2
/ w= / (xyy — Yy )du = / (——> du =
Cs R R R? — u?

= —2R? —TR2.

52 / B du / Lodz B
0 \/RQ—U2 0 \/1—22
We see that the sign is changed.

Note that one can consider the integral of the form w = xzdy — ydx over the semicircle
in polar coordinates instead Cartesian coordinates. We have that in polar coordinates
r(t) =R
p(t) =t
rsinpd(rsing) = r’dp and v(t) = (r, ) = (0,1), i.e. v(t) = d,. We have that
w(v(t)) = r(t)%de(d,) = R*. Hence [,w = [, R?dt = mR?. Answer is the same: The
value of integral does not change if we change coordinates in the plane.

semicircle is { , 0 <t < 7. The form w = zdy — ydz = rcospd(rsiny) —

For other examples see Homeworks.

2.5 Integral over curve of exact form

Recall that 1-form w is called exact if there exists a function f such that
w = df. Of course not any form is an exact form (see exercises in Homeworks.)
see subsection 2.3.4 above and exercises in Homeworks.).

Theorem

Let w be an exact 1-form in E™, w = df.

Then the integral of this form over an arbitrary curve C:  r=r(t) ¢ <
t <ty is equal to the difference of the values of the function f at starting and
ending points of the curve C':

/Cw = f‘ac = f(ro) — f(r1), r1=r(t1),r2o=r(t2). (2.26)

Proof: According definition of the integral of 1-form over curve we have
that [, df = f:f df (v(t))dt. On the other hand according definition of direc-

tional derivative (2.9) we have that



hence we come to

to t2 g . ‘ .
/(de = /tl df (v(t))dt = /t1 pr (r(t))dt = f(r(t))|;> . The proof is finished.

Example Calculate an integral of the form w = 32%(1 +y)dx + x3dy over
the arc of the semicircle 2% + y? = 1,y > 0.

One can calculate the integral naively using just the formula (2.24):
Choose a parameterisation of Cie.g., * = cost,y = sint, then v(t) =
—sintd, + cos td, and w(v(t)) = (32%(1 +y)dx + 23dy)(— sin td, + cos td,) =
—3cos?t(1 +sint)sint + cos ¢ - cost and

/w:/ (—3cos’tsint — 3cos® tsin®t + cos’ t)dt = ...
c 0

Calculations are boring and they are not short.
On the other hand for the form w = 3z2(1+y)dx+ x3dy one can calculate
the integral in a much more efficient way noting that it is an exact form:

w = 32*(1+ y)dz + 2°dy = d (°(1 + y)) (2.27)

Hence it follows from the Theorem that
3 r=—1,y=0
/C w= fe(m) — fr(0) =21+ )| 0= =2 (2.28)

Remark If we change the orientation of curve then the starting point be-
comes the ending point and the ending point becomes the starting point.—
The integral changes the sign in accordance with general statement, that in-
tegral of 1-form over parameterised curve is defined up to reparameterisation.

Corollary The integral of an exact form over an arbitrary closed curve
15 equal to zero.

Proof. According to the Theorem [, w = [, df = f|ac = 0, because the
starting and ending points of closed curve coincide.

Example. Calculate the integral of 1-form w = 2°dy + 5ax*ydx over the
ellipse 22 + % =1.

The form w = 2°dy + 5x*ydz is exact form because w = x°dy + Sxtydr =
d(z°y). Hence the integral over ellipse is equal to zero, because it is a closed
curve.
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2.6 Calculation of integral of 1-form over curve in ar-
bitrary coordinates

In subsection2.3.5 we considered examples of calculations with differential
forms in arbitrary coordinates. In the subsection 2.4 we defined the integral of
1-form over curve. In fact the definition is valid for an arbitrary coordinates,®.
We have not time to go in details in this question, and in this subsection we
just consider example of calculations of integral for differential form w =
xdy — ydx considered in subsection?? in polar coordinates.

xr =x(t

Let C': { ((t)) ,t1 <t <ty beacurve in E2. We will demostrate
y=y

explicitly that the result of claculation of fcw in polar coordinates coi-

cide with the result of calculation of this integral in Cartesina coordinates.

In Cartesian coordinates the calculations for [,w are the following (see

subsection2.4 or Homeworks): v(t) = (zt) = 1,0, + Y0y, w(v(t)) =
¢
(zdy — ydx) (2,0, + y10y) = xy, — yz, and

‘/w—i/ Zﬁ(ﬂﬂ#ﬁﬁ—ywdgw>ﬁ- (2.29)

Calculate the same integral in polar coordinates: The differential form w =
xdy — ydz in polar coordinates has an appearance w = r?dyp (see subsection

2.3.5.)
) x=x(t) r=r(t)
C: {y—y(t) :>{<P—90(t) o <t<ty.

For velocity vector

dr(t) dr(t) 0  dp(t) 0
V(t):<@): i or " dt dp’

dt

and
w(v) = 7’2d90 (r:0r + ¢10,) = 7"2801%

(as usual we use on an equal footing notations 57 < Or 0,

) &P © dt Tty

and ‘fl—f < ¢ ). We come to

szlﬁMWMﬁ:Z;Qﬂ)dy)t. (2.30)

8this is why the differential forms are so powerful in geometry
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Show straightforwardly that integrals (2.30) and (2.29) coincide. We have

that {x - TC'OS 4 , thus we have from (2.29) that
y=rsing

/Cw = /: w(v(t))dt = /: (m(t)d‘l;—(:) - y(t)dzg)) dt =
d

/t 2 (T(t) cos go(t)a (r(t)sinp(t)) — r(t) sin go(t)% (r(t) cos gp(t))) dt =

to
/ (rcos e (rysing + 7 cos@p) — rsine (rycos — rsingp,;)) dt =

t1
t2 t2 do(t
/ r? (COS2 @ + sin? 90) 0 = / (7’2(75) —fii )) dt .

t1 t1
See another examples of caclulatios of integrals in polar coordinates in Home-
work 6.

3 Conic sections and Projective Geometry

In this section we consider very famous and important curves, ellipses, hy-
perbolas and parabolas.

We first consider geometrical definitions of these curves without using the
analytical methods, then we will show that in Cartesian coordinates these
curves can be expressed by well-known standard formulae:

[ ]
2
. X )
an ellipse, E—i_ﬁ:l’ ,a>0>0,
¢ 2
Yy
a hyperbola |, ﬁ_ﬁzl’
e and

parabola, v*=2px.

We study properties of these curves, and will show that these curves are
sections of conic surfaces (it is why they are called conic sections.)

Finally we will consider some elements of Projective geometry and we will
look at these curves from the point of view of the projective geometry.
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3.1 Geometrical definitions of conic sections
3.1.1 Ellipse on the Euclidean plane

Ellipse on the plane is the locus of all the points such that the sum of distances
from these points to two fixed points I}, F5 is equal to given constant.

(3.1)

|F\Fy| = 2¢, a>c>0.
Ellipse = {K: |KFi|+ |KF;|=2a}

Fy, F, are foci of ellipse.
If ¢ = 0, ellipse becomes circle.
3.1.2 Hyperbola on the Euclidean plane

Hyperbola on the plane is the locus of all the points such that the difference
of distances from these points to two fixed points Fi, F3 is equal to given
constant.
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(3.2)

Hyperbola = {K: ||KFi|— |KF;|| = 2a}

The points Fi, F3 are foci of hyperbola.

Remark Notice that for ellipse we denote “left” focus F; and ‘right
focus” F3, and for hyperbola vice versa: “right” focus F; and ‘left” focus
F5. The difference between these two notations will be important only when
we will consider analytical definitions of hyperbola, and we will note it later.

3.1.3 Parabola on the Euclidean plane

Parabola on the plane is the locus of all the points such that they are at the
same distance from the given point F' and the given line [.
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(3.3)
Parabola = {K: d(K,l)=|KF|}

The point F' is called the focus of the parabola, and the line [ is called
the directriz of the parabola.

One can consider directrices for hyperbola and ellipse also. See later subsection??
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3.2 Cartesian and affine coordinates in the plane and
in the space

3.2.1 Cartesian coordinates in plane E?

Consider affine space E2.

Recall that fixing the point in affine space we come to the vector space
E?(see 1.2).

Let {e,,e,} be an orthonormal basis attached at a point O. The point
O is an origin of this frame of reference. For every point A € E? we have

€y

O € v , r=0A=uze,+ yey . (3.4)

le;| = |ey| = 1land Z(e,,e,) = g,i.e. (€r,€;) = (ey,€)) =1,(e;,e,) =0.

Coordinates x,y are Cartesian coordinates of the point P with respect to
frame XOY

Consider now two frames of references. Let {e,,e,} be an orthonormal
basis attached at the point O, and let {e], e} be an orthonormal basis
attached at the point O’'. O.
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Let A be an arbitrary point in the plane E?. We denote:

r=0P.r'=0P, andt=00".
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(3.5)

We have
r=t+r
1.e. /
x a , [z
e (1) = enen (3) +lete) (1)
e e M
, 1.e.

ze, +ye, =1 =t +1' = ae, + be, + z'e, + ye],.

The bases {e,,e,}, {€],e,} are related by orthogonal matrix:

(€,.€)) = (ere,) (p“ pl?) . (36)

P21 P22
N—_———

orthog. matr.
Z a P11 P12 x’
€z, € =€z, € + (eg, e )
e (1) = ene) (3) + tenen (22 22) (1)
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1.e.
— + ;]
Y b P21 P22 Y
—_——

orthog.matrix
T =a+pnr + py
Yy =0b+pnz’ + prny
One can say that changing of coordinates is translation + rotation (or

rotation+ reflection.)
Example Consider in (3.6) an orthogonal matrix

p_ <p11 p12) _ (Cf)SSO —s1ng0) , (PfoP=id, and detP =1)
D21 P22 siny  Cosy

(P preserves orientation. This is rotation on the angle @)

Another example:
Example Consider in (3.9), an orthogonal matrix

j (pﬂ Pl?) — (Cf)w s e ) , (PfoP=id, and detP = —1)
P21 P22 S —CoS@

(P changes orientation. This is rotation and reflection)

3.2.2 Cartesian coordinates in E3

The analogous considerations in E3:

O € . ,r:O?l:xex+yey+zez,
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le;| = ley| = |e.| = land Z(e,,e)) = ZL(ey,e,) = L(ey,€,)) = 3

i.e.
(ex’ex> = (eyaey) =1, (62732) =1, (exﬂey) = (ex’GZ) = (ey7e2> =0.

