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1 Euclidean space

1.1 Recollection of vector space and Euclidean vector
space

We recall here important notions from linear algebra of vector space and
Euclidean vector space.

1.1.1 Vector space.

Vector space V on real numbers is a set of vectors with operations ” +
”—addition of vector and ” · ”—multiplication of vector Lon real number
(sometimes called coefficients, scalars).

1

Remark We denote by 0 real number 0 and vector 0. Sometimes we
have to be careful to distinguish between zero vector 0 and number zero.

1.1.2 Basic example of (n-dimensional) vector space—Rn

A basic example of vector space (over real numbers) is a space of ordered
n-tuples of real numbers.
R2 is a space of pairs of real numbers. R2 = {(x, y), x, y ∈ R}

1These operations obey the following axioms

• ∀a,b ∈ V,a + b ∈ V ,

• ∀λ ∈ R,∀a ∈ V, λa ∈ V .

• ∀a,ba + b = b + a (commutativity)

• ∀a,b, c, a + (b + c) = (a + b) + c (associativity)

• ∃ 0 such that ∀a, a + 0 = a

• ∀a there exists a vector −a such that a + (−a) = 0.

• ∀λ ∈ R, λ(a + b) = λa + λb

• ∀λ, µ ∈ R(λ+ µ)a = λa + µa

• (λµ)a = λ(µa)

• 1a = a
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R3 is a space of triples of real numbers. R3 = {(x, y, z), x, y, z ∈ R}
R4 is a space of quadruples of real numbers. R4 = {(x, y, z, t), x, y, z, t,∈ R}

and so on...
Rn—is a space of n-typles of real numbers:

Rn = {(x1, x2, . . . , xn), x1, . . . , , xn ∈ R} (1.1)

If x,y ∈ Rn are two vectors, x = (x1, . . . , xn), y = (y1, . . . , yn) then

x + y = (x1 + y1, . . . , xn + yn) .

and multiplication on scalars is defined as

λx = λ · (x1, . . . , xn) = (λx1, . . . , λxn) , (λ ∈ R) .

1.1.3 Linear dependence of vectors

We often consider linear combinations in vector space:∑
i

λixi = λ1x1 + λ2x2 + · · ·+ λmxm , (1.2)

where λ1, λ2, . . . , λm are coefficients (real numbers), x1,x2, . . . ,xm are vectors
from vector space V . We say that linear combination (1.2) is trivial if all
coefficients λ1, λ2, . . . , λm are equal to zero.

λ1 = λ2 = · · · = λm = 0 .

We say that linear combination (1.2) is not trivial if at least one of coefficients
λ1, λ2, . . . , λm is not equal to zero:

λ1 6= 0, orλ2 6= 0, or . . . orλm 6= 0 .

Recall definition of linearly dependent and linearly independent vectors:
Definition The vectors {x1,x2, . . . ,xm} in vector space V are linearly

dependent if there exists a non-trivial linear combination of these vectors
such that it is equal to zero.

In other words we say that the vectors {x1,x2, . . . ,xm} in vector space V
are linearly dependent if there exist coefficients µ1, µ2, . . . , µm such that at
least one of these coefficients is not equal to zero and

µ1x1 + µ2x2 + · · ·+ µmxm = 0 . (1.3)
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Respectively vectors {x1,x2, . . . ,xm} are linearly independent if they are
not linearly dependent. This means that an arbitrary linear combination of
these vectors which is equal zero is trivial.

In other words vectors {x1,x2,xm} are linearly independent if the condi-
tion

µ1x1 + µ2x2 + · · ·+ µmxm = 0

implies that µ1 = µ2 = · · · = µm = 0.
Very useful and workable
Proposition Vectors {x1,x2, . . . ,xm} in vector space V are linearly

dependent if and only if at least one of these vectors is expressed via linear
combination of other vectors:

xi =
∑
j 6=i

λjxj .

1.1.4 Dimension of vector space. Basis in vector space.

Definition Vector space V has a dimension n if there exist n linearly inde-
pendent vectors in this vector space, and any n+ 1 vectors in V are linearly
dependent.

In the case if in the vector space V for an arbitrary N there exist N linearly indepen-

dent vectors then the space V is infinite-dimensional. An example of infinite-dimensional

vector space is a space V of all polynomials of an arbitrary order. One can see that for an

arbitrary N polynomials {1, x, x2, x3, . . . , xN} are linearly idependent. (Try to prove it!).

This implies V is infinite-dimensional vector space.

Basis
Definition Let V be n-dimensional vector space. The ordered set {e1, e2, . . . , en}

of n linearly independent vectors in V is called a basis of the vector space V .

Remark We say ‘a basis’, not ‘the basis’ since there are many bases in
the vector space (see also Homeworks 1.2).

Remark Focus your attention: basis is an ordered set of vectors, not just
a set of vectors2.

The following Proposition is very useful:

2See later on orientation of vector spaces, where the ordering of vectors of basis will be
highly important.
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Proposition Let {e1, . . . , en} be an arbitrary basis in n-dimensional vec-
tor space V . Then any vector x ∈ V can be expressed as a linear combination
of vectors {e1, . . . , en} in a unique way, i.e. for every vector x ∈ V there
exists an ordered set of coefficients {x1, . . . , an} such that

x = x1e1 + · · ·+ xnen (1.4)

and if

x = a1e1 + · · ·+ anen = b1e1 + · · ·+ bnen , (1.5)

then a1 = b1, a2 = b2, . . . , an = bn. In other words for any vector x ∈ V there
exists an ordered n-tuple (x1, . . . , xn) of coefficients such that x =

∑n
i=1 x

iei
and this n-tuple is unique.

In other words:
Basis is a set of linearly independent vectors in vector space V

which span (generate) vector space V .
Recall that we say that vector space V is spanned by vectors {x1, . . . ,xn}

(or vectors vectors {x1, . . . ,xn} span vector space V ) if any vector a ∈ V
can be expresses as a linear combination of vectors {x1, . . . ,xn}.

Definition Coefficients {a1, . . . , an} are called components of the vector
x in the basis {e1, . . . , en} or just shortly components of the vector x.

Example Canonical basis in Rn

We considered above the basic example of vector space—a space of or-
dered n-tuples of real numbers: Rn = {(x1, x2, . . . , xn), xi ∈ R} (see (1.1)).
One can see that it is n-dimensional vector space. Consider vectors e1, e2, . . . , en ∈
Rn:

e1 = (1, 0, 0 . . . , 0, 0)
e2 = (0, 1, 0 . . . , 0, 0)
. . . . . .

en = (0, 0, 0 . . . , 0, 1)

(1.6)

Then for an arbitrary vector Rn 3 a = (a1, a2, a3, . . . , an),

a = a1(1, 0, 0 . . . , 0, 0)+a2(0, 1, 0 . . . , 0, 0)+a3(0, 0, 1, 0 . . . , 0, 0)+· · ·+an(0, 1, 0 . . . , 0, 1) =

m∑
i=1

aiei = aiei (we will use sometimes condensed notations x = xiei)
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For every vector a ∈ Rn we have unique expansion via the vectors (1.6).
The set of vectors {e1, . . . , en} is a basis of Rn. The basis (1.6) is the dis-
tinguished basis. Sometimes it is called canonical basis in Rn. One can find
another basis in Rn–just take an arbitrary ordered set of n linearly indepen-
dent vectors. (See exercises in Homework 0).

1.1.5 Scalar product. Euclidean space

In vector space one have additional structure: scalar product of vectors.
Definition Scalar product in a vector space V is a function B(x,y)

on a pair of vectors which takes real values and satisfies the the following
conditions:

B(x,y) = B(y,x) (symmetricity condition)
B(λx + µx′,y) = λB(x,y) + µB(x′,y) (linearity condition)

B(x,x) ≥ 0 , B(x,x) = 0⇔ x = 0 (positive-definiteness condition)
(1.7)

Definition Euclidean space is a vector space equipped with a scalar product.

One can easy to see that the function B(x,y) is bilinear function, i.e.
it is linear function with respect to the second argument also. This follows
from previous axioms:

B(x, λy+µy′) =︸︷︷︸
symm.

B(λy+µy′,x) =︸︷︷︸
linear.

λB(y,x)+µB(y′,x) =︸︷︷︸
symm.

λB(x,y)+µB(x,y′) .

A bilinear function B(x,y) on pair of vectors is called sometimes bilinear form on

vector space. Bilinear form B(x,y) which satisfies the symmetricity condition is called

symmetric bilinear form. Scalar product is nothing but symmetric bilinear form on vectors

which is positive-definite: B(x,x) ≥ 0) and is non-degenerate ((x,x) = 0⇒ x = 0.

Example We considered the vector space Rn, the space of n-tuples (see
the subsection 1.2). One can consider the vector space Rn as Euclidean space
provided by the scalar product

B(x,y) = x1y1 + · · ·+ xnyn (1.8)

This scalar product sometimes is called canonical scalar product.
Exercise Check that it is indeed scalar product.
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Example We consider in 2-dimensional vector space V with basis {e1, e2}
and B(X,Y) such that B(e1, e1) = 3, B(e2, e2) = 5 and B(e1, e2) = 0. Then
for every two vectors X = x1e1 + x2e2 and Y = y1e1 + y2e2 we have that

B(X,Y) = (X,Y) =
(
x1e1 + x2e2, y

1e1 + y2e2

)
=

x1y1(e1, e1) + x1y2(e1, e2) + x2y1(e2, e1) + x2y2(e2, e2) = 3x1y1 + 5x2y2 .

One can see that all axioms are obeyed.
Remark Scalar product sometimes is called ”inner” product or ”dot”

product. Later on we will use for scalar product B(x,y) just shorter notation
(x,y) (or 〈x,y〉). Sometimes it is used for scalar product a notation x · y.
Usually this notation is reserved only for the canonical case (1.8).

Counterexample Consider again 2-dimensional vector space V with ba-
sis {e1, e2}.

Show that operation such that (e1, e1) = (e2, e2) = 0 and (e1, e2) = 1 does
not define scalar product. Solution. For every two vectors X = x1e1 + x2e2

and Y = y1e1 + y2e2 we have that

(X,Y) =
(
x1e1 + x2e2, y

1e1 + y2e2

)
= x1y2 + x2y1

hence for vector X = (1,−1) (X,X) = −2 < 0. Positive-definiteness is not
fulfilled.

1.1.6 Orthonormal basis in Euclidean space

One can see that for scalar product (1.8) and for the basis {e1, . . . , en} defined
by the relation (1.6) the following relations hold:

(ei, ej) = δij =

{
1 if i = j

0 if i 6= j
(1.9)

Let {e1, e2, . . . , en} be an ordered set of n vectors in n-dimensional Eu-
clidean space which obeys the conditions (1.9). One can see that this ordered
set is a basis 3.

3Indeed prove that conditions (1.9) imply that these n vectors are linear independent.
Suppose that λ1e1 + λ2e2 + · · ·+ λnen = 0. For an arbitrary i multiply the left and right
hand sides of this relation on a vector ei. We come to condition λi = 0. Hence vectors
(e1, e2, . . . , en) are linearly dependent.
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Definition-Proposition The ordered set of vectors {e1, e2, . . . , en} in n-
dimensional Euclidean space which obey the conditions (1.9) is a basis. This
basis is called an orthonormal basis.

One can prove that every (finite-dimensional) Euclidean space possesses
orthonormal basis.

Later by default we consider only orthonormal bases in Euclidean spaces.
Respectively scalar product will be defined by the formula (1.8). Indeed let
{e1, e2, . . . , en} be an orthonormal basis in Euclidean space. Then for an
arbitrary two vectors x,y, such that x =

∑
xiei, y =

∑
yjej we have:

(x,y) =
(∑

xiei,
∑

yjej

)
=

n∑
i,j=1

xiyj(ei, ej) =
n∑

i,j=1

xiyjδij =
n∑
i=1

xiyi

We come to the canonical scalar product (1.8). Later on we usually will
consider scalar product defined by the formula (1.8) i.e. scalar product in
orthonormal basis.

Remark We consider here general definition of scalar product then came
to conclusion that in a special basis, (orthonormal basis), this is nothing but
usual ‘dot’ product (1.8).

1.2 Affine spaces and vector spaces

AFFINE SPACE WITH ORIGIN IS A VECTOR SPACE

Let V be an arbitrary vector space.
Consider a set A whose elements will be called ‘points’ We say that A is

an affine space associated with vector space V if the following rule is defined:
to every point P ∈ A and an arbitrary vector x ∈ V a point Q is assigned:

∀P ∈ A , ∀x ∈ V , (P,x) 7→ Q ∈ A (1.10)

We denote Q = P + x.
The following properties must be satisfied:

• For arbitrary two vectors x,y ∈ V and arbitrary point P ∈ A,
P + (x + y) = (P + x) + y.

• For an arbitrary point P ∈ A, P + 0 = P .

(Recall that 0 is the zero vector in the vector space V .)
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• For arbitrary two points P,Q ∈ A there exists unique vector y ∈ V
such that P + y = Q.

If P + x = Q we often denote the vector x = Q− P = ~PQ. We say that
vector x = ~PQ starts at the point P and it ends at the point Q.

One can see that if vector x = ~PQ, then ~QP = −x; if P,Q,R are three
arbitrary points then ~PQ+ ~QR = ~PR.

One can reconstruct vector space V in terms of an affine space A, and
vice versa. Namely, let A be an affine space associated with vector space V .
Choose an arbitrary point O ∈ A as an the origin, and consider the vectors
starting at the origin: We come to the vector space V :

V = set of vectors ~OQ where Q is an arbitrary point in A ,

which is associated with an affine space A.
Let V be an arbitrary vector space. We will define now an affine space

associated with this vector space. Consider two copies of the vector space V .
The elements of the first copy we will call “points”, and the elements of the
second copy we will call as usual “vectors”:︷ ︸︸ ︷

first copy of V

V︸ ︷︷ ︸
elements of V are points

︷ ︸︸ ︷
second copy of V

V︸ ︷︷ ︸
elements of V are vectors

(1.11)

Let A = a be an arbitrary point of the affine space, (i.e. an element of
the first copy of vector space V ) and let x is an arbitrary vector of the vector
space V (i.e. an element of the second copy of vector space V ). We define
the action (1.10) in the following way:

(A,x) 7→ B = A+ x = a + x , x = ~AB .

The point B is the vector a + x ∈ V belonging to the first copy of the vector
space V .

We assign to two ‘points’ A = a, B = b (elements of the first copy of
vector space V ) the vector x = b− a (elements of the second copy of vector
space V ).

For example vector space Rn of n-tuples of real numbers can be considered
as a set of points. If we choose arbitrary two points A = (a1, a2. . . . , an) and

8



B = (b1, b2, . . . , bn), then these two points define a vector ~AB which is equal

to ~AB = B − A = (b1 − a1, b2 − a2, . . . , bn − an).
The associated with each other affine space and vector space Rn we will

usually denote by the same letter.

1.2.1 Eucldiean affine space.

Respectively one can consider Euclidean vector space as a set of points. Let
En be n-dimensional Euclidean vector space, i.e. vector space equipped with
scalar product. Let {ei} (i = 1, . . . , n) be an arbitrary orthonormal basis
in the vector space En. Now consider this vector space as a set of points.
Choose arbitrary two points (vectors of the first copy of the vector space
En), A = a1e1 + a2e2 + · · · + anen and B = b1e1 + b2e2 + · · · + bnen. These

points define a vector ~AB ( in the second copy of the vector space En) which
is equal to

~AB = B − A = (b1 − a1)e1 + (b2 − a2)e2 + · · ·+ (bn − an)en .

The distance between two points A,B is the length of corresponding vector
~AB, and the length of the vector ~AB is defined by the scalar product:∣∣∣ ~AB∣∣∣ =

√(
~AB, ~AB

)
=
√

((b1 − a1) e1 + · · ·+ (bn − an) en, (b1 − a1)e1 + · · ·+ (bn − an)en)

=

√
(b1 − a1)2 + · · ·+ (bn − an)2 .

We recall very important formula how scalar product is related with the
angle between vectors: if ϕ is an angle between vectors x and y then

(x,y) = x1y1 + x2y2 + · · ·+ xnyn = |x||y| cosϕ (1.12)

(We suppose that vectors x,y are defined in orthonormal basis.)
In particulary it follows from this formula that

angle between vectors x,y is acute if scalar product (x,y) is positive
angle between vectors x,y is obtuse if scalar product (x,y) is negative
vectors x,y are perpendicular if scalar product (x,y) is equal to zero

(1.13)
Remark The associated with each other affine space and Euclidean vec-

tor space En we will denote by the same letter.
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Remark Geometrical intuition tells us that cosinus of the angle between two vectors
has to be less or equal to one and it is equal to one if and only if vectors x,y are collinear.
Comparing with (1.12) we come to the inequality:

(x,y)2 =
(
x1y1 + · · ·+ xnyn

)2 ≤ ((x1)2 + · · ·+ (xn)2
) (

(y1)2 + (· · ·+ (yn)2
)

= (x,x)(y,y)
and(x,y)2 = (x,x)(y,y) if vectors are colinear, i.e. xi = λyi

(1.14)

This is famous Cauchy–Buniakovsky–Schwarz inequality, one of most important inequali-

ties in mathematics. (See for more details the last exercise in the Homework 0)

1.3 Transition matrices. Orthogonal bases and orthog-
onal matrices

1.3.1 Bases and transition matrices

One can consider different bases in vector space.
Let A be n× n matrix with real entries, A = ||aij||, i, j = 1, 2, . . . , n:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
a31 a32 . . . a3n
. . . . . . . . . . . .

a(n−1) 1 a(n−1)2 . . . a(n−1)n
an 1 an2 . . . ann


Let {e1, e2, . . . , en} be an arbitrary basis in n-dimensional vector space V .

The basis {e1, e2, . . . , en} can be considered as row of vectors, or 1 × n
matrix with entries–vectors.

Multiplying 1 × n matrix {e1, e2, . . . , en} on matrix A we come to new
row of vectors {e′1, e′2, . . . , e′n} such that

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A = (1.15)

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}


a11 a12 . . . a1n
a21 a22 . . . a2n
a31 a32 . . . a3n
. . . . . . . . . . . .

a(n−1) 1 a(n−1)2 . . . a(n−1)n
an 1 an2 . . . ann

 (1.16)
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, 

e′1 = a11e1 + a21e2 + a31e3 + · · ·+ a(n−1) 1en−1 + an 1en

e′1 = a12e1 + a22e2 + a32e3 + · · ·+ a(n−1) 2en−1 + an 2en

e′1 = a13e1 + a23e2 + a33e3 + · · ·+ a(n−1) 3en−1 + an 1en

· · · = . . . · · ·+ . . . · · ·+ . . . · · ·+ · · ·+ . . . . . . . . . . . .

e′n = a1ne1 + a2ne2 + a3ne3 + · · ·+ a(n−1)nen−1 + annen

or shortly:

e′i =
n∑
k=1

ekaki . (1.17)

Definition Matrix A which transforms a basis {e1, e2, . . . , en} to the row
of vectors {e′1, e′2, . . . , e′n} (see equation (1.17)) is transition matrix from the
basis {e1, e2, . . . , en} to the row {e′1, e′2, . . . , e′n}.

What is the condition that the row {e′1, e′2, . . . , e′n} is a basis too? The
row, ordered set of vectors, {e′1, e′2, . . . , e′n} is a basis if and only if vectors
(e′1, e

′
2, . . . , e

′
n) are linearly independent. Thus we come to

Proposition 1 Let {e1, e2, . . . , en} be a basis in n-dimensional vector
space V , and let A be an n× n matrix with real entries. Then

{e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A (1.18)

is a basis if and only if the transition matrix A has rank n, i.e. it is non-
degenerate (invertible) matrix.

Recall that n× matrix A is nondegenerate (invertible) ⇔ detA 6= 0.

Remark Recall that the condition that n×n matrix A is non-degenerate
(has rank n) is equivalent to the condition that it is invertible matrix, or to
the condition that detA 6= 0.

Example let {e1, e2.e3} be a basis in R3. Consider set of vectors {e1, 3e1+
λe2, 7e1+5e2+3e3}, where λ is an arboitrary parameter. The transtition ma-
trix from the basis {e, f ,g} to the row of vectors {e1, 3e1+λe2, 7e1+5e2+3e3}
is the following:

{e1, 3e1 + λe2, 7e1 + 5e2 + 3e3} = {e1, e2, e3}A = {e1, e2, e3}

1 3 7
0 λ 5
0 0 3


We see that detA = 3λ. In the case if l 6= 0 then transition matrix is
non-degenerate and the row {e1, 3e1 + λe2, 7e1 + 5e2 + 3e3} is a basis.

(See another examples in the Homework)
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1.4 Orthonormal bases and orthogonal matirces

Now suppose that {e1, e2, . . . , en} is orthonoromal basis in n-dimensional Eu-
clidean vector space. What is the condition that the new basis {e′1, e′2, . . . , e′n} =
{e1, e2, . . . , en}A is an orthonormal basis too?

Definition We say that n× n matrix is orthogonal matrix if its product
on transposed matrix is equal to unity matrix:

A
T

A = I . (1.19)

Exercise. Prove that determinant of orthogonal matrix is equal to ±1:

A
T

A = I ⇒ detA = ±1 . (1.20)

Solution ATA = I. Hence det(ATA) = detAT detA = (detA)2 = det I =
1. Hence detA = ±1. We see that in particular orthogonal matrix is non-
degenerate (detA 6= 0). Hence it is a transition matrix from one basis to
another. The following Proposition is valid:

Proposition 2 Let {e1, e2, . . . , en} be an orthonormal basis in n-dimensional
Euclidean vector space. Then the new basis {e′1, e′2, . . . , e′n} = {e1, e2, . . . , en}A
is orthonormal basis if and only if the transition matrix A is orthogonal ma-
trix.

Proof The basis {e′1, e′2, . . . , e′n} is orthonormal means that (e′i, e
′
j) = δij . We have:

δij = (e′i, e
′
j) =

(
n∑

m=1

emAmi, e
′
j =

n∑
n=1

enAnj

)
=

n∑
m,n=1

AmiAnj(em, en) =

n∑
m,n=1

AmiAnjδmn =

n∑
m=1

AmiAmj =

n∑
m=1

ATimAmj = (ATA)ij ⇒ (ATA)ij = δij , i.e. A
TA = I .

(1.21)

Remark The set of orthogonal matrices form the group which is called
O(n). This group is a subgroup of the group GL(n,R) of linear invertible
n× n matrices with real entries.

1.5 Linear operators.

1.5.1 Matrix of linear operator in a given basis

Recall here facts about linear operators in vector space
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Let P be a linear operator in vector space V :

P : V → V, P (λx + µy) = λP (x) + µP (y).

Let {e1, . . . , en} be an arbitrary basis in n-dimensional vector space V .
Consider the action of operator P on basis vectors: e′i = P (ei). We denote
by p1k, p2k, . . . , pnk coordinates of vector e′k in the basis {e1, e2, . . . , en}:

e′i = P (ei) =
∑

ekpki ,

e′1 = P (e1) = e1p11 + e2p21 + e3p31 + · · ·+ enpn1
e′2 = P (e2) = e1p12 + e2p22 + e3p32 + · · ·+ enpn2
e′3 = P (e3) = e1p13 + e2p23 + e3p31 + · · ·+ enpn3

. . .
e′n = P (en) = e1p1n + e2p2n + e3p3n + · · ·+ enpnn

(1.22)

Definition-Proposition Let {e1, e2, . . . , en} be an arbitrary basis in n-
dimensional vector space V , and let P be a linear operator in V . Then matrix
P = ||pik|| in equation (1.22) is a matrix of linear transformation P in the
basis {e1, e2, . . . , en}. This matrix coincides with the transition matrix from
the basis {e1, e2, . . . , en} to the row of vectors {e′1, e2, . . . , e

′
n}.

In the case if linear operator P is non-degenerate (invertible) then vectors
e′1, e

′
2, e
′
3, . . . , e

′
n, form also a basis.

Does matrix of linear operator change if we change the basis?

See it:
Consider a new basis {f1, . . . , fn} in the linear space V . LetA be transition

matrix from the basis {e1, . . . , en} to the new basis {f1, . . . , fn}:

{f1, . . . , fn} = {e1, . . . , en}A, i.e. fi =
n∑
k=1

ekaki (1.23)

(see equation (1.17)). Find matrix for linear operator P considered above in
(1.22), in the new basis {fi}. According to the formulae (1.23) and (1.22) we
have

f ′i = P (fi) = P

(
n∑
q=1

eqaqi

)
=

n∑
q=1

aqiP (eq) =
n∑
q=1

aqi

(
n∑
r=1

erprq

)
=

n∑
q,r=1

erprqaqi =

13



n∑
r=1

er(PA)ri =
n∑

r,k=1

fk(A
−1)kr=1(PA)ri =

n∑
k=1

fk(A
−1PA)ki .

We see that in the new basis {fi} a matrix of linear operator is equal to
A−1PA.

