Homework 0

In this Homework we will just recall some necessary background material from linear algebra

1 Consider sets

 $V = \{x: ax^2 + bx + c, a, b, c, x \in \mathbf{R}\}, \qquad T = \{x: x^2 + px + q, p, q, x \in \mathbf{R}\},\$

a) Explain why a set V is a vector space, and a set T is not a vector space (with respect to natural operations of multiplication and addition of polynomials)

b) Explain why polynomials $1, x, x^2$ are linearly independent in V.

c) Calculate dimension of V.

2 Show that the vectors $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ in vector space V are linearly dependent if at least one of these vectors is equal to zero.

 ${\bf 3}$ Show that arbitrary three vectors in ${\bf R}^2$ are linearly dependent. Consider the following vectors in ${\bf R}^2$

$$\mathbf{e}_1 = (1,0), \qquad \mathbf{e}_2 = (0,1), \qquad \mathbf{a} = (2,3), \qquad \mathbf{b} = (3,0),$$
(1)

Show that $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis in \mathbf{R}^2 .

Show that $\{\mathbf{a}, \mathbf{b}\}$ is a basis in \mathbf{R}^2 .

Show that $\{\mathbf{e}_1, \mathbf{b}\}$ is not a basis in \mathbf{R}^2 .

4 a) Show that $\langle \mathbf{x}, \mathbf{y} \rangle = x^1 y^1 + x^2 y^2$ does not define a scalar product in \mathbf{R}^3 .

b) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^1 + 3x^2 y^2 + 5x^3 y^3$ defines a scalar product in \mathbf{R}^3 .

c) Show that $(\mathbf{x}, \mathbf{y}) = x^1 y^2 + x^2 y^1 + x^3 y^3$ does not define a scalar product in \mathbf{R}^3 .

f[†]) Find necessary and sufficient conditions for entries a, b, c of symmetrical matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ such that the formula

$$(\mathbf{x}, \mathbf{y}) = (x^1, x^2) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \end{pmatrix} = ax^1y^1 + b(x^1y^2 + x^2y^1) + cx^2y^2$$

defines a scalar product in \mathbf{R}^2 .

5 Let \mathbf{e}, \mathbf{f} and \mathbf{g} be three vectors in 3-dimensional Euclidean space \mathbf{E}^3 such that all these vectors have unit length and they are pairwise orthogonal.

Show explicitly that the ordered set of these vectors $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is a basis.

6 Let **a**, **b** and **c** be three vectors in 3-dimensional Euclidean space \mathbf{E}^3 such that vectors **a** and **b** have unit length, and are orthogonal to each other and vector **c** has length $\sqrt{3}$ and it forms an angle $\varphi = \arccos \frac{1}{\sqrt{3}}$ with vectors **a** and **b**.

Show that the ordered set $\{\mathbf{a}, \mathbf{b}, \mathbf{c} - \mathbf{a} - \mathbf{b}\}$ of vectors is an orthonormal basis in \mathbf{E}^3 .

7 Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be an orthonormal basis of Euclidean space \mathbf{E}^3 . Consider the ordered set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ which is expressed via basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ in the following way:

- a) $\mathbf{e}'_1 = \mathbf{e}_2, \, \mathbf{e}'_2 = \mathbf{e}_1, \, \mathbf{e}'_3 = \mathbf{e}_3;$
- b) $\mathbf{e}'_1 = \mathbf{e}_1, \, \mathbf{e}'_2 = \mathbf{e}_1 + 3\mathbf{e}_3, \, \mathbf{e}'_3 = \mathbf{e}_3;$
- c) $\mathbf{e}'_1 = \mathbf{e}_1 \mathbf{e}_2, \, \mathbf{e}'_2 = 3\mathbf{e}_1 3\mathbf{e}_2, \, \mathbf{e}'_3 = \mathbf{e}_3;$
- d) $\mathbf{e}'_1 = \mathbf{e}_2, \, \mathbf{e}'_2 = \mathbf{e}_1, \, \mathbf{e}'_3 = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ (where λ is an arbitrary coefficient)?

i) Find out is the ordered set of vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$ a basis in \mathbf{E}^3 . Is this basis an orthonormal basis of \mathbf{E}^3 ?

ii) Write down explicitly transition matrix which transforms the basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ to the ordered set of the vectors $\{\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3\}$. Is this matrix non-degenerate, or no? Is this matrix orthogonal?

Answer question i) using the properties of corresponding transition matrices.

(you have to consider all cases a),b) c) and d)).

 $\mathbf{8}^{\dagger}$ Prove the Cauchy–Bunyakovsky–Schwarz inequality

$$(\mathbf{x}, \mathbf{y})^2 \le (\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}),$$

where \mathbf{x}, \mathbf{y} are arbitrary two vectors and (,) is a scalar product in Euclidean space.

Hint: For any two given vectors \mathbf{x}, \mathbf{y} consider the quadratic polynomial $At^2 + 2Bt + C$ where $A = (\mathbf{x}, \mathbf{x}), B = (\mathbf{x}, \mathbf{y}), C = (\mathbf{y}, \mathbf{y})$. Show that this polynomial has at most one real root and consider its discriminant.