We have that {e,,e,,e,} is an orthonormal basis and z,y, z are Cartesian
coordinates of point A with respect to frame OXY Z.

Now coonsider two different Cartesian coordinates

Let in E?, e,,e,, e, be an orthonormal frame with the origin at the point
O and let €], e].€, be an another orthonormal frame with the origin at the
the point O’

~

Let A be an arbitrary point in E3.

Denote by . . .
r=0A,r =0'A, andt=00".
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We have in the same way as in E%:

r=t+1
i.e.
x a x
/ / / /
(ez’eyaez) Yy - (exaeyaez> b +(ez7ey7ez) Yy
z Z
J/ NG J/ N J/
wV VT wV
r t r’
, l.e.

/ 1PN ! ! ! !
re, +ye, +ze,=r=t+r :aex—l—bey—l—cez:xex—l—yey—{—zez.

The orthonormal bases {e,,e,, e.}, {€], e e,} are related by orthogonal

x) y?
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matrix:
P11 P12 P13
/ !

(egwe@ﬂez):(ewaeyaez) P21 P22 P23
P31 P32 P33

. J/
-~

orthog. matr.

Thus
x a P11 P12 D13 @
(ex> ey> ez) ) = (eaza ey7 ez) b + (eaza ey7 ez) P21 P22 D23 y/ 5
z P31 P32 P33 4
1.e.
xr a P11 P12 P13 x
y|l =10+ |pa p2 pos (7
z c P31 P32 P33 4

-~

orthog.matrix

T =a+pur’ + piey + p1z2’
Y = b+ para’ + paoy’ + pas?’ (3.7)
z=c+pnx’ + psy + pszz’

Recalling Euler Theorem one One can say that changing of coordinates

is translation + rotation (or rotation+ reflection.)

Consider examples of transformation (3.7)
Rotation arond axis Oz on the angle ¢:

x cosp —sing 0 x’
y| =|sing cosp O Y’
z 0 0 1 z'

Another example:
Rotation arond axis Oz on the angle % and translation:

/

x a 1 0 0 x

yl=1{b|+10 2 -1 (v].

z c 0 L 2!
2 2
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3.2.3 Arbitrary affine coordinates

We consider in (3.9) (3.7) changing of Cartesian coorindates from one or-
thonormal basis to another. In the general case if bases are not orthonormal
we have coordinates hich are not Cartesian, they are just so called affine
coordinates. We consider affine coordinates in the plane E2.

Affine coordinates of the point:

€y

O € . , r= OA = rezt+ye,,

In this case {e,,e,} is not in general an orthonormal basis: the vectors
e;, e, may have an arbitrary length, and the angle 0 between them may be
an abritrary. Sure the vectors e,, e, have to be linearly independent, since
{e,,e,} is a basis, this is why |e,| # 0, |e,| # 0 and 6 # 0. In the special

™

case if these vectors are unit vectors and angle between them is equal to 7
we come to Cartesian coordinates (3.4)

Write down the formulae of changing coordinates if we change the coor-
dinate systems.

Let OXY be coordinate frame with the origin at the point O and with
basic vectors {e,, e, }, and let O’ X"Y” be coordinate frame with origin at the
point 0" and with basic vectors {e}, e, }, (Compare with (3.5)).

In the same way as in (3.5) we have

r=t-+r
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1.e.

, l.e.
ve, +ye, =r =t +1' =ae, + be, + 2'e} + ye) .

In this case the bases {e,,e,}, {€],, e, } are related by non-degenerate matrix:

(o)) = (eney) (22 12). (3.5)

P21 D22
det P£0
and /
AN a P11 D12 x
(ex,ey) (y) - (e$,ey) (b) + (emey) (p21 p22) (y/) !
i.e.

G -6 G O

non-degenerate matrix

— /+ /
{x a+ pux + proy (3‘9)

Yy =0b+pna’ + pwy

The difference with the case of changing of Cartesian coordinates consid-
ered in subsection 3.2.1 (see (3.6)) is the following: in the case of changing
of Cartesian coordinates, the matrix P in equation (3.6) is orthogonal ma-
trix, since it is transition matrix between two orthonormal bases, and the
matrix P in equation (3.8) is just non-degenerate transition matrix between
two bases.

3.2.4 Affine coordiantes and area of ellipse

We consider in this subsection one very important example.
Consider an ellipse
22 P
) + e 1. (3.10)
in Cartesian coordinates. (We will consider this equation of ellipse later in
detail. Now we just use very simple properties of this formula to come to the
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formula for area of ellipse (more precisely the area of the domain restircted
by this ellipse).) Under affine transformations

{x:au (3.11)

y = bv

, (a,b0) the ellipse becomes the circle u?> + v? = 1, and the area of the
interior of the unit circle circle is equal to 7.

d(z,u)

Area of the interior of the ellipse (3.10) = / dxdy = /
ﬁ_i_l;égl u2402<1 8(u,v)

oz
o a 0
det [ gu det
/u2+’u2§1 (y (0 b)

o2
ou
ab / dudv = ab - {Area of the interior of the unit circle} = wab.
u2402<1

) ‘ dudv = /
u2+4+v2<1
(3.12)

Indeed one can see it without using integration formulae: the affine transfor-
mation (3.11) changes size in OX direction a times and it changes the size
in OY direction in b times, hence area of changing ab times, i.e. area of the
ellipse is equal to mwab.

dudv =

QlesQalQ;
SIS

3.3 Analytical definition of conic sections

We will define here conic sections analytically and will proof that the equiv-
alence of analytical and geometrical definitions.

We will call ellipse, hyperbola and parabola conic sections. This ter-
minology will be explained in the next lecture.

We have given above geometric definitions of conic sections (see (3.1),
(3.2) and (3.3)). Now we give anaytical definitions of conic sections.

Definitions

Definition Let C' be a curve on the plane. The curve C' is an ellipse
if there exist Cartesian coordinates (x,y) on the plane, such that in these
Cartesian coordinates this curve is defined by canonical equation

2 2
x_+y_:1’ (3.13)

a? b
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where a, b are positive numbers such that a > b.

Definition Let C be a curve on the plane. The curve C' is a hyperbola
if there exist Cartesian coordinates (x,y) on the plane, such that in these
Cartesian coordinates this curve is defined by canonical equation

2 2
N

2z , (3.14)

where a, b are positive numbers.

Definition Let C be a curve on the plane. The curve C' is a parabola
if there exist Cartesian coordinates (x,y) on the plane, such that in these
Cartesian coordinates this curve is defined by canonical equation

y* = 2px,p>0. (3.15)

where p is a positive number °.

Proposition
Geometrical and analytical definitions of conic sections are equivalent.
We will prove this Proposition separately for ellipse, hyperbola and parabola.

3.3.1 Equivalence of analytical and geometrical definitions for el-
lipse

Let C' be an ellipse defined geometrically:
C={K: |KF|+|KF| =2a} (3.16)

Consider Cartesian coordinates, such that origin is at the middle of the
segment [ Fy, axis OX is along foci from F; to Fy: x coordinates of the

9We usually in school, considered parabola as y = ax?. Traditionally in anaylical

geometry parabola is cosnidered with twistex axis = <> y.
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point F} is negative and x coordinate of the point F5 is positive.

Fi =(—¢0),F=(c,0), K = (z,y).
We may suppose that
a>c. (3.17)

Indeed it follows from the triangle FyKF, that 2a = |KF|| + |[KFy| >
|F1 F3| = 2¢. (In the case if a = ¢ ellipse degenerates to the segment (F}Fy).
We have

KF |+ |KF|=+v(z+c)?2+y2+(x—c)2+32=2a,(a>c>0).
Hence
(x+e)?+y?=2a—+/(r—c)2+y>. (3.18)
Take square:

2+ 2rc+ & = 4a® + 2* — 2wc + A+ y* —dar/(z — )2 + 2.

Hence
4ar/(x — c)? +y? = 4a® — 4xc = 4(a® — zc) .

Take again square:

a® (2* = 2zc + P + y°) = a* — 2d°we + 27
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Hence
(a* — A2 + a*y? = a* — a’® = a*(a* — 7). (3.19)

Bearing in mind that a > ¢ (see (3.17)) we come to

2 2
$—+z—2—1 where b* = a® — ¢ (3.20)

Thus we proved that all points belonging to the locus (3.16) obey equation
(3.13).

One can see that converse implication is also true. Indeed suppose that
for the point K = (z,y) equation (3.13) is obeyed. Then

2
2 xT
Yy b (1 —’Z;5> .

2
|KFy| = /(24 c)? + 9> —\/:U—l—c ~|—b2(1—x—>—

We have:

b2 2
(1——>x2+20x+c + b = \/C—x2+20x+a2—
a? S—— a?

112
c2/a?
c 2 c c
<—:c—|—a> = —x—l—a‘ =—-x+a (3.21)
a a a

since —a < z < a.
Analogously:

22
[KFy| = /(2 +y-—¢ +w y__):
b2 2
(1——2)—|—x2—20x+02—|—b2: —a? —2cx +a* =
a a

(2I——a>2:

C
—r —a
a

S (3.22)

a

since —a < x < a.
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Hence

KR+ |KB| = (So+a) + (a— So) = 2a.
a a

Thus we establish the euqgivalence of analytical and geometrical definiiton of
ellipse.
Two words about the formula for area for ellipse which we obtained in ....
If ellipse is given by analytical formula, then a is the length of its semi-
major axis, b is the length of its semi-minor axis.

3.3.2 * Equivalence of analytical and geometrical definitions for
hyperbola

Let C be a hyperbola defined geometrically:
C={K: ||KF|—|KF||=2a} (3.23)

Consider Cartesian coordinates, such that origin is at the middle of the segment FjF5,
axis OX is along foci in the direction from F5 to Fy:

Fy =(¢,0),Fy =(—¢,0),K = (z,y) .