Proposition Let P be a linear operator acting in n-dimensional vector
space V . Let {ei} and {fj} be two arbitrary bases in V . Let P = ||pik|| be a
matrix of the operator P in the basis {ei}, and let P ′ = ||p′ik|| be a matrix of
the operator P in the basis {fj}:

basis {ei} in V −−−−− ||pik||matrix of operator P in the basis {ei}

basis {fi} in V −−−−− ||p′ik||matrix of operator P in the basis {fi}

Then

p′ik = (A−1 ◦ P ◦ A)ik =
n∑

m,r=1

aimpmrark . (1.24)

Remark Let a matrix ||pij|| be a matrix of linear operator P in the basis
{e1, . . . , en}. Then for an arbitrary vector x

∀x =
n∑
i=1

eix
i = (e1, e2, . . . , en) ·


x1

x2

. . .
xn

 , then

P (x) = (e1, e2, . . . , en) · P ·


x1

x2

. . .
xn

 =
n∑
i=1

e′iy
i =

n∑
i,k=1

ekpkix
i .

If xi are components of vector x at the basis {e1, . . . , en} and x′i are compo-
nents of the vector x at the new basis {e′i} then x′i =

∑n
k=1 pikx

k.

1.5.2 Determinant and Trace of linear operator

We recall the definition of determinant and explain what is the trace of linear
operator,

Definition-Proposition Let P be a linear operator in vector space V ,
let {ei} be an arbitrary basis in V , and let ||pik|| be a matrix of operator P

14



in this basis. Then we define determiant of linear operator as a determinant
of its matrix:

detP = det (||pik||) ,
and in the same way we define we define trace of operator via trace of matrix:

TrP = Tr (||pik||) = p11 + p22 + p33 + · · ·+ pnn . (1.25)

Determinant and trace of operator are well-defined. since due to the proposi-
tion above (see equation (1.24)), determinant and trace of transition matrice
do not change if we change the basis in spite of the fact that transition matrix
changes: P 7→ A−1PA, but

det
(
A−1PA

)
= detA−1 detP detA = (detA)−1 detP detA = detP ,

and

Tr (A−1PA) =
∑
i

(A−1PA)ii =
∑
i,k,p

(
A−1

)
ik
pkpApi =

∑
i,k,p

Api
(
A−1

)
ik
pkp =

∑
p,k

(
A · A−1

)
pk
pkp =

∑
p,k

δkppkp =
∑
k

pkk = TrP .

Trace of linear operator is an infinitesimal version of its determinant:

det(1 + tP ) = 1 + tTrP +O(t2) .

This is infinitesimal version for the followiong famous formula which relates trace and det
of linear operator:

det etA = etTrA . (1.26)

where etA =
∑

tnAn

n! . E.g. if A =

(
0 −1
1 0

)
, then etA =

(
cos t − sin t
sin t cos t

)
, det etA = 1 and

etTrA = e0 = 1.

1.5.3 Orthogonal linear operators

Now two words on orthogonal linear operators in Euclidean space.
Recall that linear operator P in Euclidean space En is called orthogonal

operator if it preserves scalar product:

(Px, Py) = (x,y), for arbitrary vectors x,y (1.27)

In particular if {ei} is orthonormal basis in Euclidean space then due to
(1.27) the new basis {e′i = P (ei)} is orthonormal too. Thus we see that
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matrix of orthogonal operator P in a given orthogonal basis is orthogonal
matrix:

P T · P = I (1.28)

(see (1.19) in subsection 1.7). In particular we see that for orthogonal linear
operator detP = ±1 (compare with (1.20)).

1.6 Orientation in vector space

You have heard a words ‘orientation’, you have heard expressions like:
A basis {a,b, c} have the same orientation as the basis {a′,b′, c′} if they

both obey right hand rule or if they both obey left hand rule. In the other case
we say that these bases have opposite orientation...

When you look in the mirror you know that ‘left’ is changing on the ‘right’
Try to give the exact meaning to these expressions.

1.6.1 Orientation in vector space. Oriented vector space

Consider the set of all bases in the given vector space V .
Let (e1, . . . en), (e′1, . . . e

′
n) be two arbitrary bases in the vector space V

and let T be transition matrix which transforms the basis {ei} to the new
basis {e′i}:

{e′1, . . . e′n} = {e1, . . . en}T , (e′i =
n∑
k=1

ektki) (1.29)

(see also (1.16)).
Definition We say that two bases {e1, . . . en} and {e′1, . . . e′n} in V have

the same orientation if the determinant of transition matrix (1.29) from the
first basis to the second one is positive: detT > 0.

We say that the basis {e1, . . . en} has an orientation opposite to the orienta-
tion of the basis {e′1, . . . e′n} (or in other words these two bases have opposite
orientation) if the determinant of transition matrix from the first basis to the
second one is negative: detT < 0.

Remark Transition matrix from basis to basis is non-degenerate, hence
its determinant cannot be equal to zero. It can be or positive or negative.

Consider examples.
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First the simplest example.
Example 0 Consider a line R = R1 as 1-dimensional vector space with

an origin at the point 0. Consider on R1 vectors

e = (2) , e′ = (−8) , ẽ = (10) .

Vector e is a basis of R, as well as vector e′ is a basis, and vector ẽ is a basis
also. (Since space is 1-dimensional every non-zero vector is a basis!)

The basis {e} and the basis {ẽ} have the same orientation since ẽ = 5 ·e:
transition matrix is 1 × 1 matrix, the determinant of transition matrix is
equal to 5 and 5 > 0.

Respectively the basis {e} and the basis {e′} have the opposite orientation
since e′ = −4·e: determinant of transition matrix is equal to −4 and −4 < 0.

Now example of 2-dimensional space:
Example 1 Consider two dimensional vector space R2 with a canonical

basis

{e1, e2} =

{(
1
0

)
,

(
0
1

)}
Consider in R2 another basis

{e′1, e′2} =

{(
−2
0

)
,

(
0
1

)}
One can see that {e′1, e′2} = {−2e1, e2}, transition matrix T =

(
−2 0
0 1

)
, and

detT = −2 < 0, i.e. bases {e′1, e′2} and {−2e1, e2} have opposite orientation.
One can see that orientation establishes the equivalence relation in the

set of all bases. Show it. We say that {e1, . . . en} ∼ {e′1, . . . e′n} , if two bases
{e1, . . . en} and {e′1, . . . e′n} have the same orientation, i.e. detT > 0 for
transition matrix.

Proposition Relation “∼” is an equivalence relation, i.e. this relation
is reflexive, symmetric and transitive.

Prove it:

• Proof of reflexivity

it is reflexive, i.e. for every basis {e1, . . . en}

{e1, . . . , en} ∼ {e1, . . . , en} , (1.30)

because in this case transition matrix T = I and detI = 1 > 0.
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• Proof of simmetricity

Prove, that relation ”∼” is symmetric, i.e. If {e1, . . . , en} ∼ {e′1, . . . , e′n}
then {e′1, . . . , e′n) ∼ {e1, . . . , en}.

Let T be a transition matrix from the first basis {e1, . . . , en} to the sec-
ond basis {e′1, . . . , e′n}: {e′1, . . . , e′n} = {e1, . . . , en}T , and detT > 0 since
{e1, . . . , en} ∼ {e′1, . . . , e′n}. Then the transition matrix from the second
basis {e′1, . . . , e′n} to the first basis {e1, . . . , en} is the inverse matrix T−1:
{e1, . . . , en} = {e′1, . . . , e′n}T−1. Hence detT−1 = 1

detT
> 0 since detT > 0.

Hence {e′1, . . . , e′n) ∼ {e1, . . . , en}. Symmetricity is proved.

• Proof of transitivity

We have to prove that if {e1, . . . , en} ∼ {e′1, . . . , e′n} and {e′1, . . . , e′n) ∼
{ẽ1, . . . , ẽn}, then {e1, . . . , en} ∼ {ẽ1, . . . , ẽn}.

Do it in detail.
Formulate the following statement:

Proposition-Lemma Let {ei}, {e′i} and {ẽi} be arbitrary three bases
in the vector space V . For convenience call a basis {e1, . . . , en} the ‘I-st’
basis, call a basis {e′1, . . . , e′n} the ‘II-nd’ basis and call a basis {ẽ1, . . . , ẽn}
the ‘III-rd’ basis.

Let T (12) be a transition matrix from the I-st basis to the II-nd basis; let
T (13) be a transition matrix from the I-st basis to the III-rd basis, and let
T (23) be a transition matrix from the II-nd basis to the III-rd basis:

{e′1, . . . , e′n} = {e1, . . . , en}T (12)

{ẽ1, . . . , ẽn} = {e1, . . . , en}T (13)

{ẽ1, . . . , ẽn} = {e′1, . . . , e′n}T (23) .
(1.31)

Then
T (13)︸︷︷︸

I-st → III-rd

= T (12)︸︷︷︸
I-st → II-nd

◦ T (23)︸︷︷︸
II-nd → II-rd

⇒

detT (13) = det(T (12) ◦ T (23)) = detT (12) · detT (23) . (1.32)

Transitivity immediately follows from this statement: if I-st ∼ II and
II-nd ∼ III-rd, then determinants of matrices T (12) and T (23) are positive.
Hence according to relation (1.32) detT (13) is positive too, i.e. I-st ∼ III-rd.
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It remains to prove equation (1.32). This equation follows from equation
(1.31): {ẽ1, . . . , ẽn} = {e′1, . . . , e′n}T (23) =(
{e1, . . . , en}T (12)

)
T (23) = {e1, . . . , en}T (12) ◦ T (23) = {e1, . . . , en}T (13) .

Thus we proved that relation ∼ is equivalence realtion.
Since it is equivalence relation the set of all bases is a union if disjoint

equivalence classes. Two bases are in the same equivalence class if and only
if they have the same orientation.

How many equivalence classes exist? One, two or more?
Show first that there are at least two equivalence classes.
Example Let {e1, e2 . . . , en} be an arbitrary basis in n-dimensional vec-

tor space V . Swap the vectors e1, e2. We come to a new basis: {e′1, e′2 . . . , e′n}

e′1 = e2, e
′
2 = e1, all other vectors are the same: e3 = e′3, . . . , en = e′n

(1.33)
We have:

{e′1, e′2, e′3 . . . , e′n} = {e2, e1, e3, . . . , en} = {e1, e2, e3, . . . , en}Tswap , (1.34)

where one can easy see that the determinant for transition matrix T swap

is equal to −1, i.e. bases {e1, e2 . . . , en} and {e2, e1 . . . , en} have opposite
orientation.

E.g. write down the transition matrix (1.34) in the case if dimension
of vector space is equal to 5, n = 5. Then we have {e′1, e′2, e′3, e′4, e′5} =
{e2, e1, e3, e4, e5} = {e1, e2, e3, e4, e5}T where

Tswap =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (detTswap = −1) . (1.35)

We see that bases {e1, e2 . . . , en} and {e′1, e′2 . . . , e′n} have opposite ori-
entation.

We see that there are at least two equivalence classes.
One can see that there are exactly two equivalence classes.

Proposition Let two bases {e1, . . . , en} and {e′1, . . . , e′n} in vector space
V have opposite orientation. Let {ẽ1, . . . , ẽn} be an arbitrary basis in V .
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Then the basis {ẽ1, . . . , ẽn} and the first basis {e1, . . . , en} have the same
orientation or the basis {ẽ1, . . . , ẽn} and the second basis {e′1, . . . , e′n} have
the same orientation.

In other words if bases {e1, . . . , en}, {e′1, . . . , e′n} and {ẽ1, . . . , ẽn} are
three bases in vector space V such that {e1, . . . , en} 6∼ {e′1, . . . , e′n} then

{ẽ1, . . . , ẽn} ∼ {e1, . . . , en} or {ẽ1, . . . , ẽn} ∼ {e′1, . . . , e′n} . (1.36)

There are two equivalence classes of bases with respect to orientation.
In the case if bases {ẽ′1, . . . , ẽ′n}, {ẽ1, . . . , ẽn} have opposite orientation,

then an arbitrary basis belongs to the equivalence class of the basis {e1, e2 . . . , en},
or it belongs to the to the equivalence class of the basis {e′1, e′2 . . . , e′n}.

Proof of the statement immediately follows from statement (1.32).
In the same way like in statement (1.32) we call a basis {e1, e2 . . . , en} the

”I-st basis”, a basis {e′1, e′2 . . . , e′n} the ”II-nd basis” and a basis {ẽ1, ẽ2 . . . , ẽn}
the ”III-rd basis”. We have to prove that the third basis has the same ori-
entation as the first basis or it has the same orientation as the second basis.

Suppose the third basis has not the same orientation as the first basis,
then for the transition matrix T (13) (see equation (1.31)) detT (13) < 0. On the
other hand detT (12) < 0 also since the first and second bases have opposite
orientation. Hence it follows from equation (1.32) that detT (23) < 0, thus
second and third bases have opposite orientation.

In the example considered above (see (1.33)) an arbitrary basis {e′1, . . . e′n}
have the same orientation as the basis {e1, e2 . . . , en}, i.e. belongs to the
equivalence class of basis {e1, e2 . . . , en}, or it has the same orientation as
the “swapped” basis {e2, e1 . . . , en}, i.e. it belongs to the equivalence class
of the “swappedd” basis {e2, e1 . . . , en}.

The set of all bases is a union of two disjoint subsets.
Any two bases which belong to the same subset have the same orientation.

Any two bases which belong to different subsets have opposite orientation.
Definition An orientation of a vector space is an equivalence class of

bases in this vector space.
Note that fixing any basis we fix orientation, considering the subset of all

bases which have the same orientation that the given basis.
There are two orientations. Every basis has the same orientation as a

given basis or orientation opposite to the orientation of the given basis.
We choose an arbitrary basis, and call it ’left’ basis. Then all bases which

belong to the equivalence class of this basis may be called “left” bases and

20



all the bases which do not belong to the equivalence class of this basis may
be called “right” bases

Sure we could call this arbitrary basis “right” basis, (or any other term,
this is just problem of consensus), then all the bases belonging to the equiv-
alence class of this basis woudl be called by the same term.

Definition An oriented vector space is a vector space equipped with ori-
entation.

Consider examples.

Example (Orientation in two-dimensional space). Let {ex, ey} be arbi-
trary two bases in R2 and let a,b be arbitrary two vectors in R2. Consider
an ordered pair {a,b, }. The transition matrix from the basis {ex, ey} to the

ordered pair {a,b} is T =

(
ax bx
ay by

)
:

{a,b} = {ex, ey}T = {ex, ey}
(
ax bx
ay by

)
,

{
a = axex + ayey

b = bxex + byey

One can see that the ordered pair {a,b} also is a basis, (i.e. these two
vectors are linearly independent in R2) if and only if transition matrix is not
degenerate, i.e. detT 6= 0. The basis {a,b} has the same orientation as the
basis {ex, ey} if detT > 0 and the basis {a,b} has the orientation opposite
to the orientation of the basis {ex, ey} if detT < 0.

If we call the basis {ex, ey} left basis then the basis {a,b} will be called
also left basis in the case if detT > 0, and the basis {a,b} will be called
right basis in the case if detT < 0; respectively if we call the basis {ex, ey}
right basis then the basis {a,b} will be called also right basis in the case
if detT > 0, and the basis {a,b} will be called left basis in the case if
detT < 0.

Example Let {e, f} be a basis in 2-dimensional vector space. Consider
bases {e,−f}, {f ,−e} and {f , e}.

1) We come to basis {e,−f} reflecting the second basis vector. Transition

matrix from initial basis {e, f} to the basis {e,−f} is T{e,−f} =

(
1 0
0 −1

)
.

Its determinant is −1. Bases {e, f} and {e,−f} have opposite orientation.
If {e, f} is left basis then {e,−f} is right basis and vice versa.
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2) Transition matrix from initial basis {e, f} to the basis {f ,−e} is

T{f ,−e} =

(
0 −1
1 0

)
. Its determinant is 1. Bases {e, f} and {f ,−e} have

same orientation. They both are left bases or they both are right bases.
Note that we come to basis {f ,−e} rotating the initial basis (on the angle
π/2).

3) Transition matrix from initial basis {e, f} to the basis {f , e} is T{f ,e} =(
0 1
1 0

)
. Its determinant is −1. Bases {e, f} and {e,−f} have opposite

orientation. Basis {e,−f} is right basis in the case if basis {e, f} is left

basis, and vice versa, Basis {e,−f} is left basis in the case if basis {e, f} is
right basis.

Notice that we come to basis {f , e} reflecting the initial basis.

(There are plenty exercises in the Homework 2.)

Example(Orientation in three-dimensional euclidean space.) Let {ex, ey, ez}
be any basis in E3 and a,b, c are arbitrary three vectors in E3:

a = axex + ayey + azez b = bxex + byey + bzez, c = cxex + cyey + czez .

Consider ordered triple {a,b, c}. The transition matrix from the basis {ex, ey, ez}

to the ordered triple {a,b, c} is T =

ax bx cx
ay by cy
az bz cz

:

{a,b, c} = {ex, ey, ez}T = {ex, ey, ez}

ax bx cx
ay by cy
az bz cz


One can see that the ordered triple {a,b, c} also is a basis, (i.e. these three
vectors are linearly independent) if and only if transition matrix is not de-
generate detT 6= 0. The basis {a,b, c} has the same orientation as the basis
{ex, ey, ez} if

detT > 0 . (1.37)

The basis {a,b, c} has the orientation opposite to the orientation of the basis
{ex, ey, ez} if

detT < 0 . (1.38)
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The usage of words ”left” ”right” is defined as always: if basis {ex, ey, ez}
is left basis, then basis {a,b, c} is also left if determinant of transition
matrix is positive, and basis {a,b, c} is right if determinant of transition
matrix is negative, and vice versa: if basis {ex, ey, ez} is right basis, then
basis {a,b, c} is also right if determinant of transition matrix is positive,
and basis {a,b, c} is left if determinant of transition matrix is negative.

Remark Note that in the example above we considered in E3 arbitrary
bases not necessarily orthonormal bases.

I would like to emphasize again:
relations (1.37),(1.38) define equivalence relations in the set of bases. Ori-

entation is equivalence class of bases. There are two orientations, every basis
has the same orientation as a given basis or opposite orientation.

If two bases {ei}, {ei′} have the same orientation then they can be transformed

to each other by continuous transformation, i.e. there exists one-parametric family

of bases {ei(t)} such that 0 ≤ t ≤ 1 and {ei(t)}|t=0 = {ei}, {ei(t)}|t=1 = {ei′}.
(All functions ei(t) are continuous) In the case of three-dimensional space the

following statement is true : Let {ei}, {ei′} (i = 1, 2, 3) be two orthonormal bases

in E3 which have the same orientation. Then there exists an axis n such that

basis {ei} transforms to the basis {ei′} under rotation around the axis.(This is

Euler Theorem (see it later).

Exercise Show that bases {e, f ,g} and {f , e,g} have opposite orientation
but bases {e, f ,g} and {f , e,−g} have the same orientation.

Solution. Transformation from basis {e, f ,g} to basis {f , e,g} is “swap-
ping” of vectors ((e, f) 7→ (f , e). This is reflection and this transformation
changes orientation. One can see it using transition matrix:

T : {f , e,g} = {e, f ,g}T = {e, f ,g}

0 1 0
1 0 0
0 0 1

 . detT = −1

Transformation from basis {e, f ,g} to basis {f , e,−g} is composition of two
transformations: “swapping” of vectors ((e, f) 7→ (f , e) and changing direc-
tion of vector g (g 7→ −g). We have two reflections:

{e, f ,g} reflection−→ {f , e,g} reflection−→ {f , e,−g}
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Any reflection changes orientation. Two reflections preserve orinetation. One
may come to this result using transition matrix:

T : {f , e,−g} = {e, f ,g}T = {e, f ,g}

0 1 0
1 0 0
0 0 −1

 . detT = 1. Orientation is not changed.

(1.39)
(See also exercises in Homework 2)

1.6.2 Orientation of linear operator

. Let P be a linear operator acting in vector space V .
Let {e1, . . . , en} be an arbitrary basis in V . Linear operator P transforms

this basis to another basis {e′1, . . . , e′n} in the case if detP 6= 0. Bearing in
mind that determinant of transition matrix from basis {e1, . . . , en} to the
basis {e′1, . . . , e′n} is a matrix of operator P in the basis {e1, . . . , en} we see
that these both bases

{e1, . . . , en} , {e′1, . . . , e′n} , e′i = P (ei)

have the same orientation if and only if detP > 0 and they have opposite
orientation if and only if detP < 0.

In the case if detP = 0, P is not invertible matrix, and it does not
transform bases to bases.

If a linear operator P acting on the space V has positive determinant then
under the action of this operator an arbitrary basis transforms to the basis
with the same orientation. Respectively if a linear operator P acting on the
space V has negative determinant then under the action of this operator an
arbitrary basis transforms to the new basis which has opposite orientation.

Definition. Non-degenerate (invertible) linear operator P (detP 6= 0)
acting in vector space V preserves an orientation of the vector space V if
detP > 0. It changes the orientation if detP < 0.

1.7 Rotations and orthogonal operators preserving ori-
entation of En (n=2,3)

Recall the notion of orthogonal operator (see 1.5.3). We study here orthog-
onal operators in E2 and E3. In particular we will show that orthogonal
operators preserving orientations define rotations.
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1.7.1 Orthogonal operators in E2— Rotations and reflections

We show that an orthogonal operator in E2 ‘rotates the space’ or makes a
‘reflection’.

LetA be an orthogonal operator acting in Euclidean space E2: (Ax, Ay) =
(x,y). Let {e, f} be an orthonormal basis in 2-dimensional Euclidean space
E2: (e, e) = (f , f) = 1 (i.e. |e| = |f | = 1) and (e, f) = 0–vectors e, f have
unit length and are orthogonal to each other.

Consider a new basis {e′, f ′}, an image of basis e, f under action of A:

e′ = A(e), f ′ = A(f). Let

(
α β
γ δ

)
be matrix of operator A in the basis e, f ,

(see equation (1.22) and defintion after this equation):

{e′, f ′} = {e, f}A = {e, f}
(
α β
γ δ

)
, i.e. e′ = αe + γf , f ′ = βe + δf

New basis is orthonormal basis also, (e′, e′) = (f ′, f ′) = 1 , (e′, f ′) = 0.
Operator A is orthogonal operator, and its matrix is orthogonal matrix:

ATA =

(
α β
γ δ

)t(
α β
γ δ

)
=

(
α γ
β δ

)(
α β
γ δ

)
=

(
α2 + γ2 αβ + γδ
αβ + γδ β2 + δ2

)
=

(
1 0
0 1

)
.

(1.40)
Remark With some abuse of notation, (if it is not a reason of confusion)

we sometimes use the same letter for linear operator and the matrix of this
operator in orthonormal basis.

Remark Note that condition (1.40) implies that detA = ±1.

We have α2 + γ2 = 1, αβ + γδ = 0 and β2 + δ2 = 1.
Hence one can choose angles ϕ, ψ : 0 ≤ 2π such that α = cosϕ, γ =

sinϕ, β = cosψ, δ = sinψ. The condition αβ + γδ = means that

cosϕ cosψ + sinϕ sinψ = cos(ϕ− ψ) = 0

We have

A =

(
α β
γ δ

)
=

(
cosϕ cosψ
sinϕ sinψ

)
, with cos(ϕ− ψ) = 0 .

Condition cos(ϕ− ψ) = 0 means ψ − ϕ = π
2

+ πk (k = 0,±1,±2, . . . )
We have{

I-st case ψ = ϕ+ π
2

+ πm (m = 0,±2,±4 . . . ), hence cosψ = − sinϕ, sinψ = cosϕ

II-nd case ψ = ϕ+ π
2

+ πk (m = ±1,±3 . . . ), hence cosψ = sinϕ, sinψ = − cosϕ
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In the I-st case cosψ = − sinϕ, sinψ = cosψ, and

Aϕ =

(
cosϕ cosψ
sinϕ sinψ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
, detAϕ = 1 . (1.41)

i.e. operator A preserves orientation.
In the II-nd case cosψ = sinϕ, sinψ = − cosψ, and

Ãϕ =

(
cosϕ cosψ
sinϕ sinψ

)
=

(
cosϕ sinϕ
sinϕ − cosϕ

)
, detAϕ = −1 . (1.42)

i.e. operator A changes orientation.

In the first case matrix of operator Aϕ is defined by the relation (1.41).
In this case the new basis is:

(e′, f ′) = (e, f)Aϕ = (e, f)

(
cosϕ − sinϕ
sinϕ cosϕ

)
,

e′ = Aϕ(e) = cosϕ e + sinϕ f
f ′ = Aϕ(f) = − sinϕ e + cosϕ f

(1.43)
For an arbitrary vector x = xe + yf x→ Aϕ(x) = Aϕ(xe + yf) = x′e + y′f ,(

x′

y′

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x
y

)
=

(
x cosϕ− y sinϕ
sinϕ+ y cosϕ

)
. (1.44)

Operator Aϕ rotates basis vectors e, f and arbitrary vector x on an
angle ϕ

In the second case a matrix of operator Ãϕ is defined by the relation
(1.42). See how transforms the basis {e, f} in this case. We have in analogy
with (1.43) that in this case

(ẽ, f̃ ′) = (e, f)Ãϕ = (e, f)

(
cosϕ sinϕ
sinϕ − cosϕ

)
,

ẽ = Ãϕ(e) = cosϕ e + sinϕ f

f̃ = Ãϕ(f) = sinϕ e− cosϕf
(1.45)

Comparing this equation with equation (1.43) we see that the difference
between the basis {ẽ, f̃} in this equation with the basis {e′, f ′} in equation
rotationofbasisontheangle is the following: the vectors e′ and ẽ coincide, and
vector f̃ = −f ′, i.e. these bases have opposite orientation.

