Homework 3 **1** a) Show explicitly that matrix $A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ is an orthogonal matrix. b) Show explicitly that under the transformation $\{\mathbf{e}', \mathbf{f}'\} = \{\mathbf{e}, \mathbf{f}\}A_{\varphi}$ an orthonormal basis transforms to an orthonormal one.

c) Show that for orthogonal matrix A_{φ} defined above the following relations are satisfied:

$$A_{\varphi}^{-1} = A_{\varphi}^{T} = A_{-\varphi}, \qquad A_{\varphi} \cdot A_{\theta} = A_{\varphi+\theta}.$$

2 Let \mathbf{e}, \mathbf{f} be orthonormal basis in Euclidean space \mathbf{E}^2 . Consider a vector

$$\mathbf{n}_{\varphi} = \mathbf{e} \cos \varphi + \mathbf{f} \sin \varphi \,.$$

Let A be a linear orthogonal operator acting on the space \mathbf{E}^2 such that $A(\mathbf{e}) = \mathbf{n}_{\omega}$. We know that det $A = \pm 1$ since A is orthogonal operator.

In the case if det A = 1, find the image $A(\mathbf{f})$ of vector \mathbf{f} and an image $A(\mathbf{x})$ of an arbitrary vector $\mathbf{x} = a\mathbf{e} + b\mathbf{f}$, write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f} and explain geometrical meaning of the operator A.

[†] How the answer will change if det A = -1?

3 Let \mathbf{e}, \mathbf{f} be an orthonormal basis in Euclidean space \mathbf{E}^2 .

Consider a vector $\mathbf{N} = \mathbf{e} + \mathbf{f}$ in \mathbf{E}^2 .

Let A be an orthogonal operator acting on the space \mathbf{E}^2 such that $A\mathbf{N} = \mathbf{N}$. (N is eigenvector of A with eigenvalue 1.) Suppose that A is not identity operator.

a) Find an action of operator A on the vector $\mathbf{R} = \mathbf{e} - \mathbf{f}$ in \mathbf{E}^2 .

b) Write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f} .

c) Explain geometrical meaning of the operator A.

4 Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be an orthonormal basis in Euclidean space \mathbf{E}^3 . Consider a linear operator P in \mathbf{E}^3 such that

$$e' = P(e) = e, \quad f' = P(f) = \frac{\sqrt{2}}{2}f + \frac{\sqrt{2}}{2}g, \quad g' = P(g) = -\frac{\sqrt{2}}{2}f + \frac{\sqrt{2}}{2}g.$$

Write down the matrix of operator P in the basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ to the order

Show that P is an orthogonal operator.

Show that orthogonal operator P preserves the orientation of \mathbf{E}^3 .

Find an axis of the rotation and the angle of the rotation.

5 Consider a linear operator P_1 in \mathbf{E}^3 such that it transforms the orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ into the orthonormal basis $\{\mathbf{f}, \mathbf{e}, \mathbf{g}\}$:

$$P_1(\mathbf{e}) = \mathbf{f}, \quad P_1(\mathbf{f}) = \mathbf{e}, \quad P_1(\mathbf{g}) = \mathbf{g}.$$

Consider also a linear orthogonal operator P_2 such that it is the reflection operator with respect to the plane spanned by vectors **e** and **f**.

Do operators P_1 , P_2 preserve orientation? Does operator $P = P_2 \circ P_1$ preserve orientation? Find eignevector of operator PShow that P is rotation operator.