Remark Notice that for hyperbola we consider F; with positive coordinate, and Fy with
negative x coordinate, i.e. we suppose that F; is “right” focus and F5 is “left” focus, and
for ellipse it was vice versa (see (3.1) and (3.2)). This difference will be imprortant only
when we will consider polar coordinates for hyperbola.
We may suppose that
c>a. (3.24)

Indeed it follows from the triangle Fy K Fy that 2a = ||[KFy| — |[KFy|| < |F1Fy|| = 2¢. In
the case if a = ¢ hyperbola degenerates to two semi-intervals C' = (—oo, F1) U (Fz, 00).
We have that

IKF| = KR =V/(z+c)2+1y2—(z— ) +3y*>=2a.

Hence
(x4+c)2+y?>==+2a—(x—c)2+y2.

In the same way as we did it for ellpise taking twoice square we see that this equation
implies equation (3.19):

(x+0)2+y2 =420 —/(z— )2+ 92 = (¢ —a?)2® — a®y? = d®(* — a?),

The difference is that in the case of ellipse a > ¢, and here ¢ > a (see equation (3.24)).

Dividing on a?(c? — a?) we come to

2 2
x—Q - 2—2 =1,where b*=c*—ad?. (3.25)
a
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Thus we proved that all points belonging to the locus (3.23) obey equation (3.14).

Now prove converse implication, i.e. that the points K = (z,y) which obey equation
(3.14) obey also equation (3.23).

The calculations are same that for ellipse (see formulae (3.21), (3.22)) just that for
hyperbola ¢ > a, and b = ¢ — a?'0:

2
Kol = ISP = Wic)z n(Z)-

b? [ c?
<1—|—2>x2:l:2633+c2—b2= C—szﬁ:ch—&—aQ:
a N—— a
—_———

a2

c2/a?

2
(:I:EJH—a) = ‘:I:Ez—o—a’ .
a a

This implies that
||[KFy| — |KFs|| =2a.

3.3.3 Equivalence of analytical and geometrical definitions for
parabola

Let C be a parabola defined geometrically:
C={K: d(K,) =dK,F)},

where [ is directrix, and F' is focus of the parabola.

Let T be a point on the directrix [ such that the line F'T" is orthogonal
to the directrix [.

Consider Cartesian coordinates, such that the origin is at the middle of
the segment T'F', and axis OX goes along the line T'F' in the direction from

10jt is useful sometimes to consider hyperbola as ellipse with b — /—1b
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the point 7" to the point F

s
Y

p p p

F:<_7 >7T:<__7 )7 : :__aK: ) .
5 0 5 0),l:x 5 (x,y)
The distancce d(K, F) = \/y* + (z — 5)2. Note that if z < 0, then evidently

d(K,l) < |KF|, hence for the points of the locus of the parabola, y > 0. and
the distance between point K and directrix is equal to x + p: We have

2
d(K,F):\/y2+<:B—§> :d(K,l):$+]—;:>y2—2px:0.

The converse implication is evident also: If for the point K = (x,vy), y* —
2px =0 (p > 0), then

d(K,F):\/y2+<x—g>2:\/2pm+<x—g)2: (I—Fg)Qz‘x—i—g’:
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3.3.4 Resumé

We see that conic sections can be described geometrically and analytically
in suitable canonical Cartesian coordinates:

Geom. definition Analyt. definition Parameters
Ellipse  {K:|KF|+ |KF| = 2a} | |F\Fy| = 2¢, b2 = a® — ¢
Hyperbola {K:||KF|— |KF||=2a} o= |F Py = 2¢, 0% = 2 — a?
Parabola {K:|KF|=d(K,l)} y? = 2px d(Fl)=p
(3.26)

We will call these parameters canonical parameters of conic sections.

Add to this table also the following two lines: the distance between an arbitrary point
K = (z,y) on ellipse (hyperbola) and one of the foci of the ellpse (hyperbola) is equal to

b

d(K, Fy.5) = ‘ng:a

for ellipse ¢ > a and |z| < a, and for hyperbola ¢ < a and |z| > a, where a, ¢ are canonical
parameters of ellipse (hyprbola). (For parabola d(K, F) = |z + L|.)

3.3.5 Area of ellipse, again

We obtained in paragraph3.2.4 formula (3.12) for area of ellipse assuming
that for an arbitrry ellipse there exist Cartesian coordinates (x,y) such that
in these coordinates, the ellipse is defined by canonical formula i—z + Z—j =1
(see equation (3.13)). We proved this statement little bit later in paragraph
3.3.1. It is useful again recall this formula on the base of these conisderations
and to fix notations. Let C be an ellipse:
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B (3.27)

focd  Fy, By, |FiF|=2¢c, VK €C ,|FK|+|KF|=2a>c>0.

centre of the ellipse — — — O, |F0]| = |0F)| =c,
major axis |A'A| = 2a, semi-major axis |OA| = a,
minor axis |B'B| = 2b, semi-minor axis |OB| =a,

One can consider Cartesian coordinates (z,y) such that in these coordinates
the ellipse C' is defined by canonical equation
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B canonic. Cartesian coordinates
Y
F £
a T 8. P

i
mZ y2
_2—’_?:17 b:va2—02, (328)
a

(see 3.3.1.)
and the area of this ellipse (more precisely the interior of the ellipse C')
is equal to

S = 7 x length of semi-major axis x length of semi-minor axis = mab.

Remark With some abuse of language we will say area of ellipse instead
saying “area of the interior of the ellipse”.

3.4 Conic sections in polar coordinates

It is useful in many applications to know how look conic sections in polar
coordinates.



3.4.1 Focal polar coordinates for conics

Let C be a conic section. We define so called focal polar coordinates adjusted
to the conic section C' in the following way.

In the case if a curve C' is an ellipse, we consider the Cartesian coordi-
nates (z,y) such the focus Fi, the left focus of the ellipse C, is the origin
of these coordinates, the Ox axis goes in the direction of the segment FjF5,
respectively OY axis is orthogonal to the segment Fi F;. Then the focal polar
coordinates are defined via these Cartesian coordinates by standard equation

T = 1TCoSsp (3.29)
y=rsinp '

(see Figure(3.30)).

In the case if C' is hyperbola we will do almost the same, just we will
take the origin, the ‘right’ focus F} of hyperbola!!, and we consider again the
polar coordinates (3.29) (see Figure (3.35)).

Parabola has just one focus. In the case if C' is a parabola, a focus F
of C'is the origin, and Oy axis is parallel to the directrix of parabola, and
the focal polar coordinates are defined via these Cartesian coordinates by
standard polar coordinates(3.29)(see Figure (3.37)).

3.4.2 Ellipse in polar coordinates

Let C' be an ellipse with foci at points Fi, F5. Consider Cartesian coor-
dinates with the origin at focus Fj such that OX axis goes along axis of
ellipse:  coordinate is increasing from F; to Fy, i.e. Fi is the “left” focus.

1We take F; the “left focus” of ellipse, and for hyperbola we take the “right” focus of
hyperbola. (see (3.1) and (3.2) and remarks there).
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_Lpl “ F 2

Recall definition of ellipse: C' = {K: |F1K|+|KFy| = 2a}, where |F1 | =2¢,(0<c<a)).
(3.30)

Using the cosine rule we have from AFy K Fy that |[K Fy| = /12 + 4¢% — 4rccos ¢.
It follows from (3.30) that

|KFy| =2a — |FK|, ie +/r244c2—4rccosp =2a—r1.

Right hand side is positive. Hence taking the square we come to equivalent
equation:

2 _ .2
a®—c
r? 4+ 4c¢® —4drccosp = 4a* —dar +r* o r= ————
a — Crcos

1.e.

(3.31)

e=-<1. (3.32)




This is equation of ellipse in focal polar coordinates. (Origin, is a focus of
ellipse.) Since transformations are equivalent, the converse implication is
also true; If a curve C' is defined by equation (3.31) and the parameter e < 1,
then C' is an ellipse (3.30), where parameters a,c are defined by equation
(3.32) (p > 0), and the origin, is a focus of ellipse. (The second focus is at
the point (2¢,0).) (See also Solutions of Homework 8.)

It is very useful the following

Definition We call parameter e = £ eccentricity parameter.

This parameter evidently measures the difference of ellipse from circle: if
e = 0, then ellpise becomes circle. What happpens if we take e = 1 or evern
e > 1 in equation (3.31)7 One can see that if e=1 then we come to curve:

zﬁﬁr:p—l—rcosgp@\/ﬂ—l— 2= (p+ax)°. (3.33)
- ¥

Taking square of last equation we see that this curve is a parabola y? =
2px + p? = 2p (p + %) shifted over Ox axis on £ (see in detail the subsection
3.4.4). Moreover if we will take ecentricity parameter e > 1 we will come to
hyperbola (see in detail next subsection 3.4.3)

Lookign at the followig picture:

e=0 0<e<l1 e=1 e>1

circle Ql]jpse parabola hyporbola

(3.34)

one can say that eccentricity parameter makes relation between conic

sections: ellipses, parabolas and hyperbolas (see for details subsection 3.50)

Later we will see that all conic sections appear as intersections of plane
with conic surface (see for details subsection 3.5)

3.4.3 * Hyperbola in polar coordinates

Let C' be a hyperbola with foci at points Fj, F5 Consider Cartesian coordinates with
the origin at right focus Fj, (OX axis goes from focus Fy to Fy and z coordinate is
increasing from Fy to Fp, i.e. Fj is the right focus (see (3.2) and the remark there.)
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02—a2

,(0<a<ec).

(3.35)
Calculations are analogous to calculations for ellipse. In the same way as for ellipse
we have |KF;| = r, and

7e:

ISHNe

Hyperbola: C = {K: | |F1K|—|KFs|| = 2a}, |FAFs] =2¢,p=

|KFy| = /12 +4c® — drccos(m — @) = /12 + 4c®r + drecos .

(Attention: here the angle of triangle is m — ¢, not ¢.)
As usual we denote |F1 Fa| = 2c¢ (see (3.2)) It follows from definition of hyperbola that

|[KFs| = |FAK|+2a, ie. \/T2+4c2r+4rccos<p:r:|:2a.