One can see that

Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
1 0
0 −1

)
= AϕR (1.46)
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where we denote by R =

(
1 0
0 −1

)
a transition matrix from the basis {e, f} to the basis

{e,−f}—“reflection”l.
We see that in the second case the orthogonal operator Ãϕ is composition of rotation

and reflection: {e, f}Ãϕ=AϕR−→ {ẽ, f̃}:

{e, f} Aϕ−→{e′ = cosϕ e + sinϕf , f ′ = − sinϕ e + cosϕ f} R−→{ẽ = e′, f̃ = −f} (1.47)

We come to proposition

Proposition. Let A be an arbitrary 2 × 2 orthogonal linear transfor-
mation, ATA = 1, and in particularly detA = ±1. (As usual we consider
matrix of orthogonal operator in the orthonormal basis.)

If detA = 1 then there exists an angle ϕ ∈ [0, 2π) such that A = Aϕ is
an operator which rotates basis vectors and any vector (1.41) on the angle ϕ.

If detA = −1 then there exists an angle ϕ ∈ [0, 2π) such that A = Ãϕ is
a composition of rotation and reflection (see (1.47)).

Remark One can show that orthogonal operator Ãϕ is a reflection with respect to
the axis which have the angle ϕ

2 with x-axis.
Consider just examples:

a)ϕ = 0, Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
1 0
0 −1

)
,

(
e
f

)
7→
(

e
−f

)
(reflection with respect to x-axis)

b)ϕ = π, Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
−1 0
0 1

)
,

(
e
f

)
7→
(
−e
f

)
(reflection with respect to y-axis)

b)ϕ =
π

2
, Ãϕ =

(
cosϕ sinϕ
sinϕ − cosϕ

)
=

(
0 1
1 0

)
,

(
e
f

)
7→
(
f
e

)
(reflection with respect to axis y = x (“swapping” of basis vectors))

Try to do it in general case.

1.7.2 Orthogonal operators in E3 and rotations

We see in the previous paragraph that orthogonal operator preserving orien-
tation of E2 is rotation operator. The same is true in E2. The main result
of this paragraph will be the Euler Theorem about rotation, that every or-
thogonal operator preserving orientation in E3 is rotation around some axis.
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We will give an exact formulation of the Euler Theorem at the end of this
paragraph. Now we will formualte just preliminary statement:

The Euler Theorem. (Preliminary statement) An orthogonal operator
in E3 preserving orientation is rotation operator with respect to an axis l
on the angle ϕ. The axis is directed along eigenvector N of the operator P ,
P (N) = N,and angle of rotation is defined by equation

TrP = 1 + 2 cosϕ .

We will come to this statement gradually step by step, and then will
formulate it completely.

Let En be oriented vector space. Recall that oriented vector space means
that it is chosen the equivalence class of bases: all bases in this class have
the same orientation. We call all bases in the equivalence class defining
orientation “left” bases. All “left” bases have the same orientation. To
define an orientation in vector space V one may consider an arbitrary basis
{e(0)

i } in V and claim that this basis is “left” basis. The basis {e(0)

i } defines

equivalence class of “left” bases: all bases {ei} such that {ei} ∼ {e
(0)

i will be

called “left” bases. We can say that basis {e(0)
i } defines the orientation.

Later on considering oriented vector space we often call all bases defining
the orientation (i.e. belonging to the equivalence class of bases defining
orientation) “left” bases.

Now we define rotation in E3. Recall the definition of rotation in E2 (see
1.7.1):

Definition Let E2 be an oriented Euclidean space. We say that linear
operator P rotates this space on an angle “ϕ” if for a given “left” orthonormal
basis {e, f}{

e′ = P (e) = e cosϕ+ f sinϕ

f ′ = P (f) = −e sinϕ+ f cosϕ
i.e. {e′, f ′} = {e, f}

(
cosϕ − sinϕ
sinϕ cosϕ

)
(1.48)

i.e. transition matrix from basis {e, f} to new basis {e′ = P (e), f ′ = P (f)}
is the rotation matrix (1.41) (see also (1.43)).

Remark One can show that the angle of rotation does not depend on
the choice of “left” basis. If we will choose another left basis ẽ, f̃ then the
angle remains the same

Operator P rotates every vector rotates on the angle ϕ.
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If we choose a basis with opposite orientation (“right” basis) then the
angle will change: ϕ 7→ −ϕ.

We already did it in 1.7.1 and we also see from formula (1.48) that the
matrix of operator P is orthogonal matrix such that its determinant equals
1. In 2-dimensional case we came to simple Proposition (see Proposition in
1.7.1) which we will repeat again4:

Proposition Let P be an orthogonal operator in oriented 2-dimensional
Euclidean space. If operator P preserves orientation (detP = 1) then it is a
rotation operator (1.48) on some angle ϕ.

The situation is little bit more tricky in 3-dimensional case.
Let E3 be an Euclidean vector space. (Problem of orientation will be

discussed latter.) Let N 6= 0 be an arbitrary non-zero vector in E3. Consider
the line lN, spanned by vector N. This is axis directed along the vector N.
Choose a unit vector

n = ± N

|N|
(1.49)

Vector n fixes an orientation on lN. Changing n 7→ −n changes an orientation on oppo-

site).
Choose an arbitrary orthonormal basis such that first vector of this basis

is directed along the axis: a basis {n, f ,g}.
Definition We say that a linear operator P rotates the Euclidean space

E3 on the angle ϕ with respect to an axis lN directed along a vector N if the
following conditions are satisfied:

•
P (N) = N

vector N (and all vectors proportional to this vector) are eigenvectors
of operator P with eigenvalue 1, i.e. axis remain intact

• for an orthonormal basis {n, f , g} such that the first vector of this basis
is equal to n, (n is a unit vector, proportional to N){

f ′ = P (f) = f cosϕ+ g sinϕ

g′ = P (g) = −f sinϕ+ g cosϕ
i.e. {f ′,g′} = {f ,g}

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

(1.50)

4Just here we denote the operator by letter ‘P ′ instead letter ‘A′
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In other words plane (subspace) orthogonal to axis rotates on the angle
ϕ: linear operator P rotates every vector orthogonal to axis on the angle
ϕ in the plane (subspace) orthogonal to the axis.

Linear operator P transforms the basis {n, , f ,g} to the new basis {n, f ′,g′}
= {n, f cosϕ+g sinϕ,−f sinϕ+g cosϕ}. The matrix of operator P , i.e. the
transition matrix from the basis {n, , f ,g} to the basis {n, f ′,g′} is defined
by the relation:

{n, f ′,g′} = {n, f cosϕ+g sinϕ,−f sinϕ+g cosϕ} = {n, , f ,g}

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


(1.51)

Recalling definition (1.25) of trace of linear operator we come to the following
relation

TrP = 1 + 2 cosϕ (1.52)

where ϕ is angle of rotation. Note that Trace of the operator does not depend
on the choice of the basis. This formula express cosine of the angle of rotation
in terms of operator, irrelevant of the choice of the basis.

Remark This formula defines angle of rotation up to a sign.
If we change orientation then ϕ 7→ −ϕ. For non-oriented Euclidean space rotation is

defined up to a sign5

Careful reader maybe already noted that even fixing the orientation of E3 does not fix
the “sign” of the angle: If we change the orientation of the axis (changing n 7→ −n) then
changing the corresponding “left” basis will imply that ϕ 7→ −ϕ. In fact angle ϕ is the
angle of rotation of oriented plane which is orthogonal to the axis of rotation. Orientation
on the plane is defined by orientation in E3 and orientation of the axis which is orthogonal
to this plane. In the case of 3-dimensional space sign of the angle depends not only on
orientation of E3 but on orientation of axis. In what follows we will ignore this. This
means that we define rotation on the angle ±ϕ up to a sign.... Rotation is defined for
operators preserving orientation. The difference between angles of rotations ϕ and −ϕ is
depending not only on orientation of E3 but on orientation of axis too. But we ignore this
difference. Note that cosϕ in the formula is defined up to a sign

Rotation operator (1.51) evidently is orthogonal operator preserving ori-
entation. Is it true converse implication? At the beginning of this paragraph
we formulated the Euler Theorem. It gives the positive answer on this ques-
tion. We will formulate this Theorem again in more detail:

5Does it recall you expressions such as “clockwise”, “anticlock-wise” rotation?
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Theorem (the Euler Theorem) Let P be an orthogonal operator, preserv-
ing an orientation of Euclidean space E3, and which is not identical operator,
i.e. operator P preserves the scalar product and orientation, and P 6= id.
Then it is a rotation operator with respect to an axis l on the angle ϕ, (ϕ 6= 0).

Every vector N directed along the axis does not change, i.e. the axis is
1-dimensional space of eigenvectors with eigenvalue 1, P (N) = N. Every
vector orthogonal to axis rotates on the angle ϕ in the plane orthogonal to
the axis, and

TrP = 1 + 2 cosϕ .

The angle ϕ is defined up to a sign. Changing orientation of the Euclidean
space and of the axis change sign of ϕ.

This Theorem can be restated in the following way: every orthogonal
operator P preserving orientation, (detP 6= 0) has an eigenvector N 6= 0 with
eigenvalue 1. This eigenvector defines the axis of rotation. In an orthonormal
basis {n, f ,g} where n is a unit vector along the axis, the transition matrix
of operator has an appearance (1.51). Angle of rotaion can be defined via
Trace of operator by formula TrP = 1 + 2 cosϕ.

Remark If P is an identity operator, P = I then “ there is no rotation”,
more precisely: any line can be considered as an axis of rotation (every vector
is eigenvector of identity matrix with eigenvalue 1) and angle of rotation is
equal to zero. If P 6= I then axis of rotation is defined uniquely.

Proof of the Euler Theorem.
The proof of the Euler Theorem has two parts. First and central part

is to prove the existence of the axis. The rest is easy: we take an arbitrary
orthonormal basis n, f ,g such that n is eigenvector, and we come to relations
(1.50), (1.51).

There are many different proofs of existence of axis of rotation. We expose here sketchs
of two proofs. The first which maybe is most beautiful proof which belongs to Coxeter.
The second proof–using standard methods of linear algebra.

Coxeter’s proof.

Let P be linear orthogonal operator preserving orientation. Note that for any two
unit vectors e, f one can consider orthogonal operator Re,f which swaps the vectors e, f ,
(it is reflection with respect to the plane spanned by the vectors e+ f and a vector e× f).

Let {e, f ,g} be an arbitrary orthonormal basis in E3 and let e′, f ′,g′ be image of this
basis under operator P

P (e) = e′, P (f) = f ′ P (g) = g′ .

If e = e′ nothing to prove (e is eigenvector with eigenvalue 1). If this is not the case,
apply reflection operator Re,e′ to the initial basis {e, f ,g} we come to the orthonormal

basis {e′, f̃ , g̃}, Then applying reflection operator Rf̃ ,f ′ to this basis we come to the basis
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e′, f ′, ˜̃g. The third vector has no choice: it has to be equal to g. Indeed it may be equal
to ±g, since all operator are orthogonal, but it cannot be equal to −g′ since orientation
will be opposite. orientation is opposite. Hence we see that operator P is the product of
two reflections operators:

P = R1 ◦R2 .

Reflection operator is identical operator, on the plane.
Let α1 be a plane such that R1 is invariant on α1, and let α2 be a plane such that R2 is

invariant on α2. Consider the line l, intersection of these planes, we come to eigenvectors
with eigenvalue 1.

linear algebra proof

Any linear operator L in 3-dimensional vector space has at least one eigenvector x: x
is non-zero solution of homogeneous equation Lx = λlx, where eigenvalue l is a solution
of cubic equation det(L− l) = 0, and this cubic equation has at least one root.

Hence orthogonal operator P has at least one eigenvector x: Px = λx, Since P is
orthogonal operator, then λ = ±1. If λ = 1, then x defines the axis since P preserves
orientation. If λ = −1, Px = −x, then eigenvector with eigenvalue 1 belongs to the plane
orthogonal to x.

Example Consider linear operator P such that for orthonormal basis
{ex, ey, ez}

P (ex) = ey, P (ey) = ex, P (ez) = −ez (1.53)

This is obviously orthogonal operator since it transforms orthogonal ba-
sis to orthogonal one. This operator swaps first two vectors and reflects
the third one. It preserves orientation: matrix of operator in the basis
{ex, ey, ez}, i.e. the transition matrix from the basis {ex, , ey, ez} to the
basis {P (ex), P (ey), P (ez)} is defined by the relation:

{P (ex), P (ey), P (ez)} = {ey, ex,−ez} = {ex, , ey, ez}

0 1 0
1 0 0
0 0 −1


detP = 1. This operator preserves orientation. Hence by Euler Theorem it
is a rotation. Find first axis of rotation. It is easy to see from (1.53) that
N = λ(ex + ey) is eigenvector with eigenvalue 1:

P (N) = P (ex + ey) = ey + ex = N .

Hence axis of rotation is directed along the vector ex+ey. TrP = 1+2 cosϕ =
−1. The angle of rotation ϕ = π.
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One can calculate explicitly angle of rotation: Consider orthonormal basis {n, f,g}
adjusted to the axis (n||N). We have that n =

ex+ey√
2

since n is proportional to N and it

is unit vector. Choose f =
−ex+ey√

2
and g = ez. Then it is easy to see that

{n, f ,g} =

{
ex + ey√

2
,
−ex + ey√

2
,g

}
is orthonormal basis.Using (1.53)one can see that

P (n) = P

(
ex + ey√

2

)
=

ey + ex√
2

= n ,

P (f) = P

(
−ex + ey√

2

)
=
−ey + ex√

2
= −f , P (g) = −g

We see that
{n, f ,g} P−→{n,−f ,−g} .

Comparing with (1.50) and (1.51) we see that the operator P is rotation of E3 on the
angle π with respect to the axis directed along the vector ex + ey.

1.8 Area of parallelogram, volume of parallelepiped,
and determinant of linear operator

You know that area of parallelogram and volume of parallelepiped can be
calculated in terms of vector (cross) product. These formulae explain geo-
metrical meaning of determinant of linear operator.

1.8.1 Vector product in oriented E3

Now we give a definition of vector product of vectors in 3-dimensional Eu-
clidean space equipped with orientation.

Let E3 be three-dimensional oriented Euclidean space, i.e. Euclidean
space equipped with an equivalence class of bases with the same orientation.
To define the orientation it suffices to consider just one orthonormal basis
{e, f ,g} which is claimed to be left basis. Then the equivalence class of the
left bases is a set of all bases which have the same orientation as the basis
{e, f ,g}.

Definition Vector product L(x,y) = x × y is a function of two vectors
which takes vector values such that the following axioms (conditions) hold
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• The vector L(x,y) = x× y is orthogonal to vector x and vector y:

(x× y) ⊥ x , (x× y) ⊥ y (1.54)

In particular it is orthogonal to the the plane spanned by the vectors
x,y (in the case if vectors x,y are linearly independent)

•
x× y = −y × x, (anticommutativity condition) (1.55)

•

(λx +µy)× z = λ(x× z) +µ(y× z) , (linearity condition) (1.56)

• If vectors x,y are perpendicular each other then the magnitude of the
vector x×y is equal to the area of the rectangle formed by the vectors
x and y:

|x× y| = |x| · | y| , if x ⊥ y , i.e.(x,y) = 0 . (1.57)

• If the ordered triple of the vectors {x,y, z}, where z = x×y is a basis,
then this basis and an orthonormal basis {e, f ,g} defining orientation
of E3 have the same orientation:

{x,y, z} = {e, f ,g}T, where for transition matrix T , detT > 0.
(1.58)

Vector product depends on orientation in Euclidean space.

Comments on conditions (axioms) (1.54)—(1.58):

1. The condition (1.56) of linearity of vector product with respect to
the first argument and the condition (1.55) of anticommutativity imply that
vector product is an operation which is linear with respect to the second
argument too. Show it:

z×(λx+µy) = −(λx+µy)×z = −λ(x×z)−µ(y×z) = λ(z×x)+µ(z×y) .

Hence vector product is bilinear operation. Comparing with scalar prod-
uct we see that vector product is bilinear anticommutative (antisymmetric)
operation which takes vector values, while scalar product is bilinear symmet-
ric operation which takes real values.
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2. The condition of anticommutativity immediately implies that vector
product of two colinear (proportional) vectors x,y (y = λx) is equal to zero.
It follows from linearity and anticommuativity conditions. Show it: Indeed

x× y = x× (λx) = λ(x× x) = −λ(x× x) = −x× (λx) = −x× y. (1.59)

Hence x× y = 0, if y = λx .
3. It is very important to emphasize again that vector product depends

on orientation. According the condition (1.58) if z = x × y and we change
the orientation of Euclidean space, then z → −z since the basis {x,y,−z}
as an orientation opposite to the orientation of the basis {x,y, z}.

You may ask a question: Does this operation (taking the vector product) which obeys

all the conditions (axioms) (1.54)—(1.58) exist? And if it exists is it unique? We will

show that the vector product is well-defined by the axioms (1.54)—(1.58), i.e. there exists

an operation x × y which obeys the axioms (1.54)—(1.58) and these axioms define the

operation uniquely.

We will assume first that there exists an operation L(x,y) = x×y which
obeys all the axioms (1.54)—(1.58). Under this assumption we will construct
explicitly this operation (if it exists!). We will see that the operation that
we constructed indeed obeys all the axioms (1.54)—(1.58).

Let {ex, ey, ez} be an arbitrary left orthonormal basis of oriented Eu-
clidean space E3, i.e. a basis which belongs to the equivalence class of the
basis {e, f ,g} defining orientation of E3. Then it follows from the consider-
ations above for vector product that

ex × ex = 0, ex × ey = ez, ex × ez = −ey
ey × ex = −ez, ey × ey = 0, ey × ez = ex
ez × ex = ey, ez × ey = −ex, ez × ez = 0

(1.60)

E.g. ex×ex = 0, because of (1.55), ex×ey is equal to ez or to −ez according
to (1.57), and according to orientation arguments (1.58) ex × ey = ez.

Now it follows from linearity and (1.60) that for two arbitrary vectors
a = axex + ayey + azez, b = bxex + byey + bzez

a×b = (axex+ayey+azez)×(bxex+byey+bzez) = axbyex×ey+axbzex×ez+

aybxey × ex + aybzey × ez + azbxez × ex + azbyez × ey =

(aybz − azby)ex + (azbx − axbz)ey + (axby − aybx)ez . (1.61)
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It is convenient to represent this formula in the following very familiar way:

L(a,b) = a× b = det

ex ey ez
ax ay az
bx by bz

 (1.62)

We see that the operation L(x,y) = x× y which obeys all the axioms (1.54)—(1.58),
if it exists, has an appearance (1.62), where {ex, ey, ez} is an arbitrary orthonormal basis
(with rightly chosen orientation). On the other hand using the properties of determinant
and the fact that vectors are orthogonal if and only if their scalar product equals to zero
one can easy see that the vector product defined by this formula indeed obeys all the
conditions (1.54)—(1.58).

Thus we proved that the vector product is well-defined by the axioms (1.54)—(1.58)

and it is given by the formula (1.62) in an arbitrary orthonormal basis (with rightly chosen

orientation).

Remark In the formula above we have chosen an arbitrary orthonormal
basis which belongs to the equivalence class of bases defining the orientation.
What will happen if we choose instead the basis {ex, ey, ez} an arbitrary
orthonormal basis {f1, f2, f3}. We see that such that answer does not change
if both bases {ex, ey, ez} and {f1, f2, f3} have the same orientation, Formulae
(1.60) are valid for an arbitrary orthonormal basis which have the same
orientation as the orthonormal basis {ex, ey, ez}.— In oriented Euclidean
space E3 we may take an arbitrary basis from the equivalence class of bases
defining orientation. On the other hand if we will consider the basis with
opposite orientation then according to the axiom (1.58) vector product will
change the sign. (See also the question 6 in Homework 4)

1.8.2 Vector product—area of parallelogram

The following Proposition states that vector product can be considered as
area of parallelogram:

Proposition 2 The modulus of the vector z = x× y is equal to the area
of parallelogram formed by the vectors x and y.:

S(x,y) = S(Π(x,y)) = |x× y| , (1.63)

where we denote by S(x,y) the area of parallelogram Π(x,y) formed by the
vectors x,y.
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Proof: Consider the expansion y = y|| + y⊥, where the vector y⊥ is
orthogonal to the vector x and the vector y|| is parallel to to vector x. The
area of the parallelogram formed by vectors x and y is equal to the product of
the length of of the vector x on the height. The height is equal to the length
of the vector y⊥. We have S(x,y) = |x||y⊥|. On the other z = x × y =
x × (y|| + y⊥) = x × y|| + x × y⊥. But x × y|| = 0, because these vectors
are colinear. Hence z = x× y⊥ and |z| = |x||y⊥| = S(x,y) because vectors
x,y⊥ are orthogonal to each other.

This Proposition is very important to understand the meaning of vector
product. Shortly speaking vector product of two vectors is a vector which is
orthogonal to the plane spanned by these vectors, such that its magnitude is
equal to the area of the parallelogram formed by these vectors. The direction
is defined by orientation.

Remark It is useful sometimes to consider area of parallelogram not as a positive

number but as an real number positive or negative (see the next subsubsection.)

It is not worthless to recall the formula which we know from the school
that area of parallelogram formed by vectors x,y equals to the product of
the base on the height. Hence

|x× y| = |x| · |y|| sin θ| , (1.64)

where θ is an angle between vectors x,y.

Finally I would like again to stress:
Vector product of two vectors is equal to zero if these vectors are colinear

(parallel). Scalar product of two vectors is equal to zero if these vector are
orthogonal.

Exercise†Show that the vector product obeys to the following identity:

((a× b)× c) + ((b× c)× a) + ((c× a)× b) = 0 . (Jacoby identity) (1.65)

This identity is related with the fact that heights of the triangle intersect in the one point.

Exercise† Show that a× (b× c) = b(a, c)− c(a,b).

1.8.3 Area of parallelogram in E2 and determinant of 2×2 matrices

.
Let a,b be two vectors in 2-dimensional vector space E2.
One can consider E2 as a plane in 3-dimensional Euclidean space E3. Our

aim is to calculate the area of the parallelogram Π(a,b) formed by vectors
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a,b. Let n be a unit vector in E3 which is orthogonal to E2. Then it is
obvious that the vector product a × b is proportional to the normal vector
n to the plane E2:

a× b = A(a,b)n , (1.66)

and the area of the parallelogram Π(a,b) equals to the modulus of the coef-
ficient A(c,b):

S (Π (a,b)) = |a× b| = |A(a,b)| . (1.67)

The normal unit vector n and coefficient A(a,b) are defined up to a sign: n → −n,

A → −A. On the other hand the vector product a × b is defined up to a sign too:

vector product depends on orientation. The answer for a×b is not changed if we perform

calculations for vector product in an arbitrary basis {e′x, e′y, e′z} which have the same

orientation as the the basis {e, f ,n} and a×b 7→→ −a×b. If we consider an arbitrary basis

{e′x, e′y, e′z} which have the orientation opposite to the orientation of the basis {e, f ,n}
(e.g. the basis {e, f ,−n}) then A(a,b) → −A(a,b). The magnitude A(a,b) is so called

algebraic area of parallelogram. It can positive and negative.

If (a1, a2), (b1, b2) are coordinates of the vectors a,b in the orthonormal
basis {e, f}: a = a1e + a2f , b = b1e + b2f and according to (1.62)

a× b = det

 e f n
a1 a2 0
b1 b2 0

 = n det

(
a1 a2
b1 b2

)
(1.68)

Thus A(a,b) in equation (1.67) is equal to det

(
a1 a2
b1 b2

)
, and we come to

the following formula for area of parallelogram

S(Π(a,b)) = |a× b| =
∣∣∣∣det

(
a1 a2
b1 b2

)∣∣∣∣ . (1.69)

This is an important formula for relation between determinant of 2×2 matrix,
area of parallelogram and vector product.

One can deduce this relation in other way:
Let E2 be a 2-dimensional Euclidean space. The function A(a,b) defined by the

relation (1.69) obeys the following conditions:

• It is anticommutative:
A(a,b) = −A(a,b) (1.70)

• It is bilinear

A(λa+µb, c) = λA(a, c)+µA(b, c); A(c, λa+µb) = λA(c,a)+µA(c,b) . (1.71)
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• and it obeys normalisation condition:

A(e, f) = ±1 (1.72)

for an arbitrary orthonormal basis.

