Homework 6

1 Calculate the integrals of the form $\omega=x d y-y d x$ over the following three curves. Compare answers.

$$
\begin{gathered}
C_{1}: \mathbf{r}(t)\left\{\begin{array}{l}
x=R \cos t \\
y=R \sin t
\end{array}, 0<t<\pi, \quad C_{2}: \mathbf{r}(t)\left\{\begin{array}{l}
x=R \cos 4 t \\
y=R \sin 4 t
\end{array}, 0<t<\frac{\pi}{4}\right.\right. \\
\text { and } C_{3}: \mathbf{r}(t)\left\{\begin{array}{l}
x=R t \\
y=R \sqrt{1-t^{2}},-1<t<1 .
\end{array}\right.
\end{gathered}
$$

(this exercise was done during the XIV-th lecture (Tuesday, VII-th week): see the last example in subsection 2.4 "Integration of differential forms over curves" in Lecture notes)

2 Consider an arc of parabola $x=2 y^{2}-1,0<y<1$.
Give examples of two different parameterisations of this curve such that these parameterisations have the opposite orientation.

Calculate the integral of the form 1-form $\omega=\sin y d x$ over this curve.
How does the answer depend on a parameterisation?
3 Calculate the integral of the form $\omega=x d y$ over the following curves
a) closed curve $x^{2}+y^{2}=12 y$
b) arc of the ellipse $x^{2}+y^{2} / 9=1$ defined by the condition $y \geq 0$.

How does your answer depend on a choice of parameterisation?
4 a) Calculate the integrals $\int_{C_{1}} \omega$ and $\int_{C_{2}} \omega$ of the 1-form $\omega=x d y-y d x$ over the curves $C_{1}: \quad x^{2}+y^{2}=9$ and $C_{2}: \quad x^{2}+y^{2}=6 y$.
b) Perform the calculations of integrals $\int_{C_{1}} \omega$ and $\int_{C_{2}} \omega$ in polar coordinates.

Hint Performing the calculations for the curve C_{2} one may use the polar coordinates r, φ with the centre at the point $(a, b):\left\{\begin{array}{l}x=a+r \cos \varphi \\ y=b+r \sin \varphi\end{array}\right.$.

5 Calculate the integral $\int_{C} \omega$ where $\omega=x d x+y d y$ and C is
a) the straight line segment $x=t, y=1-t, 0 \leq t \leq 1$
b) the segment of parabola $x=t, y=1-t^{n}, 0 \leq t \leq 1, n=2,3,4, \ldots$
c) for an arbitrary curve starting at the point $(0,1)$ and ending at the point $((1,0)$.

6 Show that the form 1-form $\omega=3 x^{2} y d x+x^{3} d y$ is an exact 1-form.
Calculate integral of this form over the curves considered in exercises 2) and 3).
7. Consider in \mathbf{E}^{2} 1-forms
a) $x d x$, b) $x d y$ c) $x d x+y d y$, d) $x d y+y d x$, e) $x d y-y d x$
f) $x^{4} d y+4 x^{3} y d x$.
a) Show that 1 -forms a), c), d) and f) are exact forms
b) Why are 1 -forms b) and e) not exact?

8 Consider 1-form

$$
\begin{equation*}
\omega=\frac{x d y-y d x}{x^{2}+y^{2}} \tag{1}
\end{equation*}
$$

This form is defined in $\mathbf{E}^{2} \backslash 0$, i.e. in all the points except origin: $x^{2}+y^{2} \neq 0$.
a) Write down this form in polar coordinates
b) ${ }^{\dagger}$ What values can take the integral $\int_{C} \omega$ of this form, if C is an arbitrary curve starting at the point $(0,1)$ and ending at the point $((1,0)$ (we suppose that the curve C does not pass through the origin)
$\mathbf{9}^{\dagger}$ Let $\omega=a(x, y) d x+b(x, y) d y$ be a closed form in $\mathbf{E}^{2}, d \omega=0$.
Consider the function

$$
\begin{equation*}
f(x, y)=x \int_{0}^{1} a(t x, t y) d t+y \int_{0}^{1} b(t x, t y) d t \tag{2}
\end{equation*}
$$

\dagger Show that

$$
\omega=d f .
$$

(This proves that an arbitrary closed form in \mathbf{E}^{2} is an exact form.
\dagger Why we cannot apply the formula (2) to the form ω defined by the expression (1)?