For the branch of hyperbola which is closer to the right focus Fy \/ 72 4+ 4c2 4+ 4rccos p =
r—+2a and for the branch of hyperbola which is closer to F5 \/r2 +4c? + 4rccos p = r—2a.
Notice that for hyperbola ¢ > a (see (3.24)).
We come to

r? +4¢% + 4drecos = 4a® + dar +r?
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ie.
c? — a? D c? — a? c
= , where p= ,e=
a—crcosp 1—ecosp a a

T =

(3.36)

This is equation for the branch of hyperbola which is closer to F} in polar coordinates.
For other branch, which is closer to the focus Fb, \/1“2 +4c? —4rccosp =1 — 2a,

r? 4+ 4¢® — drecos g = 4a® — dar + 12,

and
c? —a? p c? —a? c
= , Where p= ,e= —.
a + crcos 1+ ecosp a a

3.4.4 Parabola in polar coordinates

Let C be a parabola with a focus at the points F' and with directrix [. Let
segment F'I" be orthogonal to directrix [. Consider Cartesian coordinates
such that axis OX is directed along the segment T'F', and x coordinate is
increasing from the point 7" to the point F', axis OY is parallel to directrix,
and the origin is at the middle of segment T'F' (see Figure (3.37)).
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F=(0,0), T=(-p,0), l:x=—-p,K = (z,y), (3.37)

Here we denote by p the length of the segment T'F. (Compare this Figure
with Figure (3.3.3))
Recall that according to geometrical definition of parabola

C ={K: |rg|= distance between the point K and directrix {}, (3.38)

i.e. r=|p+z| = |p+rcose|. This relation is equivalent'? to the equation

p
r=p+rcoser=r(p) T cosp (3.39)

2the equivalence |p + z| = p + z is obeyed since according to (3.38) for points in the
locus C'xz > —p
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This is equation of parabola in focal polar coordinates. The converse impli-
cation is that If a curve C' obeys equation (3.39) then it is parabola (3.38);
the origin is a focus of this parabola and the line [: x = —p is its directrix.

3.4.5 * Eccentricity parameter and similarity between conic sec-
tions

Studying formulae (3.31), (3.36) and (3.39) for ellipses, hyperbolas and parabolas we come
to

Proposition Let C be a conic section, and let r, ¢ be local focal coordinates described
above (see Figures (3.31), (3.35) and (3.37).). Then equation of conic section is the
following:

o for ellipse:
_ p
r=-—————,
1—ecosp

where p = “2502 and e = £ (see (3.31))
e for the “right” branch of hyperbola (the branch which is closer to the focus F)

p

r=—-,
1—ecosp

where p = % and e = % (see (3.35))
e for the “left” branch of hyperbola (the branch which is closer to the other focus, the

focus Fs.)
_ p
r=—-———"
1+ ecosp
where p = # and e = % (see (3.35))
e for parabola
__p
1—cosy’

(see (3.39))

Notice that all the formulae for conic sections are the same or similar. Equations
of ellipse, parabola and the closest to the origin branch of hyperbola are the same: r =

ﬁ if we put e = 1 for parabola. Thus we have
e COS
e=%, p= # for ellipse
p 2 2
r = 1= €cos @ y e = % , p= % for hypel“bola (340)
e = 1 for parabola

The parameter e such that

e=2 (for ellipse and hyperbola), e = 1(for parabola)
c
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is called eccentricity parameter. It is less than equal to 1 for ellipse, (for circle the ec-
centricity parameter e = 0 ), it is bigger than 1 for hyperbola, and it is equal to 1 for
parabola.

e=0 0<ex1 e=1 e>1

circle ellipse parabola hyperbola

(3.41)

3.5 Intersection of plane with conical surface

In this lecture we consider intersections of planes and surface of cone, conical
surface.

The intersection of plane with conical surface is an ellipse, a hyperbola,
or parabola. This justifies why we call ellipses, hyperbolas and parabola by
conic sections.

Moreover the orthogonal projection of this conic section on the horisontal
plane z = 0 is also the conic section, and the vertex of the cone is the focus
of this conic section 3.

We will formulate this Theorem and will give its proof.

Counsider conical surface M:

13Recalling the Kepler law that the planets move in elliptical orbits with the Sun at one
focus one can say that vertex of the conical surface is a ‘sun’
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Theorem

Let C' be a curve which is an intersection of a plane o with the conical
surface. Let Cproj be an orthogonal projection of this curve on the horisontal
plane OXY . (We suppose that azis of cone is vertical line.)

x = hcosp
22 =k 2?4+ %), { v = hsing
z=kh

e A curve C is a conic section, ellipse, hyperbola or parabola,

o A curve Cpj 15 also conic section:

Jk#£0, (k>0).

C is an ellpse < Chyoj s an ellpse

C' is a hyperbola < Co 1s a hyperbola

C s a parabola < C' is a parabola
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o The remarkable property of curve Cpyo; 15 that the vertex of the conical
surface is a focus of the conic section Cpyo;.

Remark We will consider in detail intersection of planes with upper-
sheet of conical surface (see Figure (3.42)). If intersection of plane a with
conical surface is hyperbola, then the intersection with upper-sheet will be
only one branch of hyperbola.

Remark We do not consider degenerate case if the origin belongs to the
plane o4,

Proof
We will consider upper half of conical surface, respectively we will consider
intersection of planes with upper-sheet of conical surface. °:

—  z| T
k_/
— |
\_/
— |
—— |
7
()] z
x = hcosp
M: 22=k@*+vy%),2>0,{z=hsing ,h>0 (3.42)
z=kh

140ne can see that in this case the curve C' becomes a point or just two lines.
15Thus in the case of hyperbola we will come only to one of branches of hyperbola
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Let a be a plane which does not pass through the origin,
Consider first the simplest case, if a plane « is parallel to the horisontal
plane.

a:z=H z=H
2 20,2 2 A 2 2 H?
M: 2* = K*(2* + y?) Yy =7
Intersection is circle. Its projection on the plane OXY is the circle also, and
the vertex of the conical surface is the centre of this projected circle. The

centre of the circle is obviously the focus of the cicle.-Circle it is the ellipse
with two coiciding foci.

=1 7 .

2=k (*+y%), k#£0.

Consider now a case if plane « is not parallel to the plan OXY'.
In this case ROTATE the space E? with respect to the axis OZ such that
the plane « after rotation becomes parallel to the axis OY':
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z xXr
ti f the pl — =14 =. 3.43
equation o € plane «, o + I ( )

The plane « intersects the axis OZ at the point (0,0, H), and it intersects
the axis OX at the point (O, 0, —L).
(Recall that the plane « is not parallel to the plane OXY).
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Equation of the plane « is

Z=1+2. (3.44)
(Indeed we see that if x =y =0 then z = H and if y = 2 = 0 then x = —L.)
Remark The case when a plane a which is not parallel to OXY and passes through
the origin is degenerate case. In this case plane « intersects with conical surface by point,
vertex, or two lines. We do not consider this degenerate case.
Now analyze the intersection of the plane o with conical surface M. We
have:

Z_14z
ax M : H I &
~—— B2+ k22 — 22 =0

intersection of the plane o with conical surface M

{ZZH(H%) (:){z:H(H%)

kKa® + Ky =22 =0 K2+ 2y = (H (1+ 7)) =0

Denote this intersection by C'. This equation defines locus of the points in
E3, the curve C' which is the intersection of conical surface M and the plane
a:

z=H(1+%)

3.45
K2a? 4+ K2y — (H (14 2))* =0 (3.45)

C=axM: {

Denote by Cl,,; an orthogonal projection of this curve on the horizontal plane
z=0.
We see for orthogonal projection that

(x,y, 2) —a point on the curve C' which is a curve in E3

1

(z,y,0) —orthogonal projection of this point, a point on the curve Cp,5, a curve in E?
Hence

o z2=0
PO K K - (H(1+2) =0

i.e. the orthogonal projection of the curve C' defined by equation (3.45) is
the curve Cpo; defined in the plane E? defined by equation

Covoj: K222 + k22 — <H (1 + %))2 0, (2=0). (3.46)
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Here E? is the horizontal plane z = 0.

We see that equation (3.45) defines conic section C' = ax M (intersection
of plane o with conical surface M) and equation (3.46) defines a curve Cp,;,
the curve which is the orthogonal projection of the curve C' on the plane
z =0 (see further Figure (3.54).)

Our plan is following. We first prove that curve C,; is a conic surface,
i.e. it is an ellipse, or hyperbola or parabola. Then we will prove that the
vertex of the conical surface M is a focus of the conic section Cp;, and
finally we will show that initial curve C' is also a conic section.

Now begin the proof.

Let Cpyoj be a curve in E? defined by equation(3.46). Denote by

H2
2

Show that the curve Cl,.; is an ellipse if 6 > 0, it is hyperbola if § < 0, and
it is parabola if 6 = 0.

We have
2 H2 2H2
Cproj: k2$2+k2y2—(H (1 + %)) =0«& <l€2 — ﬁ) $2—T]}—|—k2y2—H2 =0.
5
We come to
2H?
Cloroj - 5z* — T$+k2y2 —H*=0, (2=0).

First, consider the case 6 = 0. In this case Cy,,; is a parabola:

2H? 2H? H? 2H? L
5:0, Cproj: —TI+k2y2—H2:O<:>y2: ml“f‘ﬁ = m l"i‘E
(3.47)

L
QL(:L'—i-E) ,since&sz—g—j:
It is in canonical form y? = 2pz’ with p = L and 2’ = z + £ (see analytical

definition of parabola (3.15)). Thus we have proved that the curve Cp,; in
E? is a parabola if § = 0 It is easy to see that the focus of this parabola is
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at origin, and the line x = —L is the directrix of this parabola. Indeed for
this parabola we have

L
\/x2+y2:\/x2+2L(x+§) = |z + L.