(Compare with conditions (1.54)—(1.58).)

One can see that these conditions define uniquely A(a,b) and these are the conditions

which define the determinant of the 2× 2 matrix.

1.8.4 Areas of parallelograms and determinants of linear opera-
tors in E2

Let A be an arbitrary linear operator in E2. One can see that the following
formula holds.

Let a,b be two arbitrary vectors in E2. Let a′,b′ be two vectors such
that

a′ = A(a) , b = A(b′) .

Consider two parallelograms: Parallelogram Π(a,b) formed by vectors a,b,
and the second parallelogram Π(a′,b′) formed by vectors α′.b′. Then one can
deduce from equation (1.69) that

Area of Π(a′,b′) = |detA| · Area of Π(a,b) . (1.73)

This formula relates volumes of parallelograms Π(a,b), Π(a′,b′) with de-
terminant of linear operator which transforms the first parallelogram to the
second one. (See also exercise 9 in Homework 4).

Prove straightforwardly equation (1.73). Let vectors a,b be linearly independent (if
they are dependent, then area of both parallelograms in (??) evidently vanish). We have:

a′ = A(a) , i.e.

(
a′1
a′2

)
= A

(
a1
a2

)
=

(
A11 A12

A21 A22

)(
a1
a2

)
=

(
A11a1 +A12a2
A21a1 +A22a2

)
,

b′ = A(b) , i.e.

(
b′1
b′2

)
= A

(
b1
b2

)
=

(
A11 A12

A21 A22

)(
b1
b2

)
=

(
A11b1 +A12b2
A21b1 +A22b2

)
.

Hence(
a′

b′

)
=

(
a′1 a′2
b′1 b′2

)
=

(
A11a1 +A12a2 A21a1 +A22a2
A11b1 +A12b2 A21b1 +A22b2

)
=

(
a1 a2
b1 b2

)
◦
(
A11 A21

A12 A22

)
=

(
a
b

)
AT .

Taking determinants we come to: Area of Πa′,b′ =∣∣∣∣det

(
a′

b′

)∣∣∣∣ =

∣∣∣∣det

((
a
b

)
AT
)∣∣∣∣ ==

∣∣∣∣det

((
a
b

)
AT
)∣∣∣∣ =

∣∣∣∣det

(
a
b

)
detA

∣∣∣∣ = Area of Π(a,b)|detA| .
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1.8.5 Volume of parallelepiped

The vector product of two vectors is related with area of parallelogram. What
about a volume of parallelepiped formed by three vectors {a,b, c}?

Consider parallelepiped Π(a,b, c) formed by vectors {a,b, c}. The par-
allelogram Π(a,b) formed by vectors b, c can be considered as a base of this
parallelepiped.

Let θ be an angle between height and vector a. It is just the angle between
the vector b× c and the vector a. Then the volume is equal to the length of
the height multiplied on the area of the parallelogram, V = Sh = S|a| cos θ,
i.e. volume is equal to scalar product of the vectors a on the vector product
of vectors b and c:

V ({a,b, c}) = |(a,b× c)| =

∣∣∣∣∣∣
axex + ayey + azez, det

ex ey ez
bx by bz
cx cy cz

∣∣∣∣∣∣
= |(axex + ayey + azez, (bycz − bzcy)ex + (bzcx − bxcz)ey + (bxcy − bycx)ez)| =

|ax(bycz − bzcy) + ay(bzcx − bxcz) + az(bxcy − bycx)| =

∣∣∣∣∣∣det

ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ .
We come to beautiful and useful formula:

volume of Π(a,b, c) = |(a, [b× c])| =

∣∣∣∣∣∣det

ax ay az
bx by bz
cx cy cz

∣∣∣∣∣∣ . (1.74)

Compare this formula with the formula (1.69) for the area of parallelogram.
Remark In these formulae we consider the volume of the parallelepiped as a positive

number. It is why we put the sign of ‘modulus’ in all the formulae above. On the other
hand often it is very useful to consider the volume as a real number (it could be positive
and negative).

1.8.6 Volumes of parallelepipeds and determinants of linear op-
erators in E3

Write down an equation for the volumes of parallelepipeds analogous to equa-
tion (1.73) for the the areas of parallelograms. Now instead parallelogram
we consider parallelepiped, and instead linear operator A in E2 we consider
linear operator A in E3.
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Let A be an arbitrary linear operator in E3. In the same way as in formula
(1.73) the following formula holds:

Let a,b, c be three arbitrary vectors in E3. Linear operator A transforms
these three vectors to three vectors a′,b′, c′ where

a′ = A(a) , b = A(b′) , c′ = P (c′) .

Consider two parallelepipeds: Parallelepiped Π(a,b c) formed by vectors
a,b, c and the second parallelepiped Π(a′,b′ c′) formed by vectors α′.b′, c′.
Then it follows from (1.74) the following formula and determinant of operator
A:

Volume of Π(a′,b′, c′) = |detA| · Volume of Π(a,b, c) . (1.75)

This formula relates volumes of parallelepipeds Π(a,b, c), Π(a′,b′, c′) with
determinant of linear operator which transforms the first parallelepiped to
the second one. (See also exercise 9 in Homework 4).

2 Differential forms

2.1 Tangent vectors, curves, velocity vectors on the
curve

Tangent vector is a vector v applied at the given point p ∈ En.
The set of all tangent vectors at the given point p is a vector space. It is

called tangent space of En at the point p and it is denoted Tp(En).
One can consider vector field on En, i.e.a function which assigns to every

point p vector v(p) ∈ Tp(En).
Here we consider on an equal footing vectors of vector space En and points of associated

affine space En (as usual we denote them by the same letter (see for details subsection
1.2)

It is instructive to study the conception of tangent vectors and vector
fields on the curves and surfaces embedded in En. In this course we mainly
consider tangent vectors to curves.

A curve in En with parameter t ∈ (a, b) is a continuous map

C : (a, b)→ En r(t) = (x1(t), . . . , xn(t)), a < t < b (2.1)

For example consider in E2 the curve

C : (0, 2π)→ E2 r(t) = (R cos t, R sin t), 0 ≤ t < 2π .
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The image of this curve is the circle of the radius R. It can be defined by
the equation:

x2 + y2 = R2 .

To distinguish between curve and its image we say that curve C in (2.1)
is parameterised curve or path. We will call the image of the curve unpa-
rameterised curve (see for details the next subsection). It is very useful to
think about parameter t as a ”time” and consider parameterised curve like
point moving along a curve. Unparameterised curve is the trajectory of the
moving point. It is locus of the points. The using of word ”curve” without
adjective ”parameterised” or ”nonparameterised” sometimes is ambiguous.

Vectors tangent to curve—velocity vector

Let r(t) r = r(t) be a curve in En.
Velocity v(t) it is the vector

v(t) =
dr

dt
=
(
ẋ1(t), . . . , . . . ẋn(t)

)
=
(
v1(t), . . . , vn(t)

)
in En. Velocity vector is tangent vector to the curve.

Let C : r = r(t) be a curve and r0 = r(t0) any given point on it. Then
the set of all vectors tangent to the curve at the point r0 = r(t0) is one-
dimensional vector space Tr0C. It is linear subspace in vector space Tr0C:
Tr0C < Tr0E

n. The points of the tangent space Tr0C are the points of tangent
line.

Remark We consider by default only smooth, regular curves. Curve r(t)
= (x1(t), . . . , xn(t)) is called smooth if all functions xi(t), (i = 1, 2, . . . , n) are
smooth functions (Function is called smooth if it has derivatives of arbitrary

order.) Curve r(t) is called regular if velocity vector v(t) = dr(t)
dt

is not equal
to zero at all t.

2.2 Reparameterisation

One can move along trajectory with different velocities, i.e. one can consider
different parameterisation. E.g. consider

C1 :

{
x(t) = t

y(t) = t2
0 < t < 1 , C2 :

{
x(t) = sin t

y(t) = sin2 t
0 < t <

π

2
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Images of these two parameterised curves are the same. (These curves
have the same loci.) In both cases point moves along a piece of the same
parabola but with different velocities.

Definition
Two smooth curves C1 : r1(t) : (a1, b1)→ En and C2 : r2(τ) : (a2, b2)→

En are called equivalent if there exists reparameterisation map:

t(τ) : (a2, b2)→ (a1, b1),

such that
r2(τ) = r1(t(τ)) (2.2)

Reparameterisation t(τ) is diffeomorphism, i.e. function t(τ) has derivatives
of all orders and first derivative t′(τ) is not equal to zero.

E.g. curves in (2.2) are equivalent because a map ϕ(t) = sin t transforms
first curve to the second.

Equivalence class of equivalent parameterised curves is called non-parameterised
curve.

Equivalent curves have the same image.(They have the same loci.)

It is useful sometimes to distinguish curves in the same equivalence class
which differ by orientation.

Definition Let C1, C2 be two equivalent curves. We say that they have
same orientation (parameterisations r1(t and r(τ) have the same orientation)
if reparameterisation t = t(τ) has positive derivative, t′(τ) > 0. We say that
they have opposite orientation (parameterisations r1(t and r(τ) have the
opposite orientation) if reparameterisation t = t(τ) has negative derivative,
t′(τ) < 0.

Changing orientation means changing the direction of ”walking” around
the curve.

Equivalence class of equivalent curves splits on two subclasses with respect
to orientation.

Non-formally: Two curves are equivalent curves (belong to the same
equivalence class) if these parameterised curves ( paths) have the same im-
ages. Two equivalent curves have the same image. They define the same set
of points in En. Different parameters correspond to moving along curve with
different velocity. Two equivalent curves have opposite orientation If two pa-
rameterisations correspond to moving along the curve in different directions
then these parameterisations define opposite orientation.
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What happens with velocity vector if we change parameterisation? It
changes its value, but it can change its direction only on opposite (If these
parameterisations have opposite orientation of the curve):

v(τ) =
dr2(τ)

dτ
=
dr(t(τ))

dτ
=
dt(τ)

dτ
· dr(t)

dt

∣∣
t=t(τ)

(2.3)

Or shortly: v(τ)
∣∣
τ

= tτ (τ)v(t)
∣∣
t=t(τ)

We see that velocity vector is multiplied on the coefficient (depending on
the point of the curve), i.e. velocity vectors for different parameterisations
are collinear vectors.
(We call two vectors a,b collinear, if they are proportional each other, i,e, if
a = λb.)

Example Consider following three curves in E2:

C1 :

{
x = R cos θ

y = R sin θ
, 0 < θ < π , v =

(
vx
vy

)
=

(
xθ
yθ

)
=

(
−R sin θ
R cos θ

)
, |v| = R ,

C2 :

{
x = R cos 4ϕ

y = R sin 4ϕ
, 0 < ϕ <

π

4
, v =

(
vx
vy

)
=

(
xϕ
yϕ

)
=

(
−4R sin θ
4R cos θ

)
, |v| = 4R ,

C3 :

{
x = Ru

y = R
√

1− u2
,−1 < u < 1, v =

(
vu
vu

)
=

(
xu
yu

)
=

(
R
−Ru√
1−u2

)
,

(2.4)
These three parameterised curves,(paths) define the same non-parameterised
curve: the upper piece of the circle: x2 + y2 = 1, y > 0. The reparametersia-
tion θ = 4ϕ transforms the first curve, to the second curve. The reparame-
terisation u(θ) = cos θ transforms the third curve to the first one.

Curves C1, C2 have the same orientation, because θ′(ϕ) = 4 > 0.
Curves C1, C3 have opposite orientation because u′(θ) < 0.
Curves C2 and C2 have opposite orientations too since the curves C2 and
C1 have the same orientation, and the curves C3 and C1 have the opposite
orientation.

In the first case point moves with constant pace |v(θ)| = R anti clock-wise
”from right to left” from the point A = (R, 0) to the point B = (−R, 0).

In the second case point moves with constant pace |v(θ)| = 4R anti clock-
wise ”from right to left” from the point A = (R, 0) to the point B = (−R, 0).
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In the third case pace is not constant, but vx = 1 is constant. Point
moves clock-wise ”from left to right”, from the point B = (−R, 0) to the
point A = (R, 0). In the third case point also moves clock-wise ”from the
left to right”.

There are other examples in the Homeworks.

2.3 Differential 0-forms and 1-forms

2.3.1 Definition and examples of 0-forms and 1-forms

Most of considerations of this and next subsections can be considered only for
E2. All examples for differential forms is only for E2.

0-form on En it is just function on En (all functions under consideration
are differentiable)

Now we define 1-forms.
Definition Differential 1-form ω on En is a function on tangent vectors

of En, such that it is linear at each point:

ω(r, λv1 + µv2) = λω(r,v1) + µω(r,v2) . (2.5)

Here v1,v2 are vectors tangent to En at the point r, (v1,v2 ∈ TxE
n) (We

recall that vector tangent at the point r means vector attached at the point
r). We suppose that ω is smooth function on points r.

If X(r) is vector field and ω-1-form then evaluating ω on X(r) we come
to the function ω(r,X(r)) on En.

Let e1, . . . , en be a basis in En and (x1, . . . , xn) corresponding coordinates:
an arbitrary point with coordinates (x1, . . . , xn) is assigned to the vector
r = x1e1 + x2e2 + . . . xnen starting at the origin.

Translating basis vectors ei (i = 1, . . . , n) from the origin to other points
of En we come to vector field which we also denote ei (i = 1, . . . , n). The
value of vector field ei at the point (x1, . . . , xn) is the vector ei attached at
this point (tangent to this point).

Let ω be an 1-form on En. Consider an arbitrary vector field A(r) =
A(x1, . . . , xn):

A(r) = A1(r)e1 + · · ·+ An(r)en =
n∑
i=1

Ai(r)ei
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Then by linearity

ω(r,A(r)) = ω
(
r, A1(r)e1 + · · ·+ An(r)en

)
= A1ω(r, e1) + · · ·+Anω(r, en) .

Consider basic differential forms dx1, dx2, . . . , dxn such that

dxi(ej) = δij =

{
1 if i = j

0 if i 6= j
. (2.6)

Then it is easy to see that

dx1(A) = A1, dx2(A) = A2, ...., i.e.dxi(A) = Ai

Hence

ω(r,A(r)) =
(
ω1(r)dx1 + ω2(r)dx2 + · · ·+ ωn(r)dxn

)
(A(r))

where components ωi(r) = ω(r, ei).
In the same way as an arbitrary vector field on En can be expanded over the basis {ei}

(see (2.3.1)), an arbitrary differential 1-form ω can be expanded over the basis forms(2.3.1)

ω = ω1(x1, . . . , xn)dx1 + ω2(x1, . . . , xn)dx2 + · · ·+ ωn(x1, . . . , xn)dxn .

Example Consider in E2 a basis ex, ey and corresponding coordinates (x, y).

Then
dx(ex) = 1, dx(ey) = 0
dy(ex) = 0, dy(ey) = 1

(2.7)

The value of a differential 1-form ω = a(x, y)dx + b(x, y)dy on vector field
X = A(x, y)ex +B(x, y)ey is equal to

ω(r,X) = a(x, y)dx(X) + b(x, y)dx(X) =

a(x, y)A(x, y) + b(x, y)B(x, y) .

It is very useful (see below ) introduce for basic vectors new notations:

ei 7→
∂

∂xi
for basic vectors ex, ey, ez in E3 ex 7→

∂

∂x
ey 7→

∂

∂y
ez 7→

∂

∂z
.

(2.8)
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In these new notations the formula (2.3.1) looks like

dxi
(

∂

∂xj

)
= δij =

{
1 if i = j

0 if i 6= j
.

and the formula (2.7) looks like

dx
(
∂
∂x

)
= 1, dx

(
∂
∂y

)
= 0

dy
(
∂
∂x

)
= 0, dy

(
∂
∂y

)
= 1

The notations which we introduce look ’odd’. However they are powerful,
since uisng these notations we can work in arbitrary coordinates.

We will try to demonstrate it later. Now in the next subsection we will
consider the directional derivative of function along vector fields. The formula
which will be introduced can be written in arbitrary coordinates; it will be
another justification of notations (2.8).

2.3.2 Vectors—directional derivatives of functions

Let R be a vector in En tangent to the point r = r0 (attached at a point
r = r0). Define the operation of derivative of an arbitrary (differentiable)
function at the point r0 along the vector R— directional derivative of function
f along the vector R

Definition
Let r(t) be a curve such that

• r(t)
∣∣
t=0

= r0

• Velocity vector of the curve at the point r0 is equal to R: dr(t)
dt

∣∣
t=0

= R

Then directional derivative of function f with respect to the vector R at the
point r0 ∂Rf

∣∣
r0

is defined by the relation

∂Rf
∣∣
r0

=
d

dt
(f (r(t)))

∣∣
t=0

. (2.9)

Using chain rule one come from this definition to the following important
formula for the directional derivative:

If R =
n∑
i=1

Riei then ∂Rf
∣∣
r0

=
n∑
i=1

Ri ∂

∂xi
f(x1, . . . , xn)

∣∣
r=r0

(2.10)
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It follows form this formula that
One can assign to every vector R =

∑n
i=1R

iei the operation ∂R = R1 ∂
∂x1 +

R2 ∂
∂x2 + · · ·+Rn ∂

∂xn
of taking directional derivative:

R =
n∑
i=1

Riei 7→ ∂R =
n∑
i=1

Ri ∂

∂xi
(2.11)

Thus we come to notations (2.8). The symbols ∂x, ∂y, ∂z correspond to partial
derivative with respect to coordinate x or y or z . Later we see that these new
notations are very illuminating when we deal with arbitrary coordinates, such
as polar coordinates or spherical coordinates, The conception of orthonormal
basis is ill-defined in arbitrary coordinates, but one can still consider the
corresponding partial derivatives. Vector fields ex, ey, ez (or in new notation
∂x, ∂y, ∂z) can be considered as a basis6 in the space of all vector fields on
E3 .

An arbitrary vector field (2.3.1) can be rewritten in the following way:

A(r) = A1(r)e1 + · · ·+ An(r)en = A1(r)
∂

∂x1
+ A2(r)

∂

∂x2
+ · · ·+ An(r)

∂

∂xn
(2.12)

2.3.3 Differential acting 0-forms → 1-forms

Now we introduce very important operation: Differential d which acts on
0-forms and transforms them to 1 forms.

Differential
0-forms

d−→ Differential
1-forms

Later we will learn how differential acts on 1-forms transforming them to
2-forms.

Definition Let f = f(x)-be 0-form, i.e. function on En. Then

df =
n∑
i=1

∂f(x1, . . . , xn)

∂xi
dxi . (2.13)

6Coefficients of expansion are functions, elements of algebra of functions, not numbers
,elements of field. To be more careful, these vector fields are basis of the module of vector
fields on E3
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The value of 1-form df on an arbitrary vector field (2.12) is equal to

df(A) =
n∑
i=1

∂f(x1, . . . , xn)

∂xi
dxi(A) =

n∑
i=1

∂f(x1, . . . , xn)

∂xi
Ai = ∂Af (2.14)

We see that value of differential of 0-form f on an arbitrary vector field A
is equal to directional derivative of function f with respect to the vector A.

The formula (2.14) defines df in invariant way without using coordinate expansions.

Later we check straightforwardly the coordinate-invariance of the definition (2.13).

Exercise Check that
dxi(A) = ∂Ax

i (2.15)

Example If f = f(x, y) is a function (0− form) on E2 then

df =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy

and for an arbitrary vector field A = A = Axex + Ayey = Ax(x, y)∂x +
Ay(x, y)∂y

df(A) =
∂f(x, y)

∂x
dx(A) + Ay(x, y)

∂f(x, y)

∂y
dy(A) =

Ax(x, y)
∂f(x, y)

∂x
+ Ay(x, y)

∂f(x, y)

∂y
= ∂Af .

Example Find the value of 1-form ω = df on the vector field A =
x∂x + y∂y if f = sin(x2 + y2).

ω(A) = df(A). One can calculate it using formula (2.13) or using formula
(2.14).

Solution (using (2.13)):

ω = df =
∂f

∂x
dx+

∂f

∂y
dy = 2x cos(x2 + y2)dx+ 2y cos(x2 + y2)dy .

ω(A) = 2x cos(x2 + y2)dx(A) + 2y cos(x2 + y2)dy(A) =

2x cos(x2 + y2)Ax + 2y cos(x2 + y2)dAy = 2(x2 + y2) cos(x2 + y2) ,

Another solution (using (2.14))

df(A) = ∂Af = Ax
∂f

∂x
+ Ax

∂f

∂y
= 2(x2 + y2) cos(x2 + y2) .

See other examples in Homeworks.
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2.3.4 Exact forms

1-form ω is called exact if there exists a function f such that ω = df .
E.g. a form ω = xdy+ydx = d(xy) is an exact form, a form ω = xdx+ydy

is also exact form: ω = xdx+ ydy = d
(
x2

2
+ y2

2

)
.

Of course not any form is an exact form (see exercises in Homeworks.)
E.g. 1-form ω = xdy is not an exact form. Indeed suppose that this is an
exact form, i.e. xdy = dF = Fxdx + Fydy, then Fy = x and Fx = 0. We see
that on one hand Fxy = (fx)y = 0 and on the other hand fyx = (fy)x = 1.
Contradiction.

Another example:
Example Consider 1-form ω = 2ydx+xdy and another 1-form σ = xω =

2xydx + x2dy. One can easy to see that 1-form ω is not exact 1-form, and
1-form σ is an exact 1-form.

Later we will see that exact 1-forms are easy to integrate over curves.

2.3.5 Differential forms in arbitrary coordinates

We learnt how to calculate directional derivative of functions along vector
fields, we learnt how to calculate values of differential 1-forms on vector fields,
We did the calculations in Cartesian coordinates in En (In examples above
we considered Cartesian coordinates (x, y) in E2.) One of the reasons why
differential forms are so important is that in fact our calculations may be
performed in arbitrary coordinates. The power of applications of differential
forms is that the constructions are invariant, they do not depend on choice
of coordinates we are working with. Here we consider just few examples (see
for more details Appendices.).

Example Calculate the value of differential forms ω = xdy − ydx, σ =
xdx+ ydy on vector fields A = x∂x + y∂y and B = x∂y − y∂x

We solved this execise (see 2 in Homework 5). Now we will do the same
exerices but in polar coordinates{

x = r cosϕ

y = r sinϕ
⇔

{
r =

√
x2 + y2

ϕ = arctan y
x

. (2.16)

We have for differential forms

ω = xdy − ydx = r cosϕd(r sinϕ)− r sinϕd(r cosϕ) =
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r cosϕ(sinϕdr+r cosϕdϕ)−r sinϕ(cosϕdr−r sinϕdϕ) = r2(cos2 ϕ+sin2 ϕ)dϕ = r2dϕ .
(2.17)

and
σ = xdx+ ydy = r cosϕd(r cosϕ) + r sinϕd(r sinϕ) =

r cosϕ(cosϕdr−r sinϕdϕ)+r sinϕ(sinϕdr+r cosϕdϕ) = r(cos2 ϕ+sin2 ϕ)dr = rdr .
(2.18)

and for vector fields we have:

A = x∂x+y∂y = x
∂

∂x
+y

∂

∂y
= x

(
∂r

∂x

∂

∂r
+
∂ϕ

∂x

∂

∂ϕ

)
+y

(
∂r

∂y

∂

∂r
+
∂ϕ

∂y

∂

∂ϕ

)
=

x

(
x

r

∂

∂r
− y

x2 + y2
∂

∂ϕ

)
+ y

(
y

r

∂

∂r
+

y

x2 + y2
∂

∂ϕ

)
= r

∂

∂r
, (2.19)

and

B = x∂y−y∂x = x
∂

∂y
−y ∂

∂x
= x

(
∂r

∂y

∂

∂r
+
∂ϕ

∂y

∂

∂ϕ

)
−y
(
∂r

∂x

∂

∂r
+
∂ϕ

∂x

∂

∂ϕ

)
=

x

(
y

r

∂

∂r
+

x

x2 + y2
∂

∂ϕ

)
− y

(
x

r

∂

∂r
− x

x2 + y2
∂

∂ϕ

)
=

∂

∂ϕ
. (2.20)

We have

ω(A) = r2dϕ

(
r
∂

∂r

)
= 0, ,

ω(B) = r2dϕ

(
∂

∂ϕ

)
= r2 = x2 + y2 ,

σ(A) = rdr

(
r
∂

∂r

)
= r2, ,

σ(B) = rdr

(
∂

∂ϕ

)
= 0 ,

Now we see we can calculate the values of differential forms on vector
fields in Cartesian and in polar coordinates, and answers are the same:

Cartesian coordinates

ω = xdy − ydx σ = xdx+ ydy
A = x ∂

∂x
+ y ∂

∂y
B = x ∂

∂y
− y ∂

∂x

ω(A) = 0 ω(B) = x2 + y2

σ(A) = x2 + y2 σ(B) = 0

Polar coordinates

ω = r2dϕ σ = rdr
A = r ∂

∂r
B = ∂

∂ϕ

ω(A) = 0 ω(B) = r2

σ(A) = r2 σ(B) = 0

(2.21)
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We used in the calculations for vector fields the chain rule. Pay attention
how useful for these calculations are notations of vector fields as derivatives.
We also used the matrices for partial derivatives of changing of coordinates
(polarcoordinates) Calculations for vector fields were not very easy, but an-
swers are beautiful7!

