Homework 1

$\mathbf{1}$ Let \mathbf{R}^{2} be an affine space of points. Consider in \mathbf{R}^{2} points $A=(2,3)$ and $B=(6,6)$.
a) Find the length of the segment $A B$
b) Find a point C in \mathbf{R}^{2} such that vector $A C$ has unit length and it is orthogonal to the vector $\overrightarrow{A B}$

2 In affine space \mathbf{R}^{2} consider points $A=(2,1), B=(2+a, 1+b)$ and $C=(2+p, 1+q)$, where a, b, p, q, r are arbitrary parameters.

Calculate the area of the triangle $\triangle A B C$ and compare the answer with determinant of the matrix $\left(\begin{array}{ll}a & b \\ p & q\end{array}\right)$.
$\mathbf{3}$ Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be an orthonormal basis in 3-dimensional Euclidean space \mathbf{E}^{3}.
Let $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ be the row of three vectors in this space, and let A be the transition matrix from the basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ to the row $\{\mathbf{a}, \mathbf{b}, c\}$:

$$
\{\mathbf{a}, \mathbf{b}, c\}=\{\mathbf{e}, \mathbf{f}, \mathbf{g}\} A .
$$

Consider the cases
a) $A=\left(\begin{array}{lll}5 & 0 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 7\end{array}\right)$,
b) $A=\frac{1}{2}\left(\begin{array}{ccc}\sqrt{3} & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -\sqrt{3}\end{array}\right)$,
c) $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$

Show that in the case a) the row $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is a basis. Show that this basis is not an orthonormal basis.

Show that in the case b) the row $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is a basis, and this is the orthonormal basis. Find in this case the inverse transition matrix, the transition matrix from the basis $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ to the initial basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$.

Show that in the case c) the row $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is not a basis.
4 Let P be a linear operator in 2-dimensional vector space V. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be a basis in V such that

$$
P\left(\mathbf{e}_{1}\right)=7 \mathbf{e}_{1}+9 \mathbf{e}_{2}, P\left(\mathbf{e}_{2}\right)=2 \mathbf{e}_{1}+3 \mathbf{e}_{2} .
$$

Consider in V the new bases $\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$ and $\mathbf{g}_{1}, \mathbf{g}_{2}$ such that

$$
\mathbf{f}_{1}=\frac{1}{2} \mathbf{e}_{1}, \quad \mathbf{f}_{2}=3 \mathbf{e}_{2} \quad \text { and } \quad \mathbf{g}_{1}=\mathbf{e}_{1}+\mathbf{e}_{2}, \quad \mathbf{g}_{2}=\mathbf{e}_{2},
$$

($\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$ and $\mathbf{g}_{1}, \mathbf{g}_{2}$ are bases since evidently vectors $\mathbf{f}_{1}, \mathbf{f}_{2}$ are linearly independent, and vectors $\mathbf{g}_{1}, \mathbf{g}_{2}$ are also linearly independent.)

Write down the matrices of the operator P in the basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, and in the new bases $\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$ and $\left\{\mathbf{g}_{1}, \mathbf{g}_{2}\right\}$.

5 Let A be a linear operator in 2-dimensional vector space V such that for a given basis $\{\mathbf{e}, \mathbf{f}\}$,

$$
A(\mathbf{e})=27 \mathbf{e}+40 \mathbf{f}, A(\mathbf{f})=-16 \mathbf{e}-\frac{71}{3} \mathbf{f}
$$

Write down the matrix of the operator A in this basis.
Consider the pair of vectors $\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right\}$ such that $\mathbf{e}^{\prime}=2 \mathbf{e}+3 \mathbf{f}$ and $\mathbf{f}^{\prime}=3 \mathbf{e}+5 \mathbf{f}$.
Show that an ordered set of vectors $\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right\}$ is also a basis, and find a matrix of the operator A in the new basis.

Do vectors $\mathbf{e}^{\prime}, \mathbf{f}^{\prime}$ are eigenvectors of the linear operator A ?
Calculate the determinant and trace of operator A.
$\mathbf{6}^{\dagger}$ Let V be a space of functions, which are solutions of differential equation

$$
\begin{equation*}
\frac{d^{2} y(x)}{d x^{2}}+p \frac{d y(x)}{d x}+q y(x)=0 \tag{1}
\end{equation*}
$$

where parameters p, q are equal to $p=-7$ and $q=12$.
Show that V is 2 -dimensional vector space.
Find a basis in this vector space, and write down the operator A in this basis.
Show that the differentiation $A=\frac{d}{d x}$ is a linear operator on the space V which transforms every vector from V to another vector on V.

Find determinant and trace of this linear operator.