Now consider the case if § = k? — [L{—j 0. In this case:
T\ 2 H? 2H?
Cproj: k’2£132—|—k'2y2—<H (1 + Z)) =0« (k’Q — F) xz—T.T—l—kaQ—HQ =0.
—_——
570

Hence Cppoj: 622 — 220 4 j%y? — H? = 0, and

H2\? L, H? H? H*\  H2k?
Cproj.5($—L—6) + k =H <1+m)—7(5+ﬁ>— 5

(3.48)
Multiplying this equation on HQLkQ we come to
52 H2\? §
Cproj: W <£L' - E) + my =1. (349)

This makes almost evident that the curve Cl,,; is an ellipse if § > 0, and it
is hyperbola if 6 < 0. In Cartesian coordinates

I
{Z;; L3 (3.50)

. Simple and easy calculations show that an equation (3.49) becomes

T = =1, Witha:HTk,bZH\/g

21.2 N\ 2 N\ 2
(5:c’2+k2y’2:Hk s (5) £ (L) =1,
) a b

where 2,y are Cartesian coordinates (3.50), and we denote
HEk H
a=—,b=—%. 3.51
5= (351)
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Note that conditon a > b is fullfilled: Indeed a = % > HT/ = b since § < k2,

(0 > 0). Moreover one can see that origin is one of the foci of this ellipse:

H2?k2  H?2 H?
— a2 = 52
c a’*—b 5 5 i (3.52)

We have constructed Cartesian coordinates (z’,%’) such that in these co-

! / 2
ordinates the curve Cp,; is defined by canonical equation (%)2 + <%> =1,

with a > b, hence it is an ellipse according analytica definition of ellipse (see
equation (3.13) in subsection 3.3).
We have proved, that the curve Cp,0; in E? is an ellipse if 6 > 0.

In the case if 6 < 0 we do analogous calculations. We have that in this case equation
(3.48) implies that the curve Cpyo; has the appearance

H2K?

Cproj: 02’ ? + K2y % = 5

in Cartesian coordinates (z’,y’). Hence

:1712 y2

H2k2/52  H2J8|

1. (3.53)

(See equation (3.14) in subsection 3.3). The curve Cpy0; in E? is a hyperbola.
Moreover one can see that origin is one of the foci of this hyperbola:

H2k2  H? H?
c=+va2+b2= - — =

52 5 6L

We proved, that the curve Ci,,; in the horizontal plane defined by equa-
tion (3.46) is ellipse or hyperbola or parabola. Moreover we checked that the
origin is one of the foci of this conic section.

Much shorter to do the proof in polar coordinates.

Now prove that a focus of the curve Cp,o; is the vertex of the cone. Vertex of cone is
the origin = = 3y = 0 of the horizontal plane E2. We have to prove that for curve defined
by equation (3.46) the origin x = y = 0 is a focus.

T =rcosy

. We see

Consider on horizontal plane z = 0 polar coordinates (7, ¢): { )
y=rsing

that r = /22 + y? and = = r cos ¢. We have from equation (3.46):

kW:kr:H(l—%) :H(l—%cosgp),
ie.
H o p

T = =
k—fcosp 1—ecosy

H
, Wherep:?ande:f.
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This equation implies that the curve Cpy,; is conic section and the origin is a focus of
C' (see subsection (3.4)).

If eccentricity parameter e = % = 1 it is a parabola: compare with condition § =
k? — ZI—:‘ = 0) in (??); if eccentricity parameter e = £ < 1 it is ellipse (compare with

condition § = k% — IL{—ZQ > 0) in (3.51) and if e = &£ > 1 it is hyperbola (compare with
condition § = k2 — IZ—; < 0) in(3.53). (We suppose that k, H,L > 0,)

We proved that projection of the curve C, the curve C,o; defined by
equation (3.46) on the horizontal plane is ellipse, hyperbola or parabola, and
vertex of the conical surface is a focus of this conic.

To finish the proof of the Theorem we will prove that curve C', defined
by equation (3.45) is itself conic section also. This follows immediately from
considerations presented in Figure (3.54).
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(3.54)
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Recall that the curve C is the intersection of the plane a: 7+ 4% = 1 (see
(3.45)) with coniccal surface M.

Let 6 be an angle between the plane « and horizontal plane OXY (see
Figure (3.54)), then

tanf = — .
an 7

Thus if z, y are Cartesian coordinates on the plane OXY then one can choose
on the plane o Cartesian coordinates (Z,7) such that

y=y. (3.55)

Recall that the orthogonal projection Cl,,; of the curve C' is defined in the
horizontal plane z = 0 by the equation

~ x
F=—
cosf’

Covos: k227 + k2% — (H (1 . %))2 —0,(:=0). (3.56)

(see (3.46).)
Hence in Cartesian coordinates (Z, ) (3.55) in the plane «, the curve C
has the same appearance as a curve Clp,,; in Cartesian coordinates (z,y):

~ 2
C: k23 4 k2 — (H (1-%)) —0.

(The curve C in the plane « is defined by the same equations that the curve
C' in the horisontal plane z = 0, just we have to change = — Z,y — y.)

This implies that curve C' is conic section also, it is an ellipse if Cp,; is
an ellipse, it is a hyperbola if Cl,; is a hyperbola, it is parabola if Cl.; is
an ellipse,

E.g. if Cpy; is ellipse, then in Cartesian coordinates {
is defined by canonical expression
2 2
x/ y/
— + <z =1
(5) (%)

(see equations (3.50) and (3.51)). Hence the curve C' which is in the plane «
has the same appearance

7! 2 gl 2 7= x’
(—) + (—) =1, with ¢~ cos?
a b Yy =y
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Resumé

plane « horizontal plane
P h =0
C-intersection of plane o Cl,05-0rthogonal projection of
with conical surface M C on the horizontal plane
Cartesian coordinates T,y Cartesian coordinates x,y
T=5.9=Y, tanﬁz%

3.6 Basic elements of Projective Geometry

Projective geometry has very interesting history 6

3.6.1 Projective line RP

Projective line R =RuU { Oo}point at infinity
usual line

In other words
Projective line = usual line completed by a point at infinity.

Model

16just key words:
e Pappus of Alexandria (III-rd century)
e Johannes Kepler (1571—1630)
e Gerard Desargus (1571—1630)

e Projective Geometry in painting
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RP' = {set of lines in R? passing through the origin} = {I: 0 € [}.

(In our notations RP and RP! will be the same)
‘Point’ of RP = line in R? passing through the origin

Every line passing through the origin except the line y = 0 intersects the
line y = 1. Hence all the points of RP except the point which corresponds
to the line y = 1 can be viewed as usual points at the line y = 1.

We call a ‘point” on RP a finite point (or visible point or proper point) if
it corresponds to the line which intersects the line y = 1, i.e. the line which
is not parallel to the line y = 1.

We call the ‘point’ on RP a point at the infinity (or improper point, or
invisible point) if it corresponds to the line y = 0., i.e. the line which is
parallel to the line y = 1.
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set of lines in R? set of lines in R? the line

passing through passing through which goes
the origin = the origin and which U along OX axis
intersect
the line y =1
all points = finite points of RP, U the point at infinity
of RP (i.e. points of R) {0}

We have that

line [ which a point
intersects the line y =1 at theliney =1

line [ which
is parall. to the line y =1 point at infinity
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3.6.2 Homogeneous and affine coordinates on RP

Take an arbitrary point on the plane E? which does not conicide

a
b
with the origin (a # 0 or b # 0). This point defines a line, passing through
the origin

=at
a point (a) defines a line {x ¢ ifa#0orb#0.

We denote by [a : b] the line passing through the origin and the point (Z)
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Why this notation? Because for every parameter A such that A # 0, the
Aa

point (Z) and the point < )\b) define the same line:

la:b]=[Xa:Ab], (MN#0).

Set of lines passing through the origin = Set of points of RP
Definition One can consider [a : b] as coordinates of ‘points’ on projective
line RP (We suppose that a and b are not simultaneously equal to zero.)
These coordinates are called homogeneous coordinates.
Coordinates [a : b] and [Aa : Ab], (a # 0 or b # 0, and A # 0) define the same

=at
‘point’ on RP = line ‘ Zt in E? passing through the origin.
y s
Let A be an arbitrary point on RP with homogeneous coordinates [z 4 :
yal, A= [ra:yal
T = Tt

The ‘point” A on RP! is represented by the line [, : { ;
Yy=1ya

Now suppose that condition

ya#0. (3.57)

is obeyed.

In this case the line [4 intersects the line y = 1 at the point uy = g—j

In the case if condition (3.57) is not obeyed, i.e. line {4 is parallel to the
line y = 1, then the ‘point’ A is not a finite point, it is a point at infinity.

Definition Let A = [x4;y4] be a finite point at the projective line RP,
i.e. ya # 0. One can consider affine coordinate u, of this point:

x
Uy = — (3.58)

Y
If A is not a finite point i.e. A is a point at infinity, then affine coordinate

is not well-defined. With some abuse of language we say sometimes that

ups =00, ifys=0. (3.59)
T
[.T : y] — U= —
e Yy
homogeneous coordinates e

affine coordinate
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Example

Consider a point P on projective line RP! with homogeneous coordinate
r =4t

y =2t
This line intersects the line y = 1 at the point (2,1). Homogeneous coor-
dinates of the same but one point may have different appearance. We see
that

[4:2], P=1[4:2]. The line [p which represents this point is lp:

[4;2] =1[6:3]=[2:1]=[-8:—4]=...,

they all are coordinates of finite (visible) point P.
The affine coordinate of this point is equal to up = % =2.

3.6.3 Projective transformation of RP

Recall transformations of usual R
1) Group of translations
uruta. (3.60)
Identity transformation is the transformation with @ = 0, inverse transformation is the

transformation u — u—a and composition of two translations F;: u — u+a, Fo: u +— u+b

is translation:
F1 OFQ(’U) :Fl(u+b) =u+b+a.
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One can enlarge the group of translations considering also dilations (scal-
ings): dilations:
u— ku, (k#0).

We come to group of translations and dilations:

ur— ku+a,(k#0). (3.61)

It is so called group of affine transformations of the line R. Identity transforma-
tion is the transformation with k£ = 1,a = 0, the transformation inverse to transformation

(3.61) is u +— %u — %; composition of two affine transformations Fy: u — kju + a; and

Fy: u— kou + ag is affine transformation:

Fyo Fg(u) = Fl(k‘gu + bz) = k1(k2u + bg) + b1 = k1kou + k1by + by .

Question How to enlarge this group of transformations of affine line R
to a group of transformations of projective line RP?

Points of RP are lines of E? passing through the origin. An arbitrary
non-degenerate linear transformation of E? generates transformation of RP:
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K:(: g), det K =ad — By #0,

. x AN z\  (a B\ [(z\  [azr+ Py
@ pomnt <y) SR <y> -k (y> - (v 5> <y) - (VH&U)

Transformation of lines passing thorugh the origin is transformation of points of RP:

point [z : y] of RP =1 point [ Y] = F(lx :y]) = [ax + By : vo + dy] of RP.