2.4 Integration of differential 1-forms over curves

Differential forms are natural objects of integration over surfaces. We con-
sider integration of differential 1-forms over curves.

Let ω = ω1(x
1, . . . , xn)dx1 + · · · + ω1(x

1, . . . , xn)dxn =
∑n

i=1 ωidx
i be an

arbitrary 1-form in En

and C : r = r(t), t1 ≤ t ≤ t2 be an arbitrary smooth curve in En.
One can consider the value of one form ω on the velocity vector field

v(t) = dr(t)
dt

of the curve:

ω(v(t)) =
n∑
i=1

ωi
(
x1(t), . . . , xn(t))dxi(v(t)

)
=

n∑
i=1

ωi
(
x1(t), . . . , xn(t)

) dxi(t)
dt

We define now integral of 1-form ω over the curve C.
Definition The integral of the form ω = ω1(x

1, . . . , xn)dx1+· · ·+ωn(x1, . . . , xn)dxn

over the curve C : r = r(t) t1 ≤ t ≤ t2 is equal to the integral of the func-
tion ω(v(t)) over the interval t1 ≤ t ≤ t2:∫

C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
n∑
i=1

ωi
(
x1(t), . . . , xn(t)

) dxi(t)
dt

)
dt . (2.22)

Proposition The integral
∫
C
ω does not depend on the choice of coordi-

nates on En. It does not depend (up to a sign) on parameterisation of the
curve: if C : r = r(t) t1 ≤ t ≤ t2 is a curve and t = t(τ) is an arbitrary
reparameterisation, i.e. new curve C ′ : r′(τ) = r(t(τ)) τ1 ≤ τ ≤ τ2, then∫
C
ω = ±

∫ ′
C
ω:∫

C

ω =

∫
C′
ω, if orientaion is not changed, i.e. if t′(τ) > 0

7Paris, vaut bien une messe!
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and ∫
C

ω = −
∫
C′
ω, if orientaion is changed, i.e. if t′(τ) < 0

If reparameterisation changes the orientation then starting point of the
curve becomes the ending point and vice versa.

Proof of the Proposition Show that integral does not depend (up to a sign) on the
parameterisation of the curve. Let t(τ) (τ1 ≤ t ≤ τ2) be reparameterisation. We come to

the new curve C ′ : r′(τ) = r(t(τ)). Note that the new velocity vector v′(τ) = dr(t(τ))
dτ =

t′(τ)v(t(τ)). Hence ω(v′(τ)) = w(v(t(τ)))t′(τ). For the new curve C ′∫
C′
ω =

∫ τ2

τ1

ω(v′(τ))dτ =

∫ τ2

τ1

ω(v(t(τ))
dt(τ)

dτ
dτ =

∫ t(τ2)

t(τ1)

ω(v(t))dt

t(τ1) = t1, t(τ2) = t2 if reparameterisation does not change orientation and t(τ1) = t2,
t(τ2) = t1 if reparameterisation changes orientation.

Hence
∫
C′
w =

∫ t2)
t1

ω(v(t))dt =
∫
C
ω if orientation is not changed and

∫
C′
w =∫ t1)

t2
ω(v(t))dt = −

∫ t2)
t1

ω(v(t))dt = −
∫
C
ω is orientation is changed.

Example
Let

ω = a(x, y)dx+ b(x, y)dy

be 1-form in E2 (x, y–are usual Cartesian coordinates). Let C : r =

r(t)

{
x = x(t)

y = y(t)
, t1 ≤ t ≤ t2 be a curve in E2.

Consider velocity vector field of this curve

v(t) =
dr(t)

dt
=

(
vx(t)
vy(t)

)
=

(
xt(t)
yt(t)

)
= xt∂x + yt∂y (2.23)

(xt = dx(t)
dt

, yt = dy(t)
dt

).
One can consider the value of one form ω on the velocity vector field v(t)

of the curve: ω(v) = a(x(t), y(t))dx(v) + b(x(t), y(t))dy(v) =

a(x(t), y(t))xt(t) + b(x(t), y(t))yt(t) .

The integral of the form ω = a(x, y)dx + b(x, y)dy over the curve C : r =
r(t) t1 ≤ t ≤ t2 is equal to the integral of the function ω(v(t)) over the
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interval t1 ≤ t ≤ t2:∫
C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
a(x(t), y(t))

dx(t)

dt
+ b(x(t), y(t))

dy(t)

dt

)
dt .

(2.24)

Example Consider an integral of the form ω = 3dy+3y2dx over the curve

C : r(t)

{
x = cos t

y = sin t
, 0 ≤ t ≤ π/2. (C is the arc of the circle x2 + y2 = 1

defined by conditions x, y ≥ 0).

Velocity vector v(t) = dr(t)
dt

=

(
vx(t)
vy(t)

)
=

(
xt(t)
yt(t)

)
=

(
− sin t
cos t

)
. The

value of the form on velocity vector is equal to

ω(v(t)) = 3y2(t)vx(t) + 3vy(t) = 3 sin2 t(− sin t) + 3 cos t = 3 cos t− 3 sin3 t

and∫
C

ω =

∫ π
2

0

ω(v(t))dt =

∫ π
2

0

(3 cos t−3 sin3 t)dt = 3

(
sin t+ cos t− cos3 t

3

) ∣∣π2
0

Change parameterisation: t = 2τ . Reparameterisation does not change
orientation (tτ = 2 > 0), hence the answer has to be the same. Check it: We

come to C ′ : r(t(τ))

{
x = cos 2τ

y = sin 2τ
, 0 ≤ τ ≤ π/4. (C ′ has the same locus.)

Velocity vector v(τ) ==

(
−2 sin 2τ
2 cos 2τ

)
. The value of the form on velocity

vector is equal to

ω(v(τ)) = 3y2(t)vx(τ)+3vy(τ) = 3 sin2 2τ(−2 sin 2τ)+6 cos 2τ = 6 cos 2τ−6 sin3 2τ ,

and∫ ′
C

ω =

∫ π
4

0

ω(v(τ))dτ =

∫ π
4

0

(6 cos 2τ−6 sin3 2τ)dτ = 3

(
sin 2τ + cos 2τ − cos3 2τ

3

) ∣∣π4
0

One can see that the answer is the same,

Example Now consider the integral of 1-form over the curve C which

is the upper half of the circle x2 + y2 = R2: C :

{
x2 + y2 = 1

y ≥ 0
. Curve is
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given as an image. We have the image of the curve not the parameterised
curve. We have to define a parameterisation ourself.

We consider three different parameterisations of this curve. Sure to cal-
culate the integral it suffices to calculate

∫
C
ω in an arbitrary given parame-

terisation r = r(t) of the curve C, then note that for an arbitrary reparame-
terisation t = t(τ), the integral will remain the same or it will change a sign
depending on the reparameterisation t = t(τ) preserves orientation or not.

C1−r1(t) :

{
x = R cos t

y = R sin t
, 0 ≤ t ≤ π , C2− r2(τ) :

{
x = R cos Ωτ

y = R sin Ωτ
, 0 ≤ τ ≤ π

Ω
, (Ω > 0)

and

C3 − r3(u) :

{
x = u

y =
√
R2 − u2

,−R ≤ u ≤ R, , (2.25)

All these curves are the same image. If Ω = 1 the second curve coincides
with the first one. First and second curve have the same orientation (repa-
rameterisation t = Ωτ) The third curve has orientation opposite to first and
second (reparameterisation u = cos t, the derivative d cos t

dt
< 0).

Calculate integrals
∫
C1
ω,
∫
C2
ω,
∫
C3
ω in the case if ω = xdy − ydx and

check straightforwardly that these integrals coincide if orientation is the same
or they have different signs if orientation is opposite.

I Calculation for the first curve C1.

We have v = xt∂x+yt∂y. For the form ω = xdy−ydx ω(v) = xyt−yxt =
R cos t(R sin t)−R sin t(−R cos t) = R2. We have∫

C1

ω =

∫ π

0

(xyt − yxt)dt =

∫ π

0

R2dt = πR2 .

II Calculation for the second curve C2.

We have v = xτ∂x+yτ∂y = −RΩ sin Ωτ+RΩ cos Ωτ . Thus ω(v) = (xdy−
ydx)(v) = xyτ − yxτ = R cos ΩτRΩ cos Ωτ − R sin Ωτ(−RΩ sin Ωτ = R2Ω.
We have ∫

C2

ω =

∫ π
Ω

0

(xyτ − yxτ )dτ =

∫ π
Ω

0

R2Ω = πR2 .

These answers coincide: both parameterisation have the same orientation.
III Calculation for the third curve C3.
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We have v = xu∂x + yu∂y = ∂x− u∂y√
R2−u2 . Thus ω(v) = (xdy− ydx)(v) =

xyu − yxu = − R2
√
R2−u2 . We have that for the third parameterisation:∫

C3

ω =

∫ R

−R
(xyu − yxu)du =

∫ R

−R

(
− R2

√
R2 − u2

)
du =

−2R2

∫ R

0

du√
R2 − u2

= −2R2

∫ 1

0

dz√
1− z2

= −πR2 .

We see that the sign is changed.
Note that one can consider the integral of the form ω = xdy− ydx over the semicircle

in polar coordinates instead Cartesian coordinates. We have that in polar coordinates

semicircle is

{
r(t) = R

ϕ(t) = t
, 0 ≤ t ≤ π. The form ω = xdy − ydx = r cosϕd(r sinϕ) −

r sinϕd(r sinϕ) = r2dϕ and v(t) = (rt, ϕt) = (0, 1), i.e. v(t) = ∂ϕ. We have that

ω(v(t)) = r(t)2dϕ(∂ϕ) = R2. Hence
∫
C
ω =

∫ π
0
R2dt = πR2. Answer is the same: The

value of integral does not change if we change coordinates in the plane.

For other examples see Homeworks.

2.5 Integral over curve of exact form

Recall that 1-form ω is called exact if there exists a function f such that
ω = df . Of course not any form is an exact form (see exercises in Homeworks.)
see subsection 2.3.4 above and exercises in Homeworks.).

Theorem
Let ω be an exact 1-form in En, ω = df .
Then the integral of this form over an arbitrary curve C : r = r(t) t1 ≤

t ≤ t2 is equal to the difference of the values of the function f at starting and
ending points of the curve C:∫

C

ω = f
∣∣
∂C

= f(r2)− f(r1) , r1 = r(t1), r2 = r(t2) . (2.26)

Proof: According definition of the integral of 1-form over curve we have
that

∫
C
df =

∫ t2
t1
df(v(t))dt. On the other hand according definition of direc-

tional derivative (2.9) we have that

df(v(t)) = ∂v(t)f(r)
∣∣
r(t)

=
d

dt
(f(r(t))) ,
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hence we come to∫
C

df =

∫ t2

t1

df(v(t))dt =

∫ t2

t1

d

dt
f(r(t))dt = f(r(t))|t2t1 .The proof is finished.

Example Calculate an integral of the form ω = 3x2(1 +y)dx+x3dy over
the arc of the semicircle x2 + y2 = 1, y ≥ 0.

One can calculate the integral naively using just the formula (2.24):
Choose a parameterisation of C,e.g., x = cos t, y = sin t, then v(t) =
− sin t∂x + cos t∂x and ω(v(t)) = (3x2(1 + y)dx+x3dy)(− sin t∂x + cos t∂y) =
−3 cos2 t(1 + sin t) sin t+ cos3 t · cos t and∫

C

ω =

∫ π

0

(−3 cos2 t sin t− 3 cos2 t sin2 t+ cos4 t)dt = ...

Calculations are boring and they are not short.
On the other hand for the form ω = 3x2(1+y)dx+x3dy one can calculate

the integral in a much more efficient way noting that it is an exact form:

ω = 3x2(1 + y)dx+ x3dy = d
(
x3(1 + y)

)
(2.27)

Hence it follows from the Theorem that∫
C

ω = f(r(π))− f(r(0)) = x3(1 + y)
∣∣x=−1,y=0

x=1,y=0
= −2 (2.28)

Remark If we change the orientation of curve then the starting point be-
comes the ending point and the ending point becomes the starting point.—
The integral changes the sign in accordance with general statement, that in-
tegral of 1-form over parameterised curve is defined up to reparameterisation.

Corollary The integral of an exact form over an arbitrary closed curve
is equal to zero.

Proof. According to the Theorem
∫
C
ω =

∫
C
df = f

∣∣
∂C

= 0, because the
starting and ending points of closed curve coincide.

Example. Calculate the integral of 1-form ω = x5dy + 5x4ydx over the
ellipse x2 + y2

9
= 1 .

The form ω = x5dy+ 5x4ydx is exact form because ω = x5dy+ 5x4ydx =
d(x5y). Hence the integral over ellipse is equal to zero, because it is a closed
curve.
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2.6 Calculation of integral of 1-form over curve in ar-
bitrary coordinates

In subsection2.3.5 we considered examples of calculations with differential
forms in arbitrary coordinates. In the subsection 2.4 we defined the integral of
1-form over curve. In fact the definition is valid for an arbitrary coordinates,8.
We have not time to go in details in this question, and in this subsection we
just consider example of calculations of integral for differential form ω =
xdy − ydx considered in subsection?? in polar coordinates.

Let C :

{
x = x(t)

y = y(t)
, t1 < t < t2 be a curve in E2. We will demostrate

explicitly that the result of claculation of
∫
C
ω in polar coordinates coi-

cide with the result of calculation of this integral in Cartesina coordinates.
In Cartesian coordinates the calculations for

∫
C
ω are the following (see

subsection2.4 or Homeworks): v(t) =

(
xt
yt

)
= xt∂x + yt∂y, ω(v(t)) =

(xdy − ydx)(xt∂x + yt∂y) = xyt − yxt and∫
C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
x(t)

dy(t)

dt
− y(t)

dx(t)

dt

)
dt . (2.29)

Calculate the same integral in polar coordinates: The differential form ω =
xdy − ydx in polar coordinates has an appearance ω = r2dϕ (see subsection
2.3.5.)

C :

{
x = x(t)

y = y(t)
⇒

{
r = r(t)

ϕ = ϕ(t)
, t1 < t < t2 .

For velocity vector

v(t) =

(
dr(t)
dt

dϕ(t)
dt

)
=
dr(t)

dt

∂

∂r
+
dϕ(t)

dt

∂

∂ϕ
,

and
ω(v) = r2dϕ (rt∂r + ϕt∂ϕ) = r2ϕt .

(as usual we use on an equal footing notations ∂
∂r
↔ ∂r,

∂
∂ϕ
↔ ∂ϕ, dr

dt
↔ rt,

and dϕ
dt
↔ ϕt ). We come to∫

C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
r2(t)

dϕ(t)

dt

)
dt . (2.30)

8this is why the differential forms are so powerful in geometry
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Show straightforwardly that integrals (2.30) and (2.29) coincide. We have

that

{
x = r cosϕ

y = r sinϕ
, thus we have from (2.29) that

∫
C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(
x(t)

dy(t)

dt
− y(t)

dx(t)

dt

)
dt =

∫ t2

t1

(
r(t) cosϕ(t)

d

dt
(r(t) sinϕ(t))− r(t) sinϕ(t)

d

dt
(r(t) cosϕ(t))

)
dt =∫ t2

t1

(r cosϕ (rt sinϕ+ r cosϕϕt)− r sinϕ (rt cosϕ− r sinϕϕt)) dt =∫ t2

t1

r2
(
cos2 ϕ+ sin2 ϕ

)
ϕt =

∫ t2

t1

(
r2(t)

dϕ(t)

dt

)
dt .

See another examples of caclulatios of integrals in polar coordinates in Home-
work 6.

3 Conic sections and Projective Geometry

In this section we consider very famous and important curves, ellipses, hy-
perbolas and parabolas.

We first consider geometrical definitions of these curves without using the
analytical methods, then we will show that in Cartesian coordinates these
curves can be expressed by well-known standard formulae:

•
an ellipse ,

x

a2
+
y2

b2
= 1 , , a ≥ b > 0 ,

•
a hyperbola ,

x

a2
− y2

b2
= 1 ,

• and
parabola , y2 = 2px .

We study properties of these curves, and will show that these curves are
sections of conic surfaces (it is why they are called conic sections.)

Finally we will consider some elements of Projective geometry and we will
look at these curves from the point of view of the projective geometry.
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3.1 Geometrical definitions of conic sections

3.1.1 Ellipse on the Euclidean plane

Ellipse on the plane is the locus of all the points such that the sum of distances
from these points to two fixed points F1, F2 is equal to given constant.

K

2c
F1 F2

(3.1)

|F1F2| = 2c , a > c > 0 .

Ellipse = {K : |KF1|+ |KF2| = 2a}

F1, F2 are foci of ellipse.
If c = 0, ellipse becomes circle.

3.1.2 Hyperbola on the Euclidean plane

Hyperbola on the plane is the locus of all the points such that the difference
of distances from these points to two fixed points F1, F2 is equal to given
constant.
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K

2c
F2 F1

(3.2)
Hyperbola = {K : ||KF1| − |KF2|| = 2a}
The points F1, F2 are foci of hyperbola.
Remark Notice that for ellipse we denote “left” focus F1 and ‘’right

focus” F2, and for hyperbola vice versa: “right” focus F1 and ‘’left” focus
F2. The difference between these two notations will be important only when
we will consider analytical definitions of hyperbola, and we will note it later.

3.1.3 Parabola on the Euclidean plane

Parabola on the plane is the locus of all the points such that they are at the
same distance from the given point F and the given line l.
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l

K

F

(3.3)

Parabola = {K : d(K, l) = |KF |}

The point F is called the focus of the parabola, and the line l is called
the directrix of the parabola.

One can consider directrices for hyperbola and ellipse also. See later subsection??
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3.2 Cartesian and affine coordinates in the plane and
in the space

3.2.1 Cartesian coordinates in plane E2

Consider affine space E2.
Recall that fixing the point in affine space we come to the vector space

E2(see 1.2).
Let {ex, ey} be an orthonormal basis attached at a point O. The point

O is an origin of this frame of reference. For every point A ∈ E2 we have

ex

ey

y

xO

r

P

, r = ~OA = xex + yey , (3.4)

|ex| = |ey| = 1 and ∠ (ex, ey) =
π

2
, i.e. (ex, ex) = (ey, ey) = 1 , (ex, ey) = 0 .

Coordinates x, y are Cartesian coordinates of the point P with respect to
frame XOY

Consider now two frames of references. Let {ex, ey} be an orthonormal
basis attached at the point O, and let {e′x, e′y} be an orthonormal basis
attached at the point O′. O.
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e′x

e′y

y′

x′

O ′

ex
ey

y

x

O

Let A be an arbitrary point in the plane E2. We denote:

r = ~OP , r′ = ~O′P , and t = ~OO′ .
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e′x

e′y

y′

x′

O ′

ex
ey

y

x

O

A

t

r′

r

(3.5)

We have
r = t + r′

i.e.

(ex, ey)

(
x
y

)
︸ ︷︷ ︸

r

= (ex, ey)

(
a
b

)
︸ ︷︷ ︸

t

+ (e′x, e
′
y)

(
x′

y′

)
︸ ︷︷ ︸

r′

, i.e.
xex + yey = r = t + r′ = aex + bey + x′e′x + y′e′y .

The bases {ex, ey}, {e′x, e′y} are related by orthogonal matrix:

(e′x, e
′
y) = (ex, ey)

(
p11 p12
p21 p22

)
︸ ︷︷ ︸
orthog. matr.

. (3.6)

(ex, ey)

(
x
y

)
= (ex, ey)

(
a
b

)
+ (ex, ey)

(
p11 p12
p21 p22

)(
x′

y′

)
,
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i.e. (
x
y

)
=

(
a
b

)
+

(
p11 p12
p21 p22

)
︸ ︷︷ ︸
orthog.matrix

(
x′

y′

)
.

{
x = a+ p11x

′ + p12y
′

y = b+ p21x
′ + p22y

′

One can say that changing of coordinates is translation + rotation (or
rotation+ reflection.)

Example Consider in (3.6) an orthogonal matrix

P =

(
p11 p12
p21 p22

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
, (P+ ◦ P = id , and detP = 1)

(P preserves orientation. This is rotation on the angle ϕ)
Another example:
Example Consider in (3.9), an orthogonal matrix

P =

(
p11 p12
p21 p22

)
=

(
cosϕ sinϕ
sinϕ − cosϕ

)
, (P+ ◦ P = id , and detP = −1)

(P changes orientation. This is rotation and reflection)

3.2.2 Cartesian coordinates in E3

The analogous considerations in E3:

ex

ezey

z

x

y

O

r

A

, r = ~OA = xex + yey + zez ,
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|ex| = |ey| = |ez| = 1 and ∠ (ex, ey) = ∠ (ex, ez) = ∠ (ey, ez)) =
π

2
,

i.e.

(ex, ex) = (ey, ey) = 1 , (ez, ez) = 1 , (ex, ey) = (ex, ez) = (ey, ez) = 0 .

We have that {ex, ey, ez} is an orthonormal basis and x, y, z are Cartesian
coordinates of point A with respect to frame OXY Z.

Now coonsider two different Cartesian coordinates
Let in E3, ex, ey, ez be an orthonormal frame with the origin at the point

O and let e′x, e
′
y.e
′
z be an another orthonormal frame with the origin at the

the point O′:

e′x

e′z
e′y

x′

z′

y′

O ′

ex

ez ey

x

z

y

O

t

Let A be an arbitrary point in E3.
Denote by

r = ~OA , r′ = ~O′A , and t = ~OO′ .
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e′x

e′z
e′y

x′

z′

y′

O ′

ex

ez ey

x

z

y

O

t

r′r

A

We have in the same way as in E2:

r = t + r′

i.e.

(ex, ey, ez)

xy
z


︸ ︷︷ ︸

r

= (ex, ey, ez)

ab
c


︸ ︷︷ ︸

t

+ (e′x, e
′
y, e
′
z)

x′y′
z′


︸ ︷︷ ︸

r′

, i.e.

xex + yey + zez = r = t + r′ = aex + bey + cez = x′e′x + y′e′y + z′e′z .

The orthonormal bases {ex, ey, ez}, {e′x, e′y, ez} are related by orthogonal
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matrix:

(e′x, e
′
y, e
′
z) = (ex, ey, ez)

p11 p12 p13
p21 p22 p23
p31 p32 p33


︸ ︷︷ ︸

orthog. matr.

.

Thus

(ex, ey, ez)

xy
z

 = (ex, ey, ez)

ab
c

+ (ex, ey, ez)

p11 p12 p13
p21 p22 p23
p31 p32 p33

x′y′
z′

 ,

i.e. xy
z

 =

ab
c

+

p11 p12 p13
p21 p22 p23
p31 p32 p33


︸ ︷︷ ︸

orthog.matrix

x′y′
z′

 ,


x = a+ p11x

′ + p12y
′ + p13z

′

y = b+ p21x
′ + p22y

′ + p23z
′

z = c+ p31x
′ + p32y

′ + p33z
′

(3.7)

Recalling Euler Theorem one One can say that changing of coordinates
is translation + rotation (or rotation+ reflection.)

Consider examples of transformation (3.7)
Rotation arond axis Oz on the angle ϕ:xy

z

 =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

x′y′
z′

 .

Another example:
Rotation arond axis Oz on the angle π

6
and translation:xy

z

 =

ab
c

+

1 0 0

0
√
3
2
−1

2

0 1
2

√
3
2

x′y′
z′

 ,
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3.2.3 Arbitrary affine coordinates

We consider in (3.9) (3.7) changing of Cartesian coorindates from one or-
thonormal basis to another. In the general case if bases are not orthonormal
we have coordinates hich are not Cartesian, they are just so called affine
coordinates. We consider affine coordinates in the plane E2.

Affine coordinates of the point:

ex

ey

y

xO

r
A

, r = ~OA = xex+yey ,

In this case {ex, ey} is not in general an orthonormal basis: the vectors
ex, ey may have an arbitrary length, and the angle θ between them may be
an abritrary. Sure the vectors ex, ey have to be linearly independent, since
{ex, ey} is a basis, this is why |ex| 6= 0, |ey| 6= 0 and θ 6= 0. In the special
case if these vectors are unit vectors and angle between them is equal to π

2

we come to Cartesian coordinates (3.4)

Write down the formulae of changing coordinates if we change the coor-
dinate systems.

Let OXY be coordinate frame with the origin at the point O and with
basic vectors {ex, ey}, and let O′X ′Y ′ be coordinate frame with origin at the
point O′ and with basic vectors {e′x, e′y}, (Compare with (3.5)).

In the same way as in (3.5) we have

r = t + r′
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i.e.

(ex, ey)

(
x
y

)
︸ ︷︷ ︸

r

= (ex, ey)

(
a
b

)
︸ ︷︷ ︸

t

+ (e′x, e
′
y)

(
x′

y′

)
︸ ︷︷ ︸

r′

, i.e.
xex + yey = r = t + r′ = aex + bey + x′e′x + y′e′y .

