Homework 2

0 Let P be an operator in 2-dimensional vector space V such that in the given basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ the matrix of this operator is

$$
\left(\begin{array}{cc}
5 & -1 \\
2 & 2
\end{array}\right) .
$$

a) write down the action of the operator P on vectors \mathbf{e}_{1} and \mathbf{e}_{2}.
b) Show without 'long' calculations that matrix of this operator in the 'suitable' basis is $\left(\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right)$. (You may use without a proof that this operator indeed has two linearly independent eigenvectors)
c) find eigenvectors and eigenvalues of this operator. *

1 Let $\{\mathbf{e}, \mathbf{f}\}$ be an orthonormal basis in \mathbf{E}^{2}. Consider the following ordered pairs:
a) $\{\mathbf{f}, \mathbf{e}\}$,
b) $\{\mathbf{f},-\mathbf{e}\}$,
c) $\left\{\frac{\sqrt{2}}{2} \mathbf{e}+\frac{\sqrt{2}}{2} \mathbf{f},-\frac{\sqrt{2}}{2} \mathbf{e}+\frac{\sqrt{2}}{2} \mathbf{f}\right\}$,
d) $\left\{\frac{\sqrt{3}}{2} \mathbf{e}+\frac{1}{2} \mathbf{f}, \frac{1}{2} \mathbf{e}-\frac{\sqrt{3}}{2} \mathbf{f}\right\}$.

Show that all these ordered pairs are orthonormal bases in \mathbf{E}^{2}.
Find amongst them the bases which have the same orientation as the orientation of the basis $\{\mathbf{e}, \mathbf{f}\}$.

Find amongst them the bases which have the orientation opposite to the orientation of the basis $\{\mathbf{e}, \mathbf{f}\}$.
$\mathbf{2}$ Let $\{\mathbf{e}, \mathbf{f}\}$ be a basis in two-dimensional vector space V. Consider an ordered pair $\{\mathbf{a}, \mathbf{b}\}$ such that

$$
\mathbf{a}=\mathbf{f}, \mathbf{b}=\gamma \mathbf{e}+\mu \mathbf{f},
$$

where γ, μ are arbitrary real numbers.
Find values γ, μ such that an ordered pair $\{\mathbf{a}, \mathbf{b}\}$ is a basis and this basis has the same orientation as the basis $\{\mathbf{e}, \mathbf{f}\}$.
$\mathbf{3}$ Let $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$ be an orthonormal basis in \mathbf{E}^{3} and let $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ be an arbitrary basis in \mathbf{E}^{3}. Show that the basis $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ either has the same orientation as the basis $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$, or the same orientation as the basis $\left\{\mathbf{e}_{y}, \mathbf{e}_{x}, \mathbf{e}_{z}\right\}$.

4 Let $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$ be an orthonormal basis in \mathbf{E}^{3}. Consider the following ordered triples:
a) $\left\{\mathbf{e}_{x}, \mathbf{e}_{x}+2 \mathbf{e}_{y}, 5 \mathbf{e}_{z}\right\}$,

[^0]b) $\left\{\mathbf{e}_{y}, \mathbf{e}_{x}, 5 \mathbf{e}_{z}\right\}$,
c) $\left\{\mathbf{e}_{y}, \mathbf{e}_{x},-5 \mathbf{e}_{z}\right\}$,
d) $\left\{\frac{\sqrt{3}}{2} \mathbf{e}_{x}+\frac{1}{2} \mathbf{e}_{y},-\frac{1}{2} \mathbf{e}_{x}+\frac{\sqrt{3}}{2} \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$,
e) $\left\{\mathbf{e}_{y}, \mathbf{e}_{x}, \mathbf{e}_{z}\right\}$,
f) $\left\{\mathbf{e}_{y}, \mathbf{e}_{x},-\mathbf{e}_{z}\right\}$.

Show that all ordered triples a), b), c), d),e),f) are bases.
Show that the bases a), c), d) and f) have the same orientation as the basis $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$, and the bases b) and e) have the orientation opposite to the orientation of the basis $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}\right\}$. Show that bases d), e) and f) are orthonormal bases and bases a), b) and c) are not orthonormal bases.
$\mathbf{5}$ Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be a basis in vector space V. Show that ordered triples $\{\mathbf{f}, \mathbf{e}+2 \mathbf{f}, 3 \mathbf{g}\}$ and $\{\mathbf{e}, \mathbf{f}, 2 \mathbf{f}+3 \mathbf{g}\}$ are bases and these bases have opposite orientations.
$\mathbf{6}$ Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be a basis in 3-dimensional vector space V.
Consider in the space V the following ordered triples
I) $-\{\mathbf{e}+2 \mathbf{f}+3 \mathbf{g}, 2 \mathbf{f}+\mathbf{g}, \mathbf{e}+2 \mathbf{f}+\mathbf{g}\}$
II) $-\{\mathbf{e}+\mathbf{f}-2 \mathbf{g}, 2 \mathbf{f}+\mathbf{g}, \mathbf{e}+\mathbf{f}+\mathbf{g}\}$
III) $-\{\mathbf{e}+2 \mathbf{f}+4 \mathbf{g}, \mathbf{e}+3 \mathbf{f}+9 \mathbf{g}, \mathbf{e}+4 \mathbf{f}+16 \mathbf{g}\}$

Show that all these oredered triples are bases.
Show that I-st and II-nd bases have opposite orientations.
Show that II-nd and III-d bases have the same orientations.
Show that I-st and III-nd bases have opposite orientations.

[^0]: * this question is just a recalling question.