If we consider instead homogeneous coordinates, affine coordinate then this
relation will have the following appearance:

point u = 5 of RP transforms to the point v’ = ;—: of RP.
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We have that

u,:m_’:ax+ﬁy:a§+5:au+ﬁ (3.62)
Yy yx+ oy ’y§+5 Yu +

We see that an arbitrary non-degenerate matrix K = (i ?), generates

projective transformation of RP

[ Y] = [ax + By - yx + dy] (in homogeneous coordinates)
u = ﬁi? (in affine coordinate)

The group of these transformations is called the group of projective trans-
formaions of RP!.

Example Consider projective transformation F' of RP generated by ma-

. 3 2
trix K = (5 7). We have
homogeneous coordinates [z : | EN [, y] = [3x 4+ 2y : 5z + Ty]
affine coordinates u 5w = gZ—ﬁ

(3.63)
E.g. point A with affine coordinate u4 = 3 will transform to the point A’
with affine coordinate
~3rua+2 3342 11 1
S brua+T7  5-3+7 22 27

ua

Projective transformations, and a point at infinity.
Apply projective transformation considered in example above to the point
at infinity. Let A be a point on RP at infinity:

[a594) =[1:0], wa=o00

(Stricktly speaking affine coordinate of this point is not defined, but with
some abuse of language we will write us = 00.)
Under projective transformation (3.63) this point transforms to the point
A’ with coordinates
T A

: 3
[ 2 Y] = [Bxa+2ya : 5xa+ Tya] = [3: 5], ie. UA’ZEZg,
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or with some abuse of language one can say that

" _3u,4+2_3-oo+2_§
AT BuA+T7 50047 5

Remark The exact meaning of this expression is the following

3us+ 3 3
=1 =-. 3.64
ua uAlgloo Sug + 7 5) ( )

We see that projective transformation(3.63) transforms the point at in-
finity to the finite point.

Now apply projective transformation(3.63) to a finite point B with co-
ordinates [zp : yp] = [7 : —5]. (affine coordinate up = —I). One can see
that under this transformation, a finite point is transformed to the point at

infinity:
F(7:-5]))=3-T42-(=5):5-T+7-(=5)=[11:0] = o0,
or in affine coordinate:

_3uB—|—2_
 Sup+7

(&) +2 -1
()+7 0

F(us) -

= 0.

Consider this phenomenon in general for arbitrary projective transforma-
tion
Proposition Let F be an arbitrary projective transformation of RP

generated by matriz K = (3 g) :

F(lz:y)) =|ax+ Py vz +dy]. (det K =ad— Py #0), (3.65)

L. Suppose condition
v #0 (3.66)

15 obeyed.
Then the projective transformation F transforms the point at infinity to
the finite point A = [a : 7] (affine coordinate uy = 2 ). This transformation

transforms the finite point B = [§ : —v] (affine coordinate up = —%) to the
point at infinity.
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II. In the case if condition (3.66) is not obeyed, i.e. v = 0, then point
at infinity remains fized, and projective transformation F is just an affine
transformation.

iProof. The proof is reduced to straightforward checking:
I. Proof of the first part of Proposition:

Floo)=F(1:0))=[a-14+8-0:v-14+0-7=[a:v]=A, (3.67)

FB)=F([d: —])=[ad+B(—y) 70+ (—)]=[1:0] =00. (3.68)

These transformations may be rewritten in affine coordinate: uy = oo and
ug = —%, hence

a0+« aup+ B —ad+ By
(00) P ug, and F(up) P 5 00

IT. Prove now the second part of proposition. In the case v = 0 then
F(o0) = F([1:0]) = [ : 0] = 00, i.e. 0o remains fixed , and

au+f  « o]

This is an affine transformation w — ku + a with scaling coefficient k = §

and translation a = % (see (3.61)). (Parameter § # 0 since in the case if

v=0,det K =ad #0.)

Remark One can say that group of affine transformations is a subgroup of a group
of projective trasnformations.

Projective transformations as well as affine transformations form a finite-dimensional

17

group .

Composition of projective transformations is a projective, and every projective trans-
formation F' = F is a bijective transformation such that trnasformation F' = Fp -1 is

its inverse, here K = <a A
v 46

F maps every finite point u to F'(u) =

) is a matrix defining projective transformation, and K ! is

its inverse.

17Group of affine transformations of R is 2-dimensional Lie group, a group of projec-
tive transformations of RP is three dimensional Lie group. One can show that this is
a finite-dimensional subgroup of highest dimension in the infinite-dimensional group of
diffeomorphisms of RP.

111



3.6.4 Projective transformations and cross-ratio of four points on
RP

Projective transformations do not preserve length, they also do not preserve
ratio. What they preserve?
To see it return first to usual line R.
Consider two arbitrary points points A and B on the usual line R.
It is evident that for arbitrary translation of R u — u + a (see equation
(3.60)) the difference
(A,B) =uq —ug,

is an invariant of group of translations. : if ugy — ua = us + ¢ and ug —
up = up + c then (4, B) = (4", B').

(ua,up as usual are coordinates of points A, B respectively.)

Now enlarge the group of translations and consider the group of affine
transformations (see equation (3.61)). Consider arbitrary three distinct points
(A, B,C) on the line and consider the ratio of differences:

(A, C)  usg—uc

(A7 B, C) = (B, C) = g — Uo (370)

One can see that (A, B, () is an invariant of group of affine transformations:
if ug — ug = kug +a, ug — up = kug + ¢ and ug — ucr = kuc + ¢ then
(A, B,C) = (A, B, C"):

ug —ucr  (kua+a) — (kuc + a)

A, B, C = = =
( ) up —ucr  (kug +a) — (kuc + a)

kuA—kuC Ug — Uc
= = (A, B,C).
kup — kuc  up — uc (4, B,C)

What further?

Theorem-Definition Let A, B,C and D be four distinct points on pro-
jective line RP. Cross-ratio (A, B,C, D) of four points A, B,C,D on the
projective line RP s equal to

)_UA—UC'UA—UD

(A,B,C,D) = (A,B,C): (A, B, D

UB—UC.’U,B—UD

(ua —uc)(up — up)
(ua —up)(up —uc)’

(3.71)
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where u, up, uc,up are affine coordinates of points A, B,C, D.

Cross-ratio (A, B,C, D) is the invariant of projective transformations.

Can we still use formula (3.71) if one of the points is at infinity? One can
see that formula (3.71) works in this case also.

E.g. consider a case if D = [1 : 0] = oo, the affine coordinate up = .
To come to the answer consider limit in equation (3.71):

(A,B,C,00) = lim (ua — uc)(up — up) — lim (UB —UD) Ug — UC

up—oo (Uy — up)(up — uc)  wp—oo \ugq —up ) up — uc

Upg — Uc
=——~=(A B,(C). 3.72
MY (4B,0) (3.72)

One can say with some abuse of notations that using formula (3.71) we come
to

(ABC’oo):(UA_UC)(UB_OO):UB_OOUA_UC:UA_UC:(A,B,C).

(ug —o0)(up —uc) usa—o0QUR—UC U — UC
(3.73)

(Compare with remark (3.64).)

Precise considerations which lead to calculation of cross-ratio in the case if one of the
points is at infinity are following:

Rewrite first formula(3.71) in homogeneous coordinates:

\m

(wa —uo)(up —up) (52~ yc>(
D) = (s =) ™ (2 — ) (24—

YA

\5 @\o

\u

det (xA ) det t mD)
(zayc —zoya(zByp —TpYB) _ Ya YB YD
(xayp — rpya)(rpyc — Tcyp) det <mA > det < xc>
Ya Yo Yy Yo

This formula defines cross-ratio for all points of projective plane including a point at
infinity. Consider a case if a point D is at infinity: D = [1 : 0] = oo, then according to

(3.74)
det (IA mc> det (xB 1) —yp det (xA xc)
(A, B,C,o00) = ya yc yp 0 ya yc)

det (xA 1) det <x3 ﬁc) —ya det <x3 mc)
ya 0 Y Yo Y Yo

o _ ZTA

s}

(3.74)

YBYATC —YBYCTA _ yo ~ ya _ UA —UC
_ T zc _zp _
YAYBTC — YAYcTp o,  UB —UC
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We come to answer (3.72).

Finally prove the Theorem abount invariance of cross-ration.

Cross-ratio is ratio of two ratios (see equation (3.71) and ratio is invariant of affine
transformations. On the other hand an arbitrary projective transformation is affine trans-
formation, or it is a composition of affine transformation and special projective transfor-

1

mation Fp: v’ = ). Hence it suffices to check that cross-ratio is invariant of this special

transformation, and this can be checked by simple calculation:

1 1

(uly —up)(up —ug) (i - %) (% - %) (ua —up)(up — uc)

ooy = g =) —lp) _ (=) (35 = 55) _ (ua = we)un — up)

What are the relations between cross-ratio of four points if we rearrange
them? In other words suppose that for four points A, B,C, D on the pro-
jective plane RP!, we have that (4, B,C, D) = X\. What is the value of
cross-ratio (B, A,C, D), (A,B,D,C), (B,A,D,C), (A,C,B,D) or for any
arbitrary permutation of points A, B, C, D?

One can easy to see that

1
(A,B,C,D)=)\= (B,A,C,D)=(A,B,D,C) = 1 (3.75)
, and
(A,B,C,D)=X= (A,C,B,D)=1—-(A,B,C,D)=1- X\, (3.76)

. These relations can be checked by straightforward calculations:

(up —uc)(us —up) 1 1
B, A D) = = -
(B,A,C,D) (up —up)(ua — uc) Mﬂ (A,B,C,D)’
ua—up)(up—uc)
(ug —up)(up — ue) 1
A, B.D,C) = = :
( )= Ca—ue)up —up) (B, C.D)
and

(ua —up)(uc —up)  (ua —uc)(up — up)

(A,C,B,D)+(A,B,C,D) = (wa — up)(uc — up)  (ua — up)(up — uc)

These relations define the cross ratio of arbitrary permutation of these points. E.g. due
to (3.75) and (3.76),

1 1 1

(A,D,B,C) 1-(A,B,D,C) 1

(D,A,B,C) = T .
~ (A,B,C,D)
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Finally introduce the notion of so called harmonic conjugate points.

Definition Let A, B, C, D be four points on projective line. We say that
a point D is harmonic conjugate to the points A, B,C' if the cross ratio
(A, B,C, D) is equal to —1.