In this case the bases {ex, ey}, {e′x, e′y} are related by non-degenerate matrix:

(e′x, e
′
y) = (ex, ey)

(
p11 p12
p21 p22

)
︸ ︷︷ ︸

detP 6=0

, (3.8)

and

(ex, ey)

(
x
y

)
= (ex, ey)

(
a
b

)
+ (ex, ey)

(
p11 p12
p21 p22

)(
x′

y′

)
,

i.e. (
x
y

)
=

(
a
b

)
+

(
p11 p12
p21 p22

)
︸ ︷︷ ︸

non-degenerate matrix

(
x′

y′

)
.

{
x = a+ p11x

′ + p12y
′

y = b+ p21x
′ + p22y

′ (3.9)

The difference with the case of changing of Cartesian coordinates consid-
ered in subsection 3.2.1 (see (3.6)) is the following: in the case of changing
of Cartesian coordinates, the matrix P in equation (3.6) is orthogonal ma-
trix, since it is transition matrix between two orthonormal bases, and the
matrix P in equation (3.8) is just non-degenerate transition matrix between
two bases.

3.2.4 Affine coordiantes and area of ellipse

We consider in this subsection one very important example.
Consider an ellipse

x2

a2
+
y2

b2
= 1 . (3.10)

in Cartesian coordinates. (We will consider this equation of ellipse later in
detail. Now we just use very simple properties of this formula to come to the
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formula for area of ellipse (more precisely the area of the domain restircted
by this ellipse).) Under affine transformations{

x = au

y = bv
(3.11)

, (a,b¿0) the ellipse becomes the circle u2 + v2 = 1, and the area of the
interior of the unit circle circle is equal to π.

Area of the interior of the ellipse (3.10) =

∫
x2

a2 +
y2

b2
≤1
dxdy =

∫
u2+v2≤1

∣∣∣∣∂(x, u)

∂(u, v)

∣∣∣∣ dudv =

∫
u2+v2≤1

∣∣∣∣det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)∣∣∣∣ dudv =

∫
u2+v2≤1

∣∣∣∣det

(
a 0
0 b

)∣∣∣∣ dudv =

ab

∫
u2+v2≤1

dudv = ab · {Area of the interior of the unit circle} = πab .

(3.12)
Indeed one can see it without using integration formulae: the affine transfor-
mation (3.11) changes size in OX direction a times and it changes the size
in OY direction in b times, hence area of changing ab times, i.e. area of the
ellipse is equal to πab.

3.3 Analytical definition of conic sections

We will define here conic sections analytically and will proof that the equiv-
alence of analytical and geometrical definitions.

We will call ellipse, hyperbola and parabola conic sections. This ter-
minology will be explained in the next lecture.

We have given above geometric definitions of conic sections (see (3.1),
(3.2) and (3.3)). Now we give anaytical definitions of conic sections.

Definitions

Definition Let C be a curve on the plane. The curve C is an ellipse
if there exist Cartesian coordinates (x, y) on the plane, such that in these
Cartesian coordinates this curve is defined by canonical equation

x2

a2
+
y2

b2
= 1 , (3.13)
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where a, b are positive numbers such that a ≥ b.

Definition Let C be a curve on the plane. The curve C is a hyperbola
if there exist Cartesian coordinates (x, y) on the plane, such that in these
Cartesian coordinates this curve is defined by canonical equation

x2

a2
− y2

b2
= 1 , (3.14)

where a, b are positive numbers.

Definition Let C be a curve on the plane. The curve C is a parabola
if there exist Cartesian coordinates (x, y) on the plane, such that in these
Cartesian coordinates this curve is defined by canonical equation

y2 = 2px , p > 0 . (3.15)

where p is a positive number 9.

Proposition
Geometrical and analytical definitions of conic sections are equivalent.
We will prove this Proposition separately for ellipse, hyperbola and parabola.

3.3.1 Equivalence of analytical and geometrical definitions for el-
lipse

Let C be an ellipse defined geometrically:

C = {K : |KF1|+ |KF2| = 2a} (3.16)

Consider Cartesian coordinates, such that origin is at the middle of the
segment F1F2, axis OX is along foci from F1 to F2: x coordinates of the

9We usually in school, considered parabola as y = ax2. Traditionally in anaylical
geometry parabola is cosnidered with twistex axis x↔ y.
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point F1 is negative and x coordinate of the point F2 is positive.

x

y

F1 F2

K

F1 = (−c, 0) , F2 = (c, 0) , K = (x, y) .

We may suppose that
a > c . (3.17)

Indeed it follows from the triangle F1KF2 that 2a = |KF1| + |KF2| ≥
|F1F2| = 2c. (In the case if a = c ellipse degenerates to the segment (F1F2).

We have

|KF1|+ |KF2| =
√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a , (a ≥ c > 0) .

Hence √
(x+ c)2 + y2 = 2a−

√
(x− c)2 + y2 . (3.18)

Take square:

x2 + 2xc+ c2 = 4a2 + x2 − 2xc+ c2 + y2 − 4a
√

(x− c)2 + y2 .

Hence
4a
√

(x− c)2 + y2 = 4a2 − 4xc = 4(a2 − xc) .
Take again square:

a2
(
x2 − 2xc+ c2 + y2

)
= a4 − 2a2xc+ x2c2 .
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Hence
(a2 − c2)x2 + a2y2 = a4 − a2c2 = a2(a2 − c2) . (3.19)

Bearing in mind that a > c (see (3.17)) we come to

x2

a2
+
x2

b2
= 1 ,where b2 = a2 − c2 . (3.20)

Thus we proved that all points belonging to the locus (3.16) obey equation
(3.13).

One can see that converse implication is also true. Indeed suppose that
for the point K = (x, y) equation (3.13) is obeyed. Then

y2 = b2
(

1− x2

a2

)
.

We have:

|KF1| =
√

(x+ c)2 + y2 =

√
(x+ c)2 + b2

(
1− x2

a2

)
=

√√√√√
(

1− b2

a2

)
︸ ︷︷ ︸

c2/a2

x2 + 2cx+ c2 + b2︸ ︷︷ ︸
a2

=

√
c2

a2
x2 + 2cx+ a2 =

√( c
a
x+ a

)2
=
∣∣∣ c
a
x+ a

∣∣∣ =
c

a
x+ a (3.21)

since −a < x < a.
Analogously:

|KF2| =
√

(x− c)2 + y2 =

√
(x− c)2 + b2

(
1− x2

a2

)
=

√(
1− b2

a2

)
+ x2 − 2cx+ c2 + b2 =

√
c2

a2
x2 − 2cx+ a2 =√( c

a
x− a

)2
=
∣∣∣ c
a
x− a

∣∣∣ = a− c

a
x (3.22)

since −a < x < a.
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Hence
|KF1|+ |KF2| =

( c
a
x+ a

)
+
(
a− c

a
x
)

= 2a .

Thus we establish the euqivalence of analytical and geometrical definiiton of
ellipse.

Two words about the formula for area for ellipse which we obtained in ....
If ellipse is given by analytical formula, then a is the length of its semi-

major axis, b is the length of its semi-minor axis.

3.3.2 ∗ Equivalence of analytical and geometrical definitions for
hyperbola

Let C be a hyperbola defined geometrically:

C = {K : | |KF1| − |KF2| | = 2a} (3.23)

Consider Cartesian coordinates, such that origin is at the middle of the segment F1F2,
axis OX is along foci in the direction from F2 to F1:

F1 = (c, 0) , F2 = (−c, 0) ,K = (x, y) .

Remark Notice that for hyperbola we consider F1 with positive coordinate, and F2 with
negative x coordinate, i.e. we suppose that F1 is “right” focus and F2 is “left” focus, and
for ellipse it was vice versa (see (3.1) and (3.2)). This difference will be imprortant only
when we will consider polar coordinates for hyperbola.

We may suppose that
c > a . (3.24)

Indeed it follows from the triangle F1KF2 that 2a = ||KF1| − |KF2|| ≤ |F1F2|| = 2c. In
the case if a = c hyperbola degenerates to two semi-intervals C = (−∞, F1) ∪ (F2,∞).

We have that

||KF1| − |KF2|| =
√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a .

Hence √
(x+ c)2 + y2 = ±2a−

√
(x− c)2 + y2 .

In the same way as we did it for ellpise taking twoice square we see that this equation
implies equation (3.19):√

(x+ c)2 + y2 = ±2a−
√

(x− c)2 + y2 ⇒ (c2 − a2)x2 − a2y2 = a2(c2 − a2) ,

The difference is that in the case of ellipse a > c, and here c > a (see equation (3.24)).
Dividing on a2(c2 − a2) we come to

x2

a2
− y2

b2
= 1 ,where b2 = c2 − a2 . (3.25)
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Thus we proved that all points belonging to the locus (3.23) obey equation (3.14).
Now prove converse implication, i.e. that the points K = (x, y) which obey equation

(3.14) obey also equation (3.23).
The calculations are same that for ellipse (see formulae (3.21), (3.22)) just that for

hyperbola c > a, and b2 = c2 − a210:

|KF1,2| =
√

(x± c)2 + y2 =

√
(x± c)2 + b2

(
x2

a2
− 1

)
=

√√√√√√
(

1 +
b2

a2

)
︸ ︷︷ ︸

c2/a2

x2 ± 2cx+ c2 − b2︸ ︷︷ ︸
a2

=

√
c2

a2
x2 ± 2cx+ a2 =

√(
± c
a
x+ a

)2
=
∣∣∣± c
a
x+ a

∣∣∣ .
This implies that

||KF1| − |KF2|| = 2a .

3.3.3 Equivalence of analytical and geometrical definitions for
parabola

Let C be a parabola defined geometrically:

C = {K : d(K, l) = d(K,F )} ,

where l is directrix, and F is focus of the parabola.
Let T be a point on the directrix l such that the line FT is orthogonal

to the directrix l.
Consider Cartesian coordinates, such that the origin is at the middle of

the segment TF , and axis OX goes along the line TF in the direction from

10it is useful sometimes to consider hyperbola as ellipse with b 7→
√
−1b
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the point T to the point F :

l

K

FT x

y

F =
(p

2
, 0
)
, T =

(
−p

2
, 0
)
, l : x = −p

2
, K = (x, y) .

The distancce d(K,F ) =
√
y2 +

(
x− p

2

)2
. Note that if x < 0, then evidently

d(K, l) < |KF |, hence for the points of the locus of the parabola, y > 0. and
the distance between point K and directrix is equal to x+ p: We have

d(K,F ) =

√
y2 +

(
x− p

2

)2
= d(K, l) = x+

p

2
⇒ y2 − 2px = 0 .

The converse implication is evident also: If for the point K = (x, y), y2 −
2px = 0 (p > 0), then

d(K,F ) =

√
y2 +

(
x− p

2

)2
=

√
2px+

(
x− p

2

)2
=

√(
x+

p

2

)2
=
∣∣∣x+

p

2

∣∣∣ = d(K, l) .
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3.3.4 Resumé

We see that conic sections can be described geometrically and analytically
in suitable canonical Cartesian coordinates:

Geom. definition Analyt. definition Parameters

Ellipse {K : |KF1|+ |KF2| = 2a} x2

a2 + y2

b2
= 1 |F1F2| = 2c , b2 = a2 − c2

Hyperbola {K : | |KF1| − |KF2| | = 2a} x2

a2 − y2

b2
= 1 |F1F2| = 2c , b2 = c2 − a2

Parabola {K : |KF | = d(K, l)} y2 = 2px d(F, l) = p
(3.26)

We will call these parameters canonical parameters of conic sections.

Add to this table also the following two lines: the distance between an arbitrary point
K = (x, y) on ellipse (hyperbola) and one of the foci of the ellpse (hyperbola) is equal to

d(K,F1,2) =
∣∣∣ c
a
x± a

∣∣∣ ,
for ellipse c > a and |x| ≤ a, and for hyperbola c < a and |x| ≥ a, where a, c are canonical
parameters of ellipse (hyprbola). (For parabola d(K,F ) =

∣∣x+ p
2

∣∣.)
3.3.5 Area of ellipse, again

We obtained in paragraph3.2.4 formula (3.12) for area of ellipse assuming
that for an arbitrry ellipse there exist Cartesian coordinates (x, y) such that

in these coordinates, the ellipse is defined by canonical formula x2

a2 + y2

b2
= 1

(see equation (3.13)). We proved this statement little bit later in paragraph
3.3.1. It is useful again recall this formula on the base of these conisderations
and to fix notations. Let C be an ellipse:
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K

F1 F2
O AA′

B

B′ (3.27)

foci F1, F2, |F1F2| = 2c , ∀K ∈ C , |F1K|+ |KF2| = 2a a > c > 0 .

centre of the ellipse−−−O , |F1O| = |OF2| = c ,

major axis |A′A| = 2a , semi-major axis |OA| = a ,

minor axis |B′B| = 2b , semi-minor axis |OB| = a ,

One can consider Cartesian coordinates (x, y) such that in these coordinates
the ellipse C is defined by canonical equation
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K

F1 F2

y

xO AA′

B

B′

canonic. Cartesian coordinates

x2

a2
+
y2

b2
= 1 , b =

√
a2 − c2 , (3.28)

(see 3.3.1.)
and the area of this ellipse (more precisely the interior of the ellipse C)

is equal to

S = π × length of semi-major axis × length of semi-minor axis = πab .

Remark With some abuse of language we will say area of ellipse instead
saying “area of the interior of the ellipse”.

3.4 Conic sections in polar coordinates

It is useful in many applications to know how look conic sections in polar
coordinates.
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3.4.1 Focal polar coordinates for conics

Let C be a conic section. We define so called focal polar coordinates adjusted
to the conic section C in the following way.

In the case if a curve C is an ellipse, we consider the Cartesian coordi-
nates (x, y) such the focus F1, the left focus of the ellipse C, is the origin
of these coordinates, the Ox axis goes in the direction of the segment F1F2,
respectively OY axis is orthogonal to the segment F1F2. Then the focal polar
coordinates are defined via these Cartesian coordinates by standard equation{

x = r cosϕ

y = r sinϕ
, (3.29)

(see Figure(3.30)).
In the case if C is hyperbola we will do almost the same, just we will

take the origin, the ‘right’ focus F1 of hyperbola11, and we consider again the
polar coordinates (3.29) (see Figure (3.35)).

Parabola has just one focus. In the case if C is a parabola, a focus F
of C is the origin, and Oy axis is parallel to the directrix of parabola, and
the focal polar coordinates are defined via these Cartesian coordinates by
standard polar coordinates(3.29)(see Figure (3.37)).

3.4.2 Ellipse in polar coordinates

Let C be an ellipse with foci at points F1, F2. Consider Cartesian coor-
dinates with the origin at focus F1 such that OX axis goes along axis of
ellipse: x coordinate is increasing from F1 to F2, i.e. F1 is the “left” focus.

11We take F1 the “left focus” of ellipse, and for hyperbola we take the “right” focus of
hyperbola. (see (3.1) and (3.2) and remarks there).
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K

rK 2a− rK

x

y

F1
ϕ

F2
2c

Recall definition of ellipse: C = {K : |F1K|+|KF2| = 2a} , where |F1F2| = 2c , (0 ≤ c < a)) .
(3.30)

Using the cosine rule we have from4F1KF2 that |KF2| =
√
r2 + 4c2 − 4rc cosϕ.

It follows from (3.30) that

|KF2| = 2a− |F1K| , i.e.
√
r2 + 4c2 − 4rc cosϕ = 2a− r .

Right hand side is positive. Hence taking the square we come to equivalent
equation:

r2 + 4c2 − 4rc cosϕ = 4a2 − 4ar + r2 ⇔ r =
a2 − c2

a− cr cosϕ
,

i.e.
r = r(ϕ) =

p

1− e cosϕ
, (3.31)

where p =
a2 − c2

a
, e =

c

a
< 1 . (3.32)
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This is equation of ellipse in focal polar coordinates. (Origin, is a focus of
ellipse.) Since transformations are equivalent, the converse implication is
also true; If a curve C is defined by equation (3.31) and the parameter e < 1,
then C is an ellipse (3.30), where parameters a, c are defined by equation
(3.32) (p > 0), and the origin, is a focus of ellipse. (The second focus is at
the point (2c, 0).) (See also Solutions of Homework 8.)

It is very useful the following

Definition We call parameter e = c
a

eccentricity parameter.

This parameter evidently measures the difference of ellipse from circle: if
e = 0, then ellpise becomes circle. What happpens if we take e = 1 or evern
e > 1 in equation (3.31)? One can see that if e=1 then we come to curve:

r =
p

1− cosϕ
⇔ r = p+ r cosϕ⇔

√
x2 + y2 = (p+ x)2 . (3.33)

Taking square of last equation we see that this curve is a parabola y2 =
2px+ p2 = 2p

(
p+ 1

2

)
shifted over Ox axis on p

2
(see in detail the subsection

3.4.4). Moreover if we will take ecentricity parameter e > 1 we will come to
hyperbola (see in detail next subsection 3.4.3)

Lookign at the followig picture:

e = 0

circle

0 ≤ e < 1

ellipse

e = 1

parabola

e > 1

hyperbola

(3.34)
one can say that eccentricity parameter makes relation between conic

sections: ellipses, parabolas and hyperbolas (see for details subsection 3.50)
Later we will see that all conic sections appear as intersections of plane

with conic surface (see for details subsection 3.5)

3.4.3 ∗ Hyperbola in polar coordinates

Let C be a hyperbola with foci at points F1, F2 Consider Cartesian coordinates with
the origin at right focus F1, (OX axis goes from focus F2 to F1 and x coordinate is
increasing from F2 to F1, i.e. F1 is the right focus (see (3.2) and the remark there.)
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x

rKrK + 2a

ϕ

K

2c
F2 F1

Hyperbola: C = {K : | |F1K|−|KF2| | = 2a} , |F1F2| = 2c , p =
c2 − a2

a
, e =

c

a
, (0 ≤ a < c) .

(3.35)
Calculations are analogous to calculations for ellipse. In the same way as for ellipse

we have |KF1| = r, and

|KF1| =
√
r2 + 4c2 − 4rc cos(π − ϕ) =

√
r2 + 4c2r + 4rc cosϕ .

(Attention: here the angle of triangle is π − ϕ, not ϕ.)
As usual we denote |F1F2| = 2c (see (3.2)) It follows from definition of hyperbola that

|KF2| = |F1K| ± 2a , i.e.
√
r2 + 4c2r + 4rc cosϕ = r ± 2a .

For the branch of hyperbola which is closer to the right focus F1

√
r2 + 4c2 + 4rc cosϕ =

r+2a and for the branch of hyperbola which is closer to F2

√
r2 + 4c2 + 4rc cosϕ = r−2a.

Notice that for hyperbola c > a (see (3.24)).
We come to

r2 + 4c2 + 4rc cosϕ = 4a2 + 4ar + r2 ,
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i.e.

r =
c2 − a2

a− cr cosϕ
=

p

1− e cosϕ
, where p =

c2 − a2

a
, e =

c

a
. (3.36)

This is equation for the branch of hyperbola which is closer to F1 in polar coordinates.
For other branch, which is closer to the focus F2,

√
r2 + 4c2 − 4rc cosϕ = r − 2a,

r2 + 4c2 − 4rc cosϕ = 4a2 − 4ar + r2 ,

and

r = − c2 − a2

a+ cr cosϕ
=

p

1 + e cosϕ
, where p =

c2 − a2

a
, e =

c

a
.

3.4.4 Parabola in polar coordinates

Let C be a parabola with a focus at the points F and with directrix l. Let
segment FT be orthogonal to directrix l. Consider Cartesian coordinates
such that axis OX is directed along the segment TF , and x coordinate is
increasing from the point T to the point F , axis OY is parallel to directrix,
and the origin is at the middle of segment TF (see Figure (3.37)).
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l

K

rK

F
ϕ

T x

y

F = (0, 0) , T = (−p, 0) , l : x = −p ,K = (x, y) , (3.37)

Here we denote by p the length of the segment TF . (Compare this Figure
with Figure (3.3.3))

Recall that according to geometrical definition of parabola

C = {K : |rK | = distance between the point K and directrix l} , (3.38)

i.e. r = |p+ x| = |p+ r cosϕ|. This relation is equivalent12 to the equation

r = p+ r cosϕ⇔ r = r(ϕ) =
p

1− cosϕ
. (3.39)

12the equivalence |p + x| = p + x is obeyed since according to (3.38) for points in the
locus C x > −p
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This is equation of parabola in focal polar coordinates. The converse impli-
cation is that If a curve C obeys equation (3.39) then it is parabola (3.38);
the origin is a focus of this parabola and the line l : x = −p is its directrix.

3.4.5 ∗ Eccentricity parameter and similarity between conic sec-
tions

Studying formulae (3.31), (3.36) and (3.39) for ellipses, hyperbolas and parabolas we come
to

Proposition Let C be a conic section, and let r, ϕ be local focal coordinates described
above (see Figures (3.31), (3.35) and (3.37).). Then equation of conic section is the
following:

• for ellipse:

r =
p

1− e cosϕ
,

where p = a2−c2
a and e = a

c (see (3.31))

• for the “right” branch of hyperbola (the branch which is closer to the focus F1)

r =
p

1− e cosϕ
,

where p = c2−a2
a and e = a

c (see (3.35))

• for the “left” branch of hyperbola (the branch which is closer to the other focus, the
focus F2.)

r = − p

1 + e cosϕ
,

where p = c2−a2
a and e = a

c (see (3.35))

• for parabola

r =
p

1− cosϕ
,

(see (3.39))

Notice that all the formulae for conic sections are the same or similar. Equations
of ellipse, parabola and the closest to the origin branch of hyperbola are the same: r =

p
1−e cosϕ if we put e = 1 for parabola. Thus we have

r =
p

1− e cosϕ
,


e = a

c , p = a2−c2
a for ellipse

e = a
c , p = c2−a2

a for hyperbola

e = 1 for parabola

(3.40)

The parameter e such that

e =
a

c
(for ellipse and hyperbola) , e = 1(for parabola)
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is called eccentricity parameter. It is less than equal to 1 for ellipse, (for circle the ec-
centricity parameter e = 0 ), it is bigger than 1 for hyperbola, and it is equal to 1 for
parabola.

e = 0

circle

0 ≤ e < 1

ellipse

e = 1

parabola

e > 1

hyperbola

(3.41)

3.5 Intersection of plane with conical surface

In this lecture we consider intersections of planes and surface of cone, conical
surface.

The intersection of plane with conical surface is an ellipse, a hyperbola,
or parabola. This justifies why we call ellipses, hyperbolas and parabola by
conic sections.

Moreover the orthogonal projection of this conic section on the horisontal
plane z = 0 is also the conic section, and the vertex of the cone is the focus
of this conic section 13.

We will formulate this Theorem and will give its proof.
Consider conical surface M :

13Recalling the Kepler law that the planets move in elliptical orbits with the Sun at one
focus one can say that vertex of the conical surface is a ‘sun’
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z

x

y

O

M : z2 = k2(x2 + y2) ,


x = h cosϕ

x = h sinϕ

z = kh

, k 6= 0, (k > 0) .

Theorem
Let C be a curve which is an intersection of a plane α with the conical

surface. Let Cproj be an orthogonal projection of this curve on the horisontal
plane OXY . (We suppose that axis of cone is vertical line.)

• A curve C is a conic section, ellipse, hyperbola or parabola,

• A curve Cproj is also conic section:
C is an ellpse⇔ Cproj is an ellpse

C is a hyperbola⇔ Cproj is a hyperbola

C is a parabola⇔ C is a parabola
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• The remarkable property of curve Cproj is that the vertex of the conical
surface is a focus of the conic section Cproj.

Remark We will consider in detail intersection of planes with upper-
sheet of conical surface (see Figure (3.42)). If intersection of plane α with
conical surface is hyperbola, then the intersection with upper-sheet will be
only one branch of hyperbola.

Remark We do not consider degenerate case if the origin belongs to the
plane α14.

Proof

We will consider upper half of conical surface, respectively we will consider
intersection of planes with upper-sheet of conical surface. 15:

z

x

y

O

M : z2 = k2(x2 + y2) , z > 0 ,


x = h cosϕ

x = h sinϕ

z = kh

, h > 0 (3.42)

14One can see that in this case the curve C becomes a point or just two lines.
15Thus in the case of hyperbola we will come only to one of branches of hyperbola
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Let α be a plane which does not pass through the origin,
Consider first the simplest case, if a plane α is parallel to the horisontal

plane. {
α : z = H

M : z2 = k2(x2 + y2)
⇔

{
z = H

x2 + y2 = H2

k2

Intersection is circle. Its projection on the plane OXY is the circle also, and
the vertex of the conical surface is the centre of this projected circle. The
centre of the circle is obviously the focus of the cicle.-Circle it is the ellipse
with two coiciding foci.

α

z

x

y

O

z2 = k2(x2 + y2) , k 6= 0 .

