Homework 9

$\mathbf{1}$ Let F be a projective transformation of $\mathbf{R P}$ such that

$$
\left[x^{\prime}: y^{\prime}\right]=F([x: y])=[2 x+3 y: 3 x+2 y] .
$$

Let $P=[6: 2]$ be a point on $\mathbf{R P}$.
Find the affine coordinate u_{P} of this point, and find the affine coordinate u_{P}^{\prime} of the point $F(P)$.

Find a point A such that $A=F(\infty)$.
Find a point B such that $F(B)=\infty$.
2 Four points $A, B, C, D \in \mathbf{R P}^{2}$ are given in homogeneous coordinates by

$$
A=[2:-1: 1], \quad B=[15:-10: 5], \quad C=\left[1:-\frac{4}{5}: \frac{1}{5}\right], \quad D=[2: 0: 2] .
$$

Show that these points are collinear.
Calculate their cross-ratio.
3 Three points $A, B, C \in \mathbf{R P}^{2}$ are given in homogeneous coordinates by

$$
A=[6: 2: 2], B=[15: 5: 1], C=[18: 6: 3] .
$$

Show that these points are collinear.
Find a point D on projective plane $\mathbf{R P}^{\mathbf{2}}$ such that the point D is harmonic conjugate to the points A, B, C, i.e. the cross-ratio $(A, B, C, D)=-1$.

4 Let A, B, C, D be four collinear points on projective plane $\mathbf{R P}^{2}$.
Let $(A, B, C, D)=\lambda$. Calculate $(B, A, C, D),(A, B, D, C)$ and (B, A, D, C).
5 Two points A, B on the projective plane $\mathbf{R P}^{2}$ are given in homogeneous coordinates

$$
A=[3: 9: 3], \quad B=[6: 18: 2] .
$$

a) Find the point $C=[x: y: z]$ on $\mathbf{R P}^{2}$ such that $x=2 z$ and the three points A, B, C are collinear.
b) on the projective line passing through the points A, B and C find a point D such that the cross-ratio $(A, B, C, D) \mathrm{f}$ these points is equal to $-\frac{1}{2}$.
c) Find cross ratio of the points (A, C, B, D).