(A,B,C,D) = —1, (3.77)

Harmonic conjugate points possess many beatiful properties. Unfortu-
nately we have not time to do it now.
Examples of calculations of the cross-ratio see in Homework9.

3.6.5 Projective plane RP?

Recall that projective line RP = set of lines in R? passing trough the origin.
Definition Projective plane is a set of lines in R? passing through the
origin:
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o~

plane z =1

plane 7: z=1.
RP? = {I: 1€ R?}
“A point” in RP?” = line in R3 passing through the origin
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a point A — — — line 4
a point B — — — line [p

a point C'— — — line ¢

However there are many ‘points’ which are represented by lines which are
parallel to the plane m

a point A on the plane m — — — line [, which intersects this plane

a point at infinity — — — line which is parallel to the plane 7

3.6.6 Homogeneous and affine coordinates in RP?

Now we define homogeneous and affine coordinates of points in projective
plane, in the way similar as we defined homogeneous and affine coordinates
on projective line RP.
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rp

L/

plane z =1
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A point A= [x4:ya: 24l
in RP?
([xa:ya:za]l =
= [)\wA . )\yA . )\ZA])
[z:y:z]—
homogeneous
coordinates
of a point in RP?

Example

A point A=[2:3:5]
in RP?
([2:3:5] =

=[4:6:10]=1[6:9:15)[z:y:2]—

homogeneous
coordinates
of the point
A in RP?

line [ which passes
through the origin
and a point ry

T =1txy
I: qy=tya

z=1z4
r4 = (Ta,Ya,24)

r=1Iry
—00 <t < 00

line [ which passes
through the origin
and a point r4
r =2t
[: ¢y =6t
z =5t
ra=(2,3,5)
r=1ry
—00 <t <00

In the same way as for projective line finite points are points which are
represented by lines which intersect the plane 7: z = 1, i.e. lines which do
not belong to the plane OXY. The homogeneous coordinates of finite points
[z :y: z] obey condition

z2#0. (3.78)

Consider an arbitrary point A = [a : b : ¢/, such that this condition is obeyed,
¢ # 0. Then we have that for arbitrary A # 0

a b c b
hicl=|—:—:— :bicl = S N
la:b: ] [)\ ) A}é[abc} [ . }

This relation says that these three points of R3, the point (a, b, c), the point
a b ¢

(X’ 3 X) and the point (9, IZ’, 1) belong to the line [ 4; this line represents the

C

‘point” A = [a : b: ] of the projective plane RP2. The point (usual point of

ole

119



R3) (%, g, 1) belongs to the plane 7: 2z =0, and %,g are x,y-coordinates
of the intersection of the line [4 with the plane .
Definition Let A = [z : y : 2] be an arbitrary finite point of the projective

plane R?, (2 # 0). Affine coordinates us and v, of this point are:

==, 3.79
y VA > ( )

SRS
<

(Compare with affine coordinate for projective line (see (3.58)).)

What about points at infinity, i.e. points [z : y : z] such that z = 07 One
can see that these ‘points’ on the projective plane are represented by lines
in R? which belong to the plane OXY . These lines pass through the origin
and are parallel to the plane 7.

In the case of projective line RP we had just one point at infinity. Now
on projective plane RP? we have the infinite set of ‘points’ at infinity = the
set of lines in the plane OXY passing through the origin. On the other hand
the set of lines in the plane OXY passing through the origin is nothing but
projective line. In its turn we know that projective line is a line completed
by a point at infinity.

We come to the following

Matrjoshka

2 2
RP2 = R U RP (3.80)

finite points on RP?  points at infinity

The projective line of points at infinity is RP:

points at infinity| lines in OXY _ RP
(invisible points) / ~ \ passing through the origin /

We come to

RP?>=R?URP =R*U (RU) . (3.81)

One can define n-dimensional projective space RP™ as a space of lines in R"*! passing
through the origin. We come to “matrjoshka” with n 1dolls’. E.g.

RP’=R’URP?=R’U(R*URP) =R’ U (R°U(RU{})) .
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3.6.7 Lines in RP? and collinear points in RP?

We know that the points on the projective plane RP? are the lines in R?
which pass through the origin. What about ‘lines’ on the projective plane
RP??

Definition ‘Lines’ in projective plane RP? are the planes in R3 which
pass through the origin.

Pick two points A and B on the projective plane RP?. Let these points
be represented by lines 14, in R:

Points A, B lines l4,lp
in RP? in R3

Draw the ‘line’ in RP? which passes through ‘points’ A, B

Line AB in RP? plane in R3
passing through ‘points’  passing through lines
A and B la,lp

The ‘points’ of the ‘line’ AB in RP? are represented by lines in the plane
a which pass through origin. (see Figure (3.82).)
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plane z =1

(3.82)

Definition We say that three points A, B and C on the projective plane
RP? are collinear if these points belong to the same line, or in other words if a
point C' belongs to the line passsing through the points A and B, C' € (AB).

Derive the condition of collinearity of three points.
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c

plane z =1 ro

I' B Yy

(3.83)

As usual in the left column we will write the statement about points and

lines in RP? and in the right column the representation of these objects in
R3.
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points in RP? lines in R?
passing through the origin

A € RP? 0ely eR?
(x:txA

[TA:ya: z4] y=tys ,r=try
\Z:tZA

B € RP? 0elpeR?
rx:t:r;B

[xp : yp : 28] y=tyg , r=trg
\z:tzB

C € RP? 0€l-€eR?
r =tro

[Tc @ yo @ 20 y=tyc ,r=lrc
z=tzco

A parameter ¢ in these equations runs from —oo to oc.

The vectors r4 = (xa,ya,24), 'p = (TB,Ys, 25) and r¢ = (z¢, Yo, 2c)
which span respectively the lines [ 4, [g and [ are defined up to a non-zero
multiplier (e.g. the vector r and the vector 3r, span the same line ly4).

We see that point C' belongs to the line AB if and only if vectors r4, rg,
r¢ are linearly dependant, i.e.

Ara+ prg +vre =0, where A\ # 0, 0orpu # 0,0rv # 0.

ie.
TA Ip To
Ylya | +ulys | +v|yec ] =0, where A #0,0orpu#0,0orv #0. (3.84)
ZA <B 20

For example consider points A, B and C which are on the same line in RP?
(see Figure (3.83)). In this case vector r¢ is the linear combination of vectors
r, and rg. This means that these three vectors, vectors r4,rg,re span the
plane in R? passing through the origin. — This is equivalent to the fact
that three ‘points’ A, B, C' on the projective plane are on the one line (are
collinear).
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On the other consider the point C’ in RP? (see Figure (3.83)). In this
case vector r¢v is linearly independent on the vectors ry and rg. In this
case three vectors, vectors r4, g, e do not span the plane in R? (they span
all R3!).— This is equivalent to the fact that three ‘points’ A, B,C” on the
projective plane are not collinear.

Recall that for arbitrary three vectors in R? one can consider the matrix
such that components of these vectors are columns (or rows) of this matrix.
E.g. for vectors r4 = (xa,ya,24), tB = (TB,Ya,24), Yc = (e, Yo, 2c), one
can consider the matrix

A ITB Xc
Tapc=\va yB vyc |,
ZA ZB RC

and these vectors are linearly dependent if and only if the matrix is degenerate
& non-invertible < det Type # 0. Thus condition (3.84) implies

Proposition

Let A, B, C three points on the projective line with homogeneous coordi-
nates A =[x4:ya: zal,

B=|xp:yp: 28],

C = [z¢ : yo : z¢). These three points are collinear (belong to the same
line) if and only if the matrix

rpa Tp X
Tapc=|ya yB Yo (3.85)
ZA ZB RC

is degenerate < det Tapc = 0.
Remark We know that every point in projective plane may have different
homogeneous coordiantes:

[:y:z]=[ax:ay:az],(a#0).

Changing homogeneous coordinates of points do not change condition of de-
generacy of matrix. This is in accordance with the fact that condition of
degeneracy of matrix Tapc (det Tapc = 0) does not change if we multiply
columns on arbitrary non-zero numbers: vectors r4, rg, r¢ are linearly depen-
dant if and only if vectors ar 4, brg, cre are linearly dependant (a, b, c # 0).

Suppose now points A, B, C' are finite points, i.e. z4 # 0,25 # 0 and
zc # 0. In this case one can consider not only homogeneous coordinates but
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also affine coordinates (see equation (3.79)) of these points

_ . . _TA _— YA

A=[za:ya:za]— affine coord. uy = VA= 22
_ ) : _ _ zp _ ys

B =z :yp:zp]— affine coord. ug s g =32 (3.56)
_ . . __ xcC —_ Yc

C=lzc:yc: zo]— affine coord. uc = ova =18

Proposition above states that
points A, B, C are collinear < Tp¢ is degenerate matrix .

Condition of degeneracy is not changed under the multiplication of columns
on non-zero numbers: Multiplying the first column on %, the second column
on i, and the third column on % we come to

A B zc
ZA ZB (e}

Tapc is degenerate . < the matrix | %4 Y& 2 | ig degenerate.
ZA ZB zc

1 1 1

Thus using (3.86) we come to the following fact:

us Up uUc
finite points A, B, C are collinear << matrix | v4 v v¢ | is degenerate.
1 1 1

The condition of degeneracy of matrix in the right hand side of this equation
means that its rows are linearly dependant!®, i.e. there exist three numbers
p,q,r such that not all these numbers are equal to zero, and

puag +qua+1 =pug+qup +1 =puc +quc+1r=20.
This means that these three points are on the one line:
pu+qu+r=0. (3.87)

We see that for finite points condition of collinearity becomes almost
tautological. Of course we can check the collinearity of finite points, finiding

18degeneracy < colummns are linearly dependant < rows are linearly dependant
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the line (3.87) such all these points belong to this line, or we can use just
Proposition 3.6.7.
Consider example

Example Consider three points

A=[1:-1:1],
B =1[10:—-15:5],
C:[l:—g:%].

Check are these points collinear or no.

Since these points are finite then the condition of collinearity may be
checked or using Proposition3.6.7 or using criterion that they all belong to
the same line (see equation (3.87)).