Consider now a case if plane α is not parallel to the plan OXY .
In this case ROTATE the space E3 with respect to the axis OZ such that

the plane α after rotation becomes parallel to the axis OY :
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z

x

y

O−L

H

α

equation of the plane α ,
z

H
= 1 +

x

L
. (3.43)

The plane α intersects the axis OZ at the point (0, 0, H), and it intersects
the axis OX at the point (O,O,−L).

(Recall that the plane α is not parallel to the plane OXY ).
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Equation of the plane α is

z

H
= 1 +

x

L
. (3.44)

(Indeed we see that if x = y = 0 then z = H and if y = z = 0 then x = −L.)
Remark The case when a plane α which is not parallel to OXY and passes through

the origin is degenerate case. In this case plane α intersects with conical surface by point,

vertex, or two lines. We do not consider this degenerate case.

Now analyze the intersection of the plane α with conical surface M . We
have:

α×M︸ ︷︷ ︸
intersection of the plane α with conical surface M

:

{
z
H

= 1 + x
L

k2x2 + k2y2 − z2 = 0
⇔

{
z = H

(
1 + x

L

)
k2x2 + k2y2 − z2 = 0

⇔

{
z = H

(
1 + x

L

)
k2x2 + k2y2 −

(
H
(
1 + x

L

))2
= 0

.

Denote this intersection by C. This equation defines locus of the points in
E3, the curve C which is the intersection of conical surface M and the plane
α:

C = α×M :

{
z = H

(
1 + x

L

)
k2x2 + k2y2 −

(
H
(
1 + x

L

))2
= 0

. (3.45)

Denote by Cproj an orthogonal projection of this curve on the horizontal plane
z = 0.

We see for orthogonal projection that

(x, y, z) −a point on the curve C which is a curve in E3

↓
(x, y, 0) −orthogonal projection of this point, a point on the curve Cproj, a curve in E2

Hence

Cproj :

{
z = 0

k2x2 + k2y2 −
(
H
(
1 + x

L

))2
= 0

i.e. the orthogonal projection of the curve C defined by equation (3.45) is
the curve Cproj defined in the plane E2 defined by equation

Cproj : k
2x2 + k2y2 −

(
H
(

1 +
x

L

))2
= 0 , (z = 0) . (3.46)
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Here E2 is the horizontal plane z = 0.
We see that equation (3.45) defines conic section C = α×M (intersection

of plane α with conical surface M) and equation (3.46) defines a curve Cproj,
the curve which is the orthogonal projection of the curve C on the plane
z = 0 (see further Figure (3.54).)

Our plan is following. We first prove that curve Cproj is a conic surface,
i.e. it is an ellipse, or hyperbola or parabola. Then we will prove that the
vertex of the conical surface M is a focus of the conic section Cproj, and
finally we will show that initial curve C is also a conic section.

Now begin the proof.
Let Cproj be a curve in E2 defined by equation(3.46). Denote by

δ = k2 − H2

L2
.

Show that the curve Cproj is an ellipse if δ > 0, it is hyperbola if δ < 0, and
it is parabola if δ = 0.

We have

Cproj : k
2x2+k2y2−

(
H
(

1 +
x

L

))2
= 0⇔

(
k2 − H2

L2

)
︸ ︷︷ ︸

δ

x2−2H2

L
x+k2y2−H2 = 0 .

We come to

Cproj : δx2 − 2H2

L
x+ k2y2 −H2 = 0 , (z = 0) .

First, consider the case δ = 0. In this case Cproj is a parabola:

δ = 0 , Cproj : −2H2

L
x+k2y2−H2 = 0⇔ y2 =

2H2

k2L
x+

H2

k2
=

2H2

k2L

(
x+

L

2

)
=

(3.47)

2L

(
x+

L

2

)
, since δ = k2 − H2

L2 = 0 .

It is in canonical form y2 = 2px′ with p = L and x′ = x + L
2

(see analytical
definition of parabola (3.15)). Thus we have proved that the curve Cproj in
E2 is a parabola if δ = 0 It is easy to see that the focus of this parabola is
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at origin, and the line x = −L is the directrix of this parabola. Indeed for
this parabola we have

√
x2 + y2 =

√
x2 + 2L

(
x+

L

2

)
= |x+ L| .

Now consider the case if δ = k2 − H2

L2 6= 0. In this case:

Cproj : k2x2+k2y2−
(
H
(

1 +
x

L

))2
= 0⇔

(
k2 − H2

L2

)
︸ ︷︷ ︸

δ 6=0

x2−2H2

L
x+k2y2−H2 = 0 .

Hence Cproj : δx
2 − 2H2

L
x+ k2y2 −H2 = 0, and

Cproj : δ

(
x− H2

Lδ

)2

+ k2y2 = H2

(
1 +

H2

δL2

)
=
H2

δ

(
δ +

H2

L2

)
=
H2k2

δ
.

(3.48)
Multiplying this equation on δ

H2k2 we come to

Cproj :
δ2

H2k2

(
x− H2

Lδ

)2

+
δ

H2
y2 = 1 . (3.49)

This makes almost evident that the curve Cproj is an ellipse if δ > 0, and it
is hyperbola if δ < 0. In Cartesian coordinates{

x′ = x− H2

Lδ

y′ = y
(3.50)

. Simple and easy calculations show that an equation (3.49) becomes

x′2

a2
+
y2

b2
= 1 , with a =

Hk

δ
, b = H

√
δ

Indeed in the case if δ > 0 we have from equation (3.48) that

δx′ 2 + k2y′ 2 =
H2k2

δ
⇔
(
x′

a

)2

+

(
y′

b

)2

= 1 ,

where x′, y′ are Cartesian coordinates (3.50), and we denote

a =
Hk

δ
, b =

H√
δ
. (3.51)

96



Note that conditon a ≥ b is fullfilled: Indeed a = H′
√
δ
> H′

k
= b since δ < k2,

(δ > 0). Moreover one can see that origin is one of the foci of this ellipse:

c =
√
a2 − b2 =

√
H2k2

δ2
− H2

δ
=
H2

Lδ
. (3.52)

We have constructed Cartesian coordinates (x′, y′) such that in these co-

ordinates the curve Cproj is defined by canonical equation
(
x′

a

)2
+
(
y′

b

)2
= 1,

with a ≥ b, hence it is an ellipse according analytica definition of ellipse (see
equation (3.13) in subsection 3.3).

We have proved, that the curve Cproj in E2 is an ellipse if δ > 0.

In the case if δ < 0 we do analogous calculations. We have that in this case equation
(3.48) implies that the curve Cproj has the appearance

Cproj : δx′ 2 + k2y′ 2 =
H2k2

δ

in Cartesian coordinates (x′, y′). Hence

x′2

H2k2/δ2
− y2

H2/|δ|
= 1 . (3.53)

(See equation (3.14) in subsection 3.3). The curve Cproj in E2 is a hyperbola.
Moreover one can see that origin is one of the foci of this hyperbola:

c =
√
a2 + b2 =

√
H2k2

δ2
− H2

δ
=
H2

δL
.

We proved, that the curve Cproj in the horizontal plane defined by equa-
tion (3.46) is ellipse or hyperbola or parabola. Moreover we checked that the
origin is one of the foci of this conic section.

Much shorter to do the proof in polar coordinates.
Now prove that a focus of the curve Cproj is the vertex of the cone. Vertex of cone is

the origin x = y = 0 of the horizontal plane E2. We have to prove that for curve defined
by equation (3.46) the origin x = y = 0 is a focus.

Consider on horizontal plane z = 0 polar coordinates (r, ϕ) :

{
x = r cosϕ

y = r sinϕ
. We see

that r =
√
x2 + y2 and x = r cosϕ. We have from equation (3.46):

k
√
x2 + y2 = kr = H

(
1− x

L

)
= H(1− r

L
cosϕ) ,

i.e.

r =
H

k − H
L cosϕ

=
p

1− e cosϕ
, where p =

H

k
and e =

H

L
.
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This equation implies that the curve Cproj is conic section and the origin is a focus of
C (see subsection (3.4)).

If eccentricity parameter e = H
k = 1 it is a parabola: compare with condition δ =

k2 − H2

L2 = 0) in (??); if eccentricity parameter e = H
k < 1 it is ellipse (compare with

condition δ = k2 − H2

L2 > 0) in (3.51) and if e = H
k > 1 it is hyperbola (compare with

condition δ = k2 − H2

L2 < 0) in(3.53). (We suppose that k,H,L > 0,)

We proved that projection of the curve C, the curve Cproj defined by
equation (3.46) on the horizontal plane is ellipse, hyperbola or parabola, and
vertex of the conical surface is a focus of this conic.

To finish the proof of the Theorem we will prove that curve C, defined
by equation (3.45) is itself conic section also. This follows immediately from
considerations presented in Figure (3.54).
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θ

x

y

P1proj

P1

P2proj

P2

P3proj

P3

P4proj

P4

P5proj

P5

x̃

ỹ

(3.54)
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Recall that the curve C is the intersection of the plane α : x
H

+ y
L

= 1 (see
(3.45)) with coniccal surface M .

Let θ be an angle between the plane α and horizontal plane OXY (see
Figure (3.54)), then

tan θ =
H

L
.

Thus if x, y are Cartesian coordinates on the plane OXY then one can choose
on the plane α Cartesian coordinates (x̃, ỹ) such that

x̃ =
x

cos θ
, ỹ = y . (3.55)

Recall that the orthogonal projection Cproj of the curve C is defined in the
horizontal plane z = 0 by the equation

Cproj : k
2x2 + k2y2 −

(
H
(

1− x

L

))2
= 0 , (z = 0) . (3.56)

(see (3.46).)
Hence in Cartesian coordinates (x̃, ỹ) (3.55) in the plane α, the curve C

has the same appearance as a curve Cproj in Cartesian coordinates (x, y):

C : k2x̃2 + k2ỹ2 −
(
H

(
1− x̃

L

))2

= 0 .

(The curve C in the plane α is defined by the same equations that the curve
C in the horisontal plane z = 0, just we have to change x 7→ x̃, y 7→ y.)

This implies that curve C is conic section also, it is an ellipse if Cproj is
an ellipse, it is a hyperbola if Cproj is a hyperbola, it is parabola if Cproj is
an ellipse,

E.g. if Cproj is ellipse, then in Cartesian coordinates

{
x′ = x− H2

Lδ

y′ = y
it

is defined by canonical expression(
x′

a

)2

+

(
y′

b

)2

= 1

(see equations (3.50) and (3.51)). Hence the curve C which is in the plane α
has the same appearance(

x̃′

a

)2

+

(
ỹ′

b

)2

= 1 , with

{
x̃′ = x′

cos θ

ỹ′ = y′
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Resumé

plane α horizontal plane
x
L

+ y
H

= 1 z = 0
C–intersection of plane α Cproj–orthogonal projection of
with conical surface M C on the horizontal plane

Cartesian coordinates x̃, ỹ Cartesian coordinates x, y
x̃ = x

cos θ
, ỹ = y , tanθ = H

L

3.6 Basic elements of Projective Geometry

Projective geometry has very interesting history 16

3.6.1 Projective line RP

Projective line R︸︷︷︸
usual line

= R ∪ {︸︷︷︸∞}point at infinity

In other words
Projective line = usual line completed by a point at infinity.

Model
16just key words:

• Pappus of Alexandria (III-rd century)

• Johannes Kepler (1571—1630)

• Gerard Desargus (1571—1630)

• Projective Geometry in painting
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x

y

y = 1

O

RP1 = {set of lines in R2 passing through the origin} = {l : 0 ∈ l} .

(In our notations RP and RP1 will be the same)

‘Point’ of RP = line in R2 passing through the origin

Every line passing through the origin except the line y = 0 intersects the
line y = 1. Hence all the points of RP except the point which corresponds
to the line y = 1 can be viewed as usual points at the line y = 1.

We call a ‘point’ on RP a finite point (or visible point or proper point) if
it corresponds to the line which intersects the line y = 1, i.e. the line which
is not parallel to the line y = 1.

We call the ‘point’ on RP a point at the infinity (or improper point, or
invisible point) if it corresponds to the line y = 0., i.e. the line which is
parallel to the line y = 1.
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set of lines in R2 set of lines in R2 the line
passing through passing through which goes

the origin = the origin and which ∪ along OX axis
intersect

the line y = 1
all points = finite points of RP, ∪ the point at infinity

of RP (i.e. points of R) {∞}

We have that

line l which a point
intersects the line y = 1 at the line y = 1

line l which
is parall. to the line y = 1 point at infinity
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3.6.2 Homogeneous and affine coordinates on RP

x

y

y = 1
A

Take an arbitrary point

(
a
b

)
on the plane E2 which does not conicide

with the origin (a 6= 0 or b 6= 0). This point defines a line, passing through
the origin

a point

(
a
b

)
defines a line

{
x = at

y = bt
if a 6= 0 or b 6= 0 .

We denote by [a : b] the line passing through the origin and the point

(
a
b

)
.
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Why this notation? Because for every parameter λ such that λ 6= 0, the

point

(
a
b

)
and the point

(
λa
λb

)
define the same line:

[a : b] = [λa : λb] , (λ 6= 0) .

Set of lines passing through the origin = Set of points of RP

Definition One can consider [a : b] as coordinates of ‘points’ on projective
line RP (We suppose that a and b are not simultaneously equal to zero.)
These coordinates are called homogeneous coordinates.
Coordinates [a : b] and [λa : λb], (a 6= 0 or b 6= 0, and λ 6= 0) define the same

‘point’ on RP = line

{
x = at

y = bt
in E2 passing through the origin.

Let A be an arbitrary point on RP with homogeneous coordinates [xA :
yA], A = [xA : yA].

The ‘point’ A on RP1 is represented by the line lA :

{
x = xAt

y = yAt
.

Now suppose that condition

yA 6= 0 . (3.57)

is obeyed.
In this case the line lA intersects the line y = 1 at the point uA = xA

yA
.

In the case if condition (3.57) is not obeyed, i.e. line lA is parallel to the
line y = 1, then the ‘point’ A is not a finite point, it is a point at infinity.

Definition Let A = [xA; yA] be a finite point at the projective line RP,
i.e. yA 6= 0. One can consider affine coordinate uA of this point:

uA =
x

y
(3.58)

If A is not a finite point i.e. A is a point at infinity, then affine coordinate
is not well-defined. With some abuse of language we say sometimes that

uA =∞ , if yA = 0 . (3.59)

[x : y]︸ ︷︷ ︸
homogeneous coordinates

−→ u =
x

y︸ ︷︷ ︸
affine coordinate
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Example

x

y

y = 1

[8 : 4]

[6 : 3]

P

Consider a point P on projective line RP1 with homogeneous coordinate

[4 : 2], P = [4 : 2]. The line lP which represents this point is lP :

{
x = 4t

y = 2t

This line intersects the line y = 1 at the point (2, 1). Homogeneous coor-
dinates of the same but one point may have different appearance. We see
that

[4; 2] = [6 : 3] = [2 : 1] = [−8 : −4] = . . . ,

they all are coordinates of finite (visible) point P .
The affine coordinate of this point is equal to uP = 4

2
= 2.

3.6.3 Projective transformation of RP

Recall transformations of usual R
1) Group of translations

u 7→ u+ a . (3.60)

Identity transformation is the transformation with a = 0, inverse transformation is the
transformation u 7→ u−a and composition of two translations F1 : u 7→ u+a, F2 : u 7→ u+b
is translation:

F1 ◦ F2(u) = F1(u+ b) = u+ b+ a .
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One can enlarge the group of translations considering also dilations (scal-
ings): dilations:

u 7→ ku , (k 6= 0) .

We come to group of translations and dilations:

u 7→ ku+ a , (k 6= 0) . (3.61)

It is so called group of affine transformations of the line R. Identity transforma-
tion is the transformation with k = 1, a = 0, the transformation inverse to transformation
(3.61) is u 7→ 1

ku −
a
k ; composition of two affine transformations F1 : u 7→ κ1u + a1 and

F2 : u 7→ k2u+ a2 is affine transformation:

F1 ◦ F2(u) = F1(k2u+ b2) = k1(k2u+ b2) + b1 = k1k2u+ k1b2 + b1 .

Question How to enlarge this group of transformations of affine line R
to a group of transformations of projective line RP?

Points of RP are lines of E2 passing through the origin. An arbitrary
non-degenerate linear transformation of E2 generates transformation of RP:

107



x

y

y = 1

[x : y]

u

[x′ : y′]

u′

K =

(
α β
γ δ

)
, detK = αδ − βγ 6= 0 ,

a point

(
x
y

)
∈ R2 K−→

(
x′

y′

)
= K

(
x
y

)
=

(
α β
γ δ

)(
x
y

)
=

(
αx+ βy
γx+ δy

)
Transformation of lines passing thorugh the origin is transformation of points of RP:

point [x : y] of RP
F=FK−→ point [x′ : y′] = F ([x : y]) = [αx+ βy : γx+ δy] of RP .

If we consider instead homogeneous coordinates, affine coordinate then this
relation will have the following appearance:

point u = x
y

of RP transforms to the point u′ = x′

y′
of RP .
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We have that

u′ =
x′

y′
=
αx+ βy

γx+ δy
=
αx
y

+ β

γ x
y

+ δ
=
αu+ β

γu+ δ
(3.62)

We see that an arbitrary non-degenerate matrix K =

(
α β
γ δ

)
, generates

projective transformation of RP

[x′ : y′] = [αx+ βy : γx+ δy] (in homogeneous coordinates)

u′ = αu+β
γu+δ

(in affine coordinate)

The group of these transformations is called the group of projective trans-
formaions of RP1.

Example Consider projective transformation F of RP generated by ma-

trix K =

(
3 2
5 7

)
. We have

homogeneous coordinates [x : y]
F→ [x′, y′] = [3x+ 2y : 5x+ 7y]

affine coordinates u
F→ u′ = 3u+2

5u+7

(3.63)
E.g. point A with affine coordinate uA = 3 will transform to the point A′

with affine coordinate

uA′ =
3 · uA + 2

5 · uA + 7
=

3 · 3 + 2

5 · 3 + 7
=

11

22
=

1

2
.

Projective transformations, and a point at infinity.
Apply projective transformation considered in example above to the point

at infinity. Let A be a point on RP at infinity:

[xA; yA] = [1 : 0] , uA =∞

(Stricktly speaking affine coordinate of this point is not defined, but with
some abuse of language we will write uA =∞.)

Under projective transformation (3.63) this point transforms to the point
A′ with coordinates

[x′A : y′A] = [3xA + 2yA : 5xA + 7yA] = [3 : 5] , i.e. uA′ =
xA′

yA′
=

3

5
,
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or with some abuse of language one can say that

uA′ =
3uA + 2

5uA + 7
=

3 · ∞+ 2

5 · ∞+ 7
=

3

5
.

Remark The exact meaning of this expression is the following

uA′ = lim
uA→∞

3uA + 3

5uA + 7
=

3

5
. (3.64)

We see that projective transformation(3.63) transforms the point at in-
finity to the finite point.

Now apply projective transformation(3.63) to a finite point B with co-
ordinates [xB : yB] = [7 : −5]. (affine coordinate uB = −7

5
). One can see

that under this transformation, a finite point is transformed to the point at
infinity:

F ([7 : −5]) = 3 · 7 + 2 · (−5) : 5 · 7 + 7 · (−5) = [11 : 0] =∞ ,

or in affine coordinate:

F (uB) =
3uB + 2

5uB + 7
=

3 ·
(−7

5

)
+ 2

5 ·
(−7

5

)
+ 7

=
−11

0
=∞ .

Consider this phenomenon in general for arbitrary projective transforma-
tion

Proposition Let F be an arbitrary projective transformation of RP

generated by matrix K =

(
α β
γ δ

)
:

F ([x : y]) = [αx+ βy : γx+ δy] . (detK = αδ − βγ 6= 0) , (3.65)

I. Suppose condition
γ 6= 0 (3.66)

is obeyed.
Then the projective transformation F transforms the point at infinity to

the finite point A = [α : γ] (affine coordinate uA = α
γ

). This transformation

transforms the finite point B = [δ : −γ] (affine coordinate uB = − δ
γ

) to the
point at infinity.
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II. In the case if condition (3.66) is not obeyed, i.e. γ = 0, then point
at infinity remains fixed, and projective transformation F is just an affine
transformation.

iProof. The proof is reduced to straightforward checking:
I. Proof of the first part of Proposition:

F (∞) = F ([1 : 0]) = [α · 1 + β · 0 : γ · 1 + δ · r] = [α : γ] = A , (3.67)

and

F (B) = F ([δ : −γ]) = [αδ + β(−γ) : γδ + δ(−γ)] = [1 : 0] =∞ . (3.68)

These transformations may be rewritten in affine coordinate: uA = ∞ and
uB = − δ

γ
, hence

F (∞) =
α · ∞+ β

γ · ∞+ δ
=
α

γ
= uA , and F (uB) =

αuB + β

γuB + δ
=
−αδ + βγ

0
=∞

II. Prove now the second part of proposition. In the case γ = 0 then
F (∞) = F ([1 : 0]) = [α : 0] =∞, i.e. ∞ remains fixed , and

F maps every finite point u to F (u) =
αu+ β

δ
=
α

δ
u+

β

δ
. (3.69)

This is an affine transformation u 7→ ku + a with scaling coefficient k = α
δ

and translation a = β
δ

(see (3.61)). (Parameter δ 6= 0 since in the case if
γ = 0, detK = αδ 6= 0.)

Remark One can say that group of affine transformations is a subgroup of a group
of projective trasnformations.

Projective transformations as well as affine transformations form a finite-dimensional
group 17.

Composition of projective transformations is a projective, and every projective trans-
formation F = FK is a bijective transformation such that trnasformation F ′ = FK−1 is

its inverse, here K =

(
α β
γ δ

)
is a matrix defining projective transformation, and K−1 is

its inverse.

17Group of affine transformations of R is 2-dimensional Lie group, a group of projec-
tive transformations of RP is three dimensional Lie group. One can show that this is
a finite-dimensional subgroup of highest dimension in the infinite-dimensional group of
diffeomorphisms of RP.
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3.6.4 Projective transformations and cross-ratio of four points on
RP

Projective transformations do not preserve length, they also do not preserve
ratio. What they preserve?

To see it return first to usual line R.
Consider two arbitrary points points A and B on the usual line R.
It is evident that for arbitrary translation of R u 7→ u + a (see equation

(3.60)) the difference
(A,B) = uA − uB ,

is an invariant of group of translations. : if uA 7→ uA′ = uA + c and uB 7→
uB′ = uB + c then (A,B) = (A′, B′).

(uA, uB as usual are coordinates of points A, B respectively.)
Now enlarge the group of translations and consider the group of affine

transformations (see equation (3.61)). Consider arbitrary three distinct points
(A,B,C) on the line and consider the ratio of differences:

(A,B,C) =
(A,C)

(B,C)
=
uA − uC
uB − uC

(3.70)

One can see that (A,B,C) is an invariant of group of affine transformations:
if uA 7→ uA′ = kuA + a, uB 7→ uB′ = kuB + c and uC 7→ uC′ = kuC + c then
(A,B,C) = (A′, B′, C ′):

(A′, B′, C ′) =
uA′ − uC′

uB′ − uC′
=

(kuA + a)− (kuC + a)

(kuB + a)− (kuC + a)
=

kuA − kuC
kuB − kuC

=
uA − uC
uB − uC

= (A,B,C) .

What further?

Theorem-Definition Let A,B,C and D be four distinct points on pro-
jective line RP. Cross-ratio (A,B,C,D) of four points A,B,C,D on the
projective line RP is equal to

(A,B,C,D) = (A,B,C) : (A,B,D) =
uA − uC
uB − uC

:
uA − uD
uB − uD

=

(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
, (3.71)
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where uA, uB, uC , uD are affine coordinates of points A,B,C,D.
Cross-ratio (A,B,C,D) is the invariant of projective transformations.
Can we still use formula (3.71) if one of the points is at infinity? One can

see that formula (3.71) works in this case also.
E.g. consider a case if D = [1 : 0] = ∞, the affine coordinate uD = ∞.

To come to the answer consider limit in equation (3.71):

(A,B,C,∞) = lim
uD→∞

(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
= lim

uD→∞

(
uB − uD
uA − uD

)
uA − uC
uB − uC

=
uA − uC
uB − uC

= (A,B,C) . (3.72)

One can say with some abuse of notations that using formula (3.71) we come
to

(A,B,C,∞) =
(uA − uC)(uB −∞)

(uA −∞)(uB − uC)
=
uB −∞
uA −∞

uA − uC
uB − uC

=
uA − uC
uB − uC

= (A,B,C) .

(3.73)
(Compare with remark (3.64).)

