Homework 0

In this Homework we will just recall some necessary background material from linear algebra
1 Consider sets

$$
V=\left\{x: \quad a x^{2}+b x+c, \quad a, b, c, x \in \mathbf{R}\right\}, \quad T=\left\{x: \quad x^{2}+p x+q, \quad p, q, x \in \mathbf{R}\right\},
$$

a) Explain why a set V is a vector space, and a set T is not a vector space (with respect to natural operations of mulitplication and addition of polynomials)
b) Explain why polynomials $1, x, x^{2}$ are linearly independent in V.
c) Calculate dimension of V.

2 Show that the vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2} \ldots, \mathbf{a}_{m}\right\}$ in vector space V are linearly dependent if at least one of these vectors is equal to zero.

3 Show that arbitrary three vectors in \mathbf{R}^{2} are linearly dependent.
Consider the following vectors in \mathbf{R}^{2}

$$
\begin{equation*}
\mathbf{e}_{1}=(1,0), \quad \mathbf{e}_{2}=(0,1), \quad \mathbf{a}=(2,3), \quad \mathbf{b}=(3,0), \tag{1}
\end{equation*}
$$

Show that $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a basis in \mathbf{R}^{2}.
Show that $\{\mathbf{a}, \mathbf{b}\}$ is a basis in \mathbf{R}^{2}.
Show that $\left\{\mathbf{e}_{1}, \mathbf{b}\right\}$ is not a basis in \mathbf{R}^{2}.
4 a) Show that $\langle\mathbf{x}, \mathbf{y}\rangle=x^{1} y^{1}+x^{2} y^{2}$ does not define a scalar product in \mathbf{R}^{3}.
b) Show that $(\mathbf{x}, \mathbf{y})=x^{1} y^{1}+3 x^{2} y^{2}+5 x^{3} y^{3}$ defines a scalar product in \mathbf{R}^{3}.
c) Show that $(\mathbf{x}, \mathbf{y})=x^{1} y^{2}+x^{2} y^{1}+x^{3} y^{3}$ does not define a scalar product in \mathbf{R}^{3}.
f^{\dagger}) Find necessary and sufficient conditions for entries a, b, c of symmetrical matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ such that the formula

$$
(\mathbf{x}, \mathbf{y})=\left(x^{1}, x^{2}\right)\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\binom{y^{1}}{y^{2}}=a x^{1} y^{1}+b\left(x^{1} y^{2}+x^{2} y^{1}\right)+c x^{2} y^{2}
$$

defines a scalar product in \mathbf{R}^{2}.
$\mathbf{5}$ Let \mathbf{e}, \mathbf{f} and \mathbf{g} be three vectors in 3-dimensional Euclidean space \mathbf{E}^{3} such that all these vectors have unit length and they are pairwise orthogonal.

Show explicitly that the ordered set of these vectors $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is a basis.
6 Let \mathbf{a}, \mathbf{b} and \mathbf{c} be three vectors in 3-dimensional Euclidean space \mathbf{E}^{3} such that vectors \mathbf{a} and \mathbf{b} have unit length, and are orthogonal to each other and vector \mathbf{c} has length $\sqrt{3}$ and it forms an angle $\varphi=\arccos \frac{1}{\sqrt{3}}$ with vectors \mathbf{a} and \mathbf{b}.

Show that the ordered set $\{\mathbf{a}, \mathbf{b}, \mathbf{c}-\mathbf{a}-\mathbf{b}\}$ of vectors is an orthonormal basis in \mathbf{E}^{3}.
7 Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be an orthonormal basis of Euclidean space \mathbf{E}^{3}. Consider the ordered set of vectors $\left\{\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}\right\}$ which is expressed via basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ in the following way:
a) $\mathbf{e}_{1}^{\prime}=\mathbf{e}_{2}, \mathbf{e}_{2}^{\prime}=\mathbf{e}_{1}, \mathbf{e}_{3}^{\prime}=\mathbf{e}_{3}$;
b) $\mathbf{e}_{1}^{\prime}=\mathbf{e}_{1}, \mathbf{e}_{2}^{\prime}=\mathbf{e}_{1}+3 \mathbf{e}_{3}, \mathbf{e}_{3}^{\prime}=\mathbf{e}_{3}$;
c) $\mathbf{e}_{1}^{\prime}=\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{e}_{2}^{\prime}=3 \mathbf{e}_{1}-3 \mathbf{e}_{2}, \mathbf{e}_{3}^{\prime}=\mathbf{e}_{3}$;
d) $\mathbf{e}_{1}^{\prime}=\mathbf{e}_{2}, \mathbf{e}_{2}^{\prime}=\mathbf{e}_{1}, \mathbf{e}_{3}^{\prime}=\mathbf{e}_{1}+\mathbf{e}_{2}+\lambda \mathbf{e}_{3}$ (where λ is an arbitrary coefficient)?
i) Find out is the ordered set of vectors $\left\{\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}\right\}$ a basis in \mathbf{E}^{3}. Is this basis an orthonormal basis of \mathbf{E}^{3} ?
ii) Write down explicitly transition matrix which transforms the basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ to the ordered set of the vectors $\left\{\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}\right\}$. Is this matrix non-degenerate, or no? Is this matrix orthogonal?

Answer question i) using the properties of corresponding transition matrices.
(you have to consider all cases a),b) c) and d)).
$\mathbf{8}^{\dagger}$ Prove the Cauchy-Bunyakovsky-Schwarz inequality

$$
(\mathbf{x}, \mathbf{y})^{2} \leq(\mathbf{x}, \mathrm{x})(\mathbf{y}, \mathrm{y})
$$

where \mathbf{x}, \mathbf{y} are arbitrary two vectors and (,) is a scalar product in Euclidean space.
Hint: For any two given vectors \mathbf{x}, \mathbf{y} consider the quadratic polynomial $A t^{2}+2 B t+C$ where $A=(\mathbf{x}, \mathbf{x}), B=(\mathbf{x}, \mathbf{y}), C=(\mathbf{y}, \mathbf{y})$. Show that this polynomial has at most one real root and consider its discriminant.

