Homework 5b

(the Homework 5 was divided on two homeworks: 5a, and 5b)
$\mathbf{1}$ Calculate differential forms $\omega=x d y-y d x, \sigma=x d x+y d y$ and vector fields $\mathbf{A}=$ $x \partial_{x}+y \partial_{y}, \mathbf{B}=x \partial_{y}-y \partial_{x}$ in polar coordinates.
(this exercise was done during the XII-th lecture (see the subsection 2.3.5 "Differential forms in arbitrary coordinates" in Lecture notes)

2 Consider differential forms $\omega=x d y-y d x, \sigma=x d x+y d y$ and vector fields $\mathbf{A}=$ $x \partial_{x}+y \partial_{y}, \mathbf{B}=x \partial_{y}-y \partial_{x}$.

Calculate $\omega(\mathbf{A}), \omega(\mathbf{B}), \sigma(\mathbf{A}), \sigma(\mathbf{B})$.
3 Consider a function $f=x^{3}-y^{3}$.
Calculate the value of 1-form $\omega=d f$ on the vector field $\mathbf{B}=x \partial_{y}-y \partial_{x}$.
4 Calculate the derivatives of the functions $f=x^{2}+y^{2}, g=y^{2}-x^{2}$ and $h=q \log |r|=$ $q \log \left(\sqrt{x^{2}+y^{2}}\right)\left(q\right.$ is a constant) along vector fields $\mathbf{A}=x \partial_{x}+y \partial_{y}$ and $\mathbf{B}=x \partial_{y}-y \partial_{x}$
a) calculating directional derivatives $\partial_{\mathbf{A}} f, \partial_{\mathbf{A}} g, \partial_{\mathbf{A}} h, \partial_{\mathbf{B}} f, \partial_{\mathbf{B}} g, \partial_{\mathbf{B}} h$,
b) calculating $d f(\mathbf{A}), d g(\mathbf{A}), d h(\mathbf{A}), d f(\mathbf{B}), d g(\mathbf{B}), d h(\mathbf{B})$.

5 Let f be a function on \mathbf{E}^{2} given by $f(r, \varphi)=r^{3} \cos 3 \varphi$, where r, φ are polar coordinates in \mathbf{E}^{2}.

Calculate the 1-form $\omega=d f$.
Calculate the value of the 1-form $\omega=d f$ on the vector field $\mathbf{X}=r \partial_{r}+\partial_{\varphi}$.
Express the 1-form ω in Cartesian coordinates x, y.
(You may use the fact that $\cos 3 \varphi=4 \cos ^{3} \varphi-3 \cos \varphi$.)
6 Show that 1 -form $\omega=x d y+y d x$ is exact.
Show that 1-form $\omega=\sin y d x+x \cos y d y$ is exact.
Show that 1 -form $\omega=x^{3} d y$ is not an exact $1=$ form.
(We call 1-form ω exact if there exists a function F such that $\omega=d F$.)