Precise considerations which lead to calculation of cross-ratio in the case if one of the
points is at infinity are following:

Rewrite first formula(3.71) in homogeneous coordinates:

(A,B,C,D) =
(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
=

(
xA

yA
− xC

yC

)(
xB

yB
− xD

yD

)
(
xA

yA
− xD

yD

)(
xB

yB
− xC

yC

) =

(xAyC − xCyA(xByD − xDyB)

(xAyD − xDyA)(xByC − xCyB)
=

det

(
xA xC
yA yC

)
det

(
xB xD
yB yD

)
det

(
xA xD
yA yD

)
det

(
xB xC
yB yC

) (3.74)

This formula defines cross-ratio for all points of projective plane including a point at
infinity. Consider a case if a point D is at infinity: D = [1 : 0] = ∞, then according to
(3.74)

(A,B,C,∞) =

det

(
xA xC
yA yC

)
det

(
xB 1
yB 0

)
det

(
xA 1
yA 0

)
det

(
xB xC
yB yC

) =

−yB det

(
xA xC
yA yC

)
−yA det

(
xB xC
yB yC

) =

yByAxC − yByCxA
yAyBxC − yAyCxB

=

xC

yC
− xA

yA
xC

yC
− xB

yB

=
uA − uC
uB − uC
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We come to answer (3.72).
Finally prove the Theorem abount invariance of cross-ration.
Cross-ratio is ratio of two ratios (see equation (3.71) and ratio is invariant of affine

transformations. On the other hand an arbitrary projective transformation is affine trans-
formation, or it is a composition of affine transformation and special projective transfor-
mation F0 : u′ = 1

u ). Hence it suffices to check that cross-ratio is invariant of this special
transformation, and this can be checked by simple calculation:

(A′, B′, C ′, D′) =
(u′A − u′C)(u′B − u′D)

(u′A − u′D)(u′B − u′C)
=

(
1
uA
− 1

uC

)(
1
uB
− 1

uD

)
(

1
uA
− 1

uD

)(
1
uB
− 1

uC

) =
(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
= (A,B,C,D) .

What are the relations between cross-ratio of four points if we rearrange
them? In other words suppose that for four points A,B,C,D on the pro-
jective plane RP1, we have that (A,B,C,D) = λ. What is the value of
cross-ratio (B,A,C,D), (A,B,D,C), (B,A,D,C), (A,C,B,D) or for any
arbitrary permutation of points A,B,C,D?

One can easy to see that

(A,B,C,D) = λ⇒ (B,A,C,D) = (A,B,D,C) =
1

λ
, (3.75)

, and

(A,B,C,D) = λ⇒ (A,C,B,D) = 1− (A,B,C,D) = 1− λ , (3.76)

. These relations can be checked by straightforward calculations:

(B,A,C,D) =
(uB − uC)(uA − uD)

(uB − uD)(uA − uC)
=

1
(uA−uC)(uB−uD)
(uA−uD)(uB−uC)

=
1

(A,B,C,D)
,

(A,B,D,C) =
(uA − uD)(uB − uC)

(uA − uC)(uB − uD)
=

1

(A,B,C,D)
,

and

(A,C,B,D)+(A,B,C,D) =
(uA − uB)(uC − uD)

(uA − uD)(uC − uB)
+

(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
= 1 .

These relations define the cross ratio of arbitrary permutation of these points. E.g. due
to (3.75) and (3.76),

(D,A,B,C) =
1

(A,D,B,C)
=

1

1− (A,B,D,C)
=

1

1− 1
(A,B,C,D)

.
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Finally introduce the notion of so called harmonic conjugate points.
Definition Let A,B,C,D be four points on projective line. We say that

a point D is harmonic conjugate to the points A,B,C if the cross ratio
(A,B,C,D) is equal to −1.

(A,B,C,D) = −1 , (3.77)

Harmonic conjugate points possess many beatiful properties. Unfortu-
nately we have not time to do it now.

Examples of calculations of the cross-ratio see in Homework9.

3.6.5 Projective plane RP2

Recall that projective line RP = set of lines in R2 passing trough the origin.
Definition Projective plane is a set of lines in R3 passing through the

origin:
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plane π : z = 1 .

RP2 = {l : l ∈ R3}

“A point” in RP2” = line in R3 passing through the origin
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a point A−−− line lA

a point B −−− line lB

a point C −−− line lC

However there are many ‘points’ which are represented by lines which are
parallel to the plane π

a point A on the plane π −−− line lA which intersects this plane

a point at infinity−−− line which is parallel to the plane π

3.6.6 Homogeneous and affine coordinates in RP2

Now we define homogeneous and affine coordinates of points in projective
plane, in the way similar as we defined homogeneous and affine coordinates
on projective line RP.
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A point A = [xA : yA : zA]
in RP2

([xA : yA : zA] =
= [λxA : λyA : λzA])

[x : y : z]−
homogeneous

coordinates
of a point in RP2

line l which passes
through the origin

and a point rA

l :


x = txA

y = tyA

z = tzA
rA = (xA, yA, zA)

r = trA
−∞ < t <∞

Example

A point A = [2 : 3 : 5]
in RP2

([2 : 3 : 5] =
= [4 : 6 : 10] = [6 : 9 : 15)[x : y : z]−

homogeneous
coordinates
of the point
A in RP2

line l which passes
through the origin

and a point rA

l :


x = 2t

y = 6t

z = 5t

rA = (2, 3, 5)
r = trA

−∞ < t <∞

In the same way as for projective line finite points are points which are
represented by lines which intersect the plane π : z = 1, i.e. lines which do
not belong to the plane OXY . The homogeneous coordinates of finite points
[x : y : z] obey condition

z 6= 0 . (3.78)

Consider an arbitrary point A = [a : b : c], such that this condition is obeyed,
c 6= 0. Then we have that for arbitrary λ 6= 0

[a : b : c] =

[
a

λ
:
b

λ
:
c

λ

]
⇒ [a : b : c] =

[
a

c
:
b

c
: 1

]
.

This relation says that these three points of R3, the point (a, b, c), the point(
a
λ
, b
λ
, c
λ

)
and the point

(
a
c
, b
c
, 1
)

belong to the line lA; this line represents the
‘point’ A = [a : b : c] of the projective plane RP2. The point (usual point of
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R3)
(
a
c
, b
c
, 1
)

belongs to the plane π : z = 0, and a
c
, b
c

are x, y-coordinates
of the intersection of the line lA with the plane π.

Definition Let A = [x : y : z] be an arbitrary finite point of the projective
plane R2, (z 6= 0). Affine coordinates uA and vA of this point are:

uA =
x

z
, vA =

y

z
. (3.79)

(Compare with affine coordinate for projective line (see (3.58)).)
What about points at infinity, i.e. points [x : y : z] such that z = 0? One

can see that these ‘points’ on the projective plane are represented by lines
in R3 which belong to the plane OXY . These lines pass through the origin
and are parallel to the plane π.

In the case of projective line RP we had just one point at infinity. Now
on projective plane RP2 we have the infinite set of ‘points’ at infinity = the
set of lines in the plane OXY passing through the origin. On the other hand
the set of lines in the plane OXY passing through the origin is nothing but
projective line. In its turn we know that projective line is a line completed
by a point at infinity.

We come to the following

Matrjoshka

RP2 = R2︸︷︷︸
finite points on RP2

∪ RP︸︷︷︸
points at infinity

(3.80)

The projective line of points at infinity is RP:(
points at infinity
(invisible points)

)
=

(
lines in OXY

passing through the origin

)
= RP

We come to

RP2 = R2 ∪RP = R2 ∪ (R ∪∞) . (3.81)

One can define n-dimensional projective space RPn as a space of lines in Rn+1 passing
through the origin. We come to “matrjoshka” with n 1dolls’. E.g.

RP3 = R3 ∪RP2 = R3 ∪
(
R2 ∪RP

)
= R3 ∪

(
R2 ∪ (R ∪ {∞})

)
.
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3.6.7 Lines in RP2 and collinear points in RP2

We know that the points on the projective plane RP2 are the lines in R3

which pass through the origin. What about ‘lines’ on the projective plane
RP2?

Definition ‘Lines’ in projective plane RP2 are the planes in R3 which
pass through the origin.

Pick two points A and B on the projective plane RP2. Let these points
be represented by lines lA, lB in R3:

Points A,B
in RP2 − lines lA, lB

in R3

Draw the ‘line’ in RP2 which passes through ‘points’ A,B

Line AB in RP2

passing through ‘points’
A and B

plane in R3

passing through lines
lA, lB

The ‘points’ of the ‘line’ AB in RP2 are represented by lines in the plane
α which pass through origin. (see Figure (3.82).)
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(3.82)

Definition We say that three points A,B and C on the projective plane
RP2 are collinear if these points belong to the same line, or in other words if a
point C belongs to the line passsing through the points A and B, C ∈ (AB).

Derive the condition of collinearity of three points.
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rC′

l
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l
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plane z = 1

Points A,C,B are collinear , Points A,C ′, B are not collinear .
(3.83)

As usual in the left column we will write the statement about points and
lines in RP2 and in the right column the representation of these objects in
R3.
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points in RP2 lines in R3

passing through the origin

A ∈ RP2 0 ∈ lA ∈ R3

[xA : yA : zA]


x = txA

y = tyA

z = tzA

, r = trA

B ∈ RP2 0 ∈ lB ∈ R3

[xB : yB : zB]


x = txB

y = tyB

z = tzB

, r = trB

C ∈ RP2 0 ∈ lC ∈ R3

[xC : yC : zC ]


x = txC

y = tyC

z = tzC

, r = trC

A parameter t in these equations runs from −∞ to ∞.
The vectors rA = (xA, yA, zA), rB = (xB, yB, zB) and rC = (xC , yC , zC)

which span respectively the lines lA, lB and lC are defined up to a non-zero
multiplier (e.g. the vector rA and the vector 3rA span the same line lA).

We see that point C belongs to the line AB if and only if vectors rA, rB,
rC are linearly dependant, i.e.

γrA + µrB + νrC = 0 , whereλ 6= 0 , orµ 6= 0 , or ν 6= 0 .

i.e.

γ

xAyA
zA

+µ

xByB
zB

+ν

xCyC
zC

 = 0 , whereλ 6= 0 , orµ 6= 0 , or ν 6= 0 . (3.84)

For example consider points A,B and C which are on the same line in RP2

(see Figure (3.83)). In this case vector rC is the linear combination of vectors
rA and rB. This means that these three vectors, vectors rA, rB, rC span the
plane in R3 passing through the origin. — This is equivalent to the fact
that three ‘points’ A,B,C on the projective plane are on the one line (are
collinear).
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On the other consider the point C ′ in RP2 (see Figure (3.83)). In this
case vector rC′ is linearly independent on the vectors rA and rB. In this
case three vectors, vectors rA, rB, rC do not span the plane in R3 (they span
all R3!).— This is equivalent to the fact that three ‘points’ A,B,C ′ on the
projective plane are not collinear.

Recall that for arbitrary three vectors in R3 one can consider the matrix
such that components of these vectors are columns (or rows) of this matrix.
E.g. for vectors rA = (xA, yA, zA), rB = (xB, yA, zA), rC = (xC , yC , zC), one
can consider the matrix

TABC =

xA xB xC
yA yB yC
zA zB zC

 ,

and these vectors are linearly dependent if and only if the matrix is degenerate
⇔ non-invertible ⇔ detTABC 6= 0. Thus condition (3.84) implies

Proposition
Let A,B,C three points on the projective line with homogeneous coordi-

nates A = [xA : yA : zA],
B = [xB : yB : zB],
C = [xC : yC : zC ]. These three points are collinear (belong to the same

line) if and only if the matrix

TABC =

xA xB xC
yA yB yC
zA zB zC

 (3.85)

is degenerate ⇔ detTABC = 0 .
Remark We know that every point in projective plane may have different

homogeneous coordiantes:

[x : y : z] = [ax : ay : az] , (a 6= 0) .

Changing homogeneous coordinates of points do not change condition of de-
generacy of matrix. This is in accordance with the fact that condition of
degeneracy of matrix TABC (detTABC = 0) does not change if we multiply
columns on arbitrary non-zero numbers: vectors rA, rB, rC are linearly depen-
dant if and only if vectors arA,brB, crC are linearly dependant (a, b, c 6= 0).

Suppose now points A,B,C are finite points, i.e. zA 6= 0, zB 6= 0 and
zC 6= 0. In this case one can consider not only homogeneous coordinates but
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also affine coordinates (see equation (3.79)) of these points

A = [xA : yA : zA]− affine coord. uA = xA
zA
, vA = yA

zA

B = [xB : yB : zB]− affine coord. uB = xB
zB
, vB = yB

zB

C = [xC : yC : zC ]− affine coord. uC = xC
zC
, vA = yC

zC

(3.86)

Proposition above states that

points A,B,C are collinear⇔ TABC is degenerate matrix .

Condition of degeneracy is not changed under the multiplication of columns
on non-zero numbers: Multiplying the first column on 1

zA
, the second column

on 1
zB

, and the third column on 1
zC

we come to

TABC is degenerate .⇔ the matrix

xA
zA

xB
zB

xC
zC

yA
zA

yB
zB

zC
zC

1 1 1

 is degenerate.

Thus using (3.86) we come to the following fact:

finite points A,B,C are collinear⇔ matrix

uA uB uC
vA vB vC
1 1 1

 is degenerate.

The condition of degeneracy of matrix in the right hand side of this equation
means that its rows are linearly dependant18, i.e. there exist three numbers
p, q, r such that not all these numbers are equal to zero, and

puA + qvA + r = puB + qvB + r = puC + qvC + r = 0 .

This means that these three points are on the one line:

pu+ qv + r = 0 . (3.87)

We see that for finite points condition of collinearity becomes almost
tautological. Of course we can check the collinearity of finite points, finiding

18degeneracy ⇔ colummns are linearly dependant ⇔ rows are linearly dependant
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the line (3.87) such all these points belong to this line, or we can use just
Proposition 3.6.7.

Consider example

Example Consider three points
A = [1 : −1 : 1],
B = [10 : −15 : 5],
C =

[
1 : −9

5
: 1
5

]
.

Check are these points collinear or no.
Since these points are finite then the condition of collinearity may be

checked or using Proposition3.6.7 or using criterion that they all belong to
the same line (see equation (3.87)).

First way: using Proposition. Consider the matrix TABC =

 1 10 1
−1 −15 −9

5

1 5 1
5


One can see straightforwardly that this matrix is degenerate. To facilitate
considerations we may perform column operations, and multiply columns on
suitable non-zero numbers: mulitply second column on 1

5
, and third on 5 19.

We come to the matrix T ′ABC =

 1 2 5
−1 −3 −9
1 1 1

.

The matrix T ′ABC is obviously degenerate matrix, since its determinant
vanishes. (It is much easier to see its degeneracy that the degeneracy of the
matrix TABC .)

II-nd way: using affine coordinates. Consider affine coordinates
of the points A,B,C:

uA = xA
yA

= 1, vA = yA
zA

= −1,
uB = xB

yB
= 2, vB = yB

zB
= −3,

uC = xC
yC

= 5, vC = yC
zC

= −9,
We see that(

uA
vA

)
=

(
1
−1

)
,

(
uB
vB

)
=

(
2
−3

)
,

(
uC
vC

)
=

(
5
−9

)
. (3.88)

All these points belong to the one line

2u+ v = 1 .

19sure degeneracy condition does not depend on the choice of these numbers, “suitable”
means to make calculations easier
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Of course the second way is much shorter, but sometimes it is not easy
to guess an equation of the line (3.87).

(See other examples in Homework 9)

3.6.8 Cross-ratio of four collinear points in RP2

We know that for four points on projective line their cross-ratio (3.71) is
invariant of projective transfromations:

(A,B,C,D) =
(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
(3.89)

is an invariant of projective transformations: If u′ = αu+β
γu+δ

is an arbitrary

projective transformation (αδ − βγ 6= 0) (see (3.62)) then

(A,B,C,D) =
(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
=

= (A′, B′, C ′, D′) =
(uA′ − uC′)(uB′ − uD′)

(uA′ − uD′)(uB′ − uC′)
, (3.90)

where

uA′ =
αuA + β

γuA + δ
, uB′ =

αuB + β

γuB + δ
, uC′ =

αuC + β

γuC + δ
, uD′ =

αuD + β

γuD + δ
.

Let A,B,C,D be four points on the projective plane RP2, and these
points are on the one line. Since cross-ratio of four points is an invariant
of projective transformations we can define it for arbitrary projective line,
choosing an arbitrary affine coordinate.

Definition Let A,B,C,D be four points on RP2 which are collinear (see
Figure (3.91)). Let u be an arbitrary affine coordinate on the plane RP2.
Then one can consider the cross-ratio (3.89). It does not depend on a choice
of projective coordinate.
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four collinear points

(A,B,C,D) =
(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
, (3.91)

where u an arbitrary affine coordinate.
Remark Cross-ratio of four points on RP2 is well-defined only if these

points are collinear. It is only in this case that cross-ratio does not depend on
the choice of affine coordinate. We will assume by default that the cross-ratio
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is defined only for the collinear points.
Remark We consider here only the case if all these points are finite

points, i.e. they have affine coordinate 20.
Remark Choosing an arbitrary affine coordinate be aware that this co-

ordinate takes different values at these points. (See for detail solutions of
exercises 3 and 4 in Homeworks)

Example
Consider four points A,B,C and D on projective line such that
A = [8 : 20 : 4]
B = [8 : 18 : 2]
C = [6 : 14 : 2]
D = [t : 2t+ 1 : 1] where t is an arbitrary parameter.
First we have to check are these four points collinear, or no. Only in

the case if these four points are collinear it is meaningfull to calculate their
cross-ratio.

Consider the affine coordinates u = x
z
, v = y

z
of these points (see equa-

tion(3.87) or equation(3.88) in the Example above):(
uA
vA

)
=

(
2
5

)
,

(
uB
vB

)
=

(
4
9

)
,

(
uC
vC

)
=

(
3
7

)
,

(
uD
vD

)
=

(
t

2t+ 1

)
.

(3.92)
We see that all these points belong to the same line v = 2u+ 1.

One can check the condition of collinearity in other way also using Proposition3.6.7.
Show first that three points A,B and C are collinear. Consider matrix

TABC =

 8 8 6
20 18 14
4 2 2

. It is column equivalent to the matrix T ′ABC =2 4 3
5 9 7
1 2 1

.

One can see that the matrix T ′ABC is degenerate: detT ′ABC = 0, hence the
matrix TABC is also degenerate. Hence the points A,B,C are collinear. In
the same way one can show that three points B,C,D are also collinear since

the matrix TBCD =

 8 6 t
18 14 2t+ 1
2 2 1

 is also degenerate. We see that points

20All considerations can be easily performed for arbitrary points.
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A,B,C are collinear and points B,C,D are also collinear. Hence points all
four points A,B,C,D are collinear.

Remark Sure the first way of checking the collinearity of these four points
is much shorter, than the second.

Niw since we also proved that these four points are collinear, calculate
their cross-ratio.

Take coordinate u of these points (see equation (3.92)). We come to

(A,B,C,D) =
(uA − uC)(uB − uD)

(uA − uD)(uB − uC)
=

(2− 3)(4− t)
(2− t)(4− 3)

=
t− 4

2− t .

One can use another coordinate,

(A,B,C,D) =
(vA − vC)(vB − vD)

(vA − vD)(vB − vC)
=

(5− 7)(9− (2t+ 1))

(5− (2t+ 1))(9− 7)
=

t− 4

2− t .
One can use for calculation of the cross-ration arbitrary affine coordinat w = au+ bv + c
which separates these points.

It is interesting to study how cross-ratio behaves if t → ∞. In accordance with
equation (3.73) we come to

(A,B,C,∞) = lim
t→∞

(A,B,C,Dt) = (A,B,C) .

See other examples in Homework 9

3.7 Conic sections and their projective transformations

The content of this subsection is important for general knowledge. This is not
examinable except the analysis of curve x2 + y2 + 2pxy = 1 in equation(3.97)
(see from equations (3.96) till equation (3.100). )

In a same way as for projective line RP one can define projective transfor-
mations of the projective plane RP2: Let K be an arbitrary non-degenerate
3× 3 matrix

K =

a b c
d e f
g h k

 , detK 6= 0 .

This matrix induces linear transformation of R3 on R3:

R3 3

xy
z

 7→
x′y′
z′

 =

a b c
d e f
g h k

xy
z

 =

 ax+ by + cz
dx+ ey + fzy
gx+ hy + kz

 . (3.93)
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The transformation which transforms lines passing though origin to the lines
passing through origin. Thus we come to transformation FK of projective
plane induced by linear transformation of R3:

FK [x : y : z] 7→ [x′ : y′ : z′] = [ax+by+cz : dx+ey+fz : gx+hy+kz] . (3.94)

Write down this transformation in affine coordinates. We come to

u′ =
x′

z′
=
ax+ by + cz

gx+ hy + kz
=
axz + byz + c

g xz + hyz + k
=
au+ bv + c

gu+ hv + k
,

v′ =
y′

z′
=
dx+ ey + fz

gx+ hy + kz
=
dxz + eyz + f

g xz + hyz + k
=
du+ ev + f

gu+ hv + k
.

The projective transformations have an appearance of fractional-linear transforma-
tions in affine coordinates.

Example 1

Let K =

0 0 1
d 1 0
1 0 0

.

This matrix defines transformation

FK([x : y : z]) = [z : y : x] ,

i.e. in affine coordinates F : [u : v : 1] 7→ [1 : u : v] =
[
1
v : uv : 1

]
.

Another example

Example 2
Consider the transformation: {

1
u′ −

1
u = 1

f
v′

u′ = v
u

(3.95)

It is standard formula in optic. We have fractional linear transformation:{
u′ = uf

f+u

v′ = u′

u v = fv
f+u

Comparing with transformation above we see that this transformation21 is induced by
matrix

K =

f 0 0
0 f 0
1 0 f


21One can see that transformation (3.95) can be easily recognised as the transformation

of geometrical optics.
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Usual affine transforamtions of affine space are special case of projective transforma-

tions: the matrix K =

a b c
d e f
0 0 1

 induces affine transformation

{
u′ = au+ bv + c

v′ = du+ ev + f
.

Now return to conic sections.

Recall that affine transformation, dilation

{
x = au

y = av
transforms

an ellipse
x2

a2
+
y2

b2
= 1 , to the circle , u2 + v2 = 1 . (3.96)

One can consider the following little bit more sophisticated example: Let
C be a curve in E2 defined by equation

x2 + y2 + 2pxy + x+ y = 1 , (3.97)

where p is a parameter.
Consider new affine coordinates u, v such that{

x = u+ v

y = u− v
, i.e.

{
u = x+y

2

v = x−y
2

This is the affine transformation, it is not transformations from Cartesian
coordinates to another Cartesian coordiantes (i.e. translations and orthog-
onal transformations), We see that in new coordinates u, v curve (3.97) has
appearance

(u+v)2+(u−v)2+2p(u+v)(u−v)+2u = 1⇔ 2(1+p)u2+2(1−p)v2+2u = 1 .

Now analyse this curve just for two values22 of parameter p, p1 = −1 and
p2 = −1

2
.

If p = p1 = −1 then this curve becomes

4v2 + 2u = 1 . (3.98)

This is a parabola.

22One can see that this curve is hyperbola for |p| > 1, it is an ellipse for |p| < 1, for
p = −1 it is parabola and for p = 1 is the union of two parallel lines: 2u(u+ 2)− 1 = 0⇒
u1,2 = −1±

√
5

4 .
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If p = p2 = −1
2

then this curve becomes

u2 + 3v2 + 2u = 1 . (3.99)

This is an ellipse. Indeed u2+3v2+2u = 1⇔ (u+1)2+3v2 = 2↔ u′2

a2 +v′2

b2
= 1,

where {
u′ = u− 1

v′ = v
, and a =

√
2, b =

√
2

3
. (3.100)

We see that changing values of parameters p we come from parabola (3.98)
to ellipse (3.99). However these two curves cannot be transformed to each
other by any affine transformation. Does there exist projective transforma-
tion which transforms parabola (3.98) to an ellipse (3.99)?

To answer this question again return to the simple example (3.96). Consider the circle
u2 + v2 = 1 in (3.96) in projective plane RP2.

Let u, v be affine coordinates, and [x : y : z] be homogeneous coordinates on RP2:

u =
x

z
, v =

y

z

Then the circle
u2 + v2 = 1

will have in homogeneous coordinates the following appearance:(x
z

)2
+
(y
z

)2
= 1⇔ x2 + y2 = z2 . (3.101)

(We recall that
[
x
z : yz : 1

]
= [x : y : z].)

onsider projective transformations

F1 : [x : y : z] 7→ [z : y : x] , F2 7→ [x : y + z : y − z] . (3.102)

It is easy to see that the projective transformation F1 transforms the circle 3.101 to
hyperbola, and projective transfromation F2 transforms the circle (3.101):

F1 : x2 + y2 − z2 = 0 7→ z2 + y2 − x2 = 0⇔
(x
z

)2
−
(y
z

)2
= 1⇔ u2 − v2 = 1 ,

and

F2 : x2+y2−z2 = 0 7→ x2+(y+z)2−(y−z)2 = 0⇔ x2+4yz = 0
(x
z

)2
+4
(y
z

)2
= 0⇔ u2+4v = 0 ,

Ellipse and circle are affine equivalent, but ellipse, parabola, and hyperbola are not affine

equivalent, but they are projective equivalen.

134