1 10
First way: using Proposition. Consider the matrix Typc = [ —=1 —15
1 5

One can see straightforwardly that this matrix is degenerate. To facilitate
considerations we may perform column operations, and multiply columns on
suitable non-zero numbers: mulitply second column on %, and third on 5 9.
1 2 5
We come to the matrix Tz = [ -1 -3 -9
1 1 1
The matrix Tz~ is obviously degenerate matrix, since its determinant
vanishes. (It is much easier to see its degeneracy that the degeneracy of the
matrix Tapc.)

II-nd way: using affine coordinates. Consider affine coordinates
of the points A, B, C"

_zA _ _ya _
A—%_A—LUA—%_A—_L
_— 4B __ — YB __
up =yt =2vp=1=-3
= —= = :—C:—
uc—c 5,110 o 9,

Y
We see that

uay\ 1 upy\ 2 ucy 5
()=(4)- ()-(5) (D)-(%) e
All these points belong to the one line

2ut+v=1.

9sure degeneracy condition does not depend on the choice of these numbers, “suitable”

means to make calculations easier
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Of course the second way is much shorter, but sometimes it is not easy
to guess an equation of the line (3.87).
(See other examples in Homework 9)

3.6.8 Cross-ratio of four collinear points in RP?

We know that for four points on projective line their cross-ratio (3.71) is
invariant of projective transfromations:

(ua — uc)(up — up)

A,B,C,D) = 3.89
( ) (ua —up)(up — uc) ( )
is an invariant of projective transformations: If v/ = 'ﬁ—ig is an arbitrary
projective transformation (ad — 5y # 0) (see (3.62)) then
(4.B,C,p) = a—ue)lus —up)
o (ua —up)(up — uc)
= (A, B,C'\ D)= (wa = o) (wpy — upy) (3.90)
) ) ) (UA’ _ UD’)(UB’ _ UC’) )
where
wy = Sat s _austf o _auetp o _auptf
A vua+0" 7T qup+4’ ¢ yue+6 7 qup+0°

Let A, B,C,D be four points on the projective plane RP?, and these
points are on the one line. Since cross-ratio of four points is an invariant
of projective transformations we can define it for arbitrary projective line,
choosing an arbitrary affine coordinate.

Definition Let A, B, C, D be four points on RP? which are collinear (see
Figure (3.91)). Let u be an arbitrary affine coordinate on the plane RP2.
Then one can consider the cross-ratio (3.89). It does not depend on a choice
of projective coordinate.
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four collinear points

(A, B,C, D) = (us = uo){up — up) (3.91)
(ua —up)(up — uc)
where u an arbitrary affine coordinate.
Remark Cross-ratio of four points on RP? is well-defined only if these
points are collinear. 1t is only in this case that cross-ratio does not depend on
the choice of affine coordinate. We will assume by default that the cross-ratio
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is defined only for the collinear points.

Remark We consider here only the case if all these points are finite
points, i.e. they have affine coordinate 2°.

Remark Choosing an arbitrary affine coordinate be aware that this co-
ordinate takes different values at these points. (See for detail solutions of
exercises 3 and 4 in Homeworks)

Example

Consider four points A, B, C' and D on projective line such that
A=1[8:20:4]

[8:18: 2]

[6:14 : 2]

[t :2t +1:1] where t is an arbitrary parameter.

First we have to check are these four points collinear, or no. Only in
the case if these four points are collinear it is meaningfull to calculate their
cross-ratio.

Consider the affine coordinates u = Z,v = ¥ of these points (see equa-
tion(3.87) or equation(3.88) in the Example above):

(=60 (-0 (-0 (-G

We see that all these points belong to the same line v = 2u + 1.

B
C
D

One can check the condition of collinearity in other way also using Proposition3.6.7.
Show first that three points A, B and C are collinear. Consider matrix

8 8 6
Tapc = |20 18 14 ). It is column equivalent to the matrix T)z- =
4 2 2
2 4 3
59 7
1 21

One can see that the matrix 77 5 is degenerate: det T 5~ = 0, hence the
matrix Typc is also degenerate. Hence the points A, B, C are collinear. In
the same way one can show that three points B, C, D are also collinear since

8 6 t
the matrix Tgep = | 18 14 2t + 1 | is also degenerate. We see that points
2 2 1

20A1l considerations can be easily performed for arbitrary points.
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A, B, C are collinear and points B, C, D are also collinear. Hence points all
four points A, B, C, D are collinear.

Remark Sure the first way of checking the collinearity of these four points
is much shorter, than the second.

Niw since we also proved that these four points are collinear, calculate
their cross-ratio.

Take coordinate u of these points (see equation (3.92)). We come to

(ug —uc)(up—up) (2-3)4—-t) t—4

(A,B,C,D) = (wa—up)up —uc)  (2—D(@E—3) 2-¢.

One can use another coordinate,

_(va—wve)vg—vp) (B-T)O9—-(2t+1)) t—4
(4,B,C,D) = (va—vp)(vg—ve) (B—Q+1))O—-T7) 2—t.

One can use for calculation of the cross-ration arbitrary affine coordinat w = au + bv + ¢
which separates these points.

It is interesting to study how cross-ratio behaves if ¢ — oco. In accordance with
equation (3.73) we come to

(4,B,C,00) = lim (4, B,C, D) = (4, B,C).
—00

See other examples in Homework 9

3.7 Conic sections and their projective transformations

The content of this subsection is important for general knowledge. This is not
ezaminable except the analysis of curve x* +y? + 2pry = 1 in equation(3.97)
(see from equations (3.96) till equation (3.100). )

In a same way as for projective line RP one can define projective transfor-
mations of the projective plane RP?: Let K be an arbitrary non-degenerate
3 X 3 matrix

a b ¢
K=|d e f]|, detK#0.
g h k
This matrix induces linear transformation of R? on R?:
x x’ a b c x ar + by + cz
R |y|l—=|v]|=1|d e f yl=\|de+ey+ fzy| . (3.93)
z 2 g h k z gr + hy + kz

131



The transformation which transforms lines passing though origin to the lines
passing through origin. Thus we come to transformation Fx of projective
plane induced by linear transformation of R3:

Frlz :y: 2] = [2' 1y : 2] = [ax+by+cz : detey+fz : gr+hy+kz]. (3.94)

Write down this transformation in affine coordinates. We come to

, 2 ar4by+cz  af+bi4c  autbvtc
u=== = =

2 gr4+hy+kz gi+hY+k  guthvo+k’

, Y dvtey+fz di4el+f dutev+ f
V=== = =

2 gr+hy+kz gf+hl+k guthv+k’

The projective transformations have an appearance of fractional-linear transforma-
tions in affine coordinates.

Example 1
0 01
Let K=(d 1 0
1 0 0

This matrix defines transformation

Fr(z:y:2])=z:y: 2],

i.e. in affine coordinates F: [u:v:1] = [l:u:v] = [1:%:1].
Another example

Example 2
Consider the transformation:

(3.95)

—N—
R]e 8-
I
gle 8=
Il
=

Comparing with transformation above we see that this transformation?' is induced by
matrix

K =

— O~
O~ O

0
0
f

210ne can see that transformation (3.95) can be easily recognised as the transformation
of geometrical optics.
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Usual affine transforamtions of affine space are special case of projective transforma-

a b c uw =au+bv+c
tions: the matrix K = [ d e f | induces affine transformation {
00 1 vV=du+tev+ f
Now return to conic sections.
. o T =au
Recall that affine transformation, dilation { transforms
Yy =av
2 2
. z Y . 2 2
an ellipse — + e 1, to the circle,u” +v°=1. (3.96)
a

One can consider the following little bit more sophisticated example: Let
C be a curve in E? defined by equation

4y 2pry e +y=1, (3.97)

where p is a parameter.
Consider new affine coordinates u, v such that

rT=u-+v ) u= 2
. le.
Yy=1u—"uv v =

This is the affine transformation, it is not transformations from Cartesian
coordinates to another Cartesian coordiantes (i.e. translations and orthog-
onal transformations), We see that in new coordinates u, v curve (3.97) has
appearance

8
|
e e

l\3|

(u+v)2+(u—2v)*+2p(u+v) (u—2v)+2u = 1 & 2(1+p)u+2(1—p)v*+2u = 1.

Now analyse this curve just for two values?? of parameter p, p; = —1 and
P2 = —%-
If p = p; = —1 then this curve becomes
4o +2u=1. (3.98)

This is a parabola.

220ne can see that this curve is hyperbola for |p| > 1, it is an ellipse for |p| < 1, for
p = —1 it is parabola and for p = 1 is the union of two parallel lines: 2u(u+2) —1=0=

—1£v5
Ur,2 = T\f
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Ifp=p,= —% then this curve becomes

u? + 30 +2u=1. (3.99)

2

This is an ellipse. Indeed u*+3v*+2u = 1 & (u+1)>+3v? =2 < %“_%;2 =1,
where

N

f—u—1 2
w=d , anda:\@,b:\/;. (3.100)

v =w

We see that changing values of parameters p we come from parabola (3.98)
to ellipse (3.99). However these two curves cannot be transformed to each
other by any affine transformation. Does there exist projective transforma-
tion which transforms parabola (3.98) to an ellipse (3.99)?

To answer this question again return to the simple example (3.96). Consider the circle
u? +v? =1 in (3.96) in projective plane RP2.
Let u, v be affine coordinates, and [z : y : 2] be homogeneous coordinates on RP?:

z Y
u=—,v="=
z z

Then the circle
u?+0?=1
will have in homogeneous coordinates the following appearance:

(O (&) =rwm s s

(We recall that [£:2:1] =[z:y:2].)
onsider projective transformations

Fiijz:y:zl=lzry:a],Fa=[z:y+z:y—2z]. (3.102)
It is easy to see that the projective transformation Fj transforms the circle 3.101 to

hyperbola, and projective transfromation F, transforms the circle (3.101):

2 2 2 2 2 2 T2 y\?2 2 2
Fliet+y " —22=0—2"4+y" —z :0@(7) —<7) =lesu —v' =1,
z z
and
2,,2 2 2 2 2 2 T2 y\? 2
Fy: a4y =2 =0 2°+(y+2)°—(y—2)° =0z +4yz:O(7) +4(7) =0 u'+4v =0,
z z

Ellipse and circle are affine equivalent, but ellipse, parabola, and hyperbola are not affine

equivalent, but they are projective equivalen.
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