
Homework 0. Solutions

1 Consider sets

V = {ax2 + bx+ c , a, b, c ∈ R} , T = {x2 + px+ q , p, q ∈ R}

a) Explain why a set V is a vector space, and a set T is not a vector space (with respect to natural operations
of mulitplication and addition of polynomials)

b) Explain why polynomials 1, x, x2 are linearly independent in V .
c) Calcualte dimension of V .

One can see that operations + and · are well-defined: For two “vectors”—polynomials P1 = a1x
2 +

b1x+ c1 P2 = a2x
2 + b2x+ c2

P1 + P2 = a3x
2 + b3x+ c3 ,where (a3, b3, c3) = (a1, b1, c1) + (a2, b2, c2) = (a1+2, b1 + b2, c1 + c2) ,

λ · P1 = λ()a1x
2 + b1x+ c1) = (a, b, c) , where (a, b, c) = λ(a1, b1, c1) = (λa1, λb1, λc1) .

We see that we may identify the space V with R3.
On the other hand T is not vector space, since if we consider two arbitrary polynomials in T their sum

does not belong T ,
Now prove that polynomials (vectors) 1, x, x2 are linearly independent. Let c1, c2, c3 ∈ R be coefficinets

such that
c1 · 1 + c2 · x+ c3 · x2 = 0

i.e. polynomial c1+c2x+c3x
2 is identically equal to zero. In this case it is equal at zero at points x = 0, 1,−1:

P (x) = c1 + c2x+ c3x
2 ≡ 0⇒

P (0) = c1 = 0
P (1) = c1 + c2 + c3 = 0
P (−1) = c1 − c2 + c3 = 0

⇒ c1 = 0 , c2 = 0 , c3 = 0 ,

i.e. polynomials 1, x, x2 are linearly independent.

2 Show that the vectors {a1,a2 . . . ,am} in vector space V are linearly dependent if at least one of these
vectors is equal to zero.

WLOG suppose that a1 = 0. Then

λa1 + 0 · a2 + . . .+ 0 · an = 0

where λ is an arbitrary non-zero real number λ 6= 0. We see that there exists a linear combinations of vectors
{a1,a2 . . . ,am} which is equal to zero and one of the coefficients {λ, 0, . . . , 0} is not equal to zero. Hence
vectors {a1,a2 . . . ,am} are linearly dependent.

3 a) Show that arbitrary three vectors in R2 are linearly dependent.
Consider the following vectors in R2

e1 = (1, 0) , e2 = (0, 1) , a = (2, 3) , b = (3, 0) , (1)

b) Show that {e1, e2} is a basis in R2.
c) Show that {a,b} is a basis in R2.
d) Show that {e1,b} is not a basis in R2.

Solution of a)

Consider arbitrary three vectors in R2

x1 = (a1, a2)
x2 = (b1, b2)
x3 = (c1, c2)

1



If vector x1 = (a1, a2) = 0 then nothing to prove. (See exercise 2). Let x1 6= 0. WLOG suppose a1 6= 0.
Consider vectors

x′2 = x2 − b1
a1
x1 = (b1, b2)− b1

a1
(a1, a2) = (0, b′2)

x′3 = x3 − c1
a1
x1 = (c1, c2)− c1

a1
(a1, a2) = (0, c′2)

We see that vectors x′2,x
′
3 are proportional—i.e. they are linearly dependent: there exist µ2 6= 0 or µ3 6= 0

such that µ2x
′
2 +µ3x

′
3 = 0 E.g. we can take µ2 = c′2, µ3 = −b′2 in the case if c′2 6= 0 or b′2 6= 0 (if c′2 = b′2 6= 0

then we can take coefficients µ1, µ2 any real numbers. ) We have:

0 = µ2x
′
2 + µ3x

′
3 = µ2

(
x3 −

c1
a1

x1

)
+ µ3

(
x3 −

c1
a1

x1

)
= µ2x2 + µ3x3 −

(
µ2b1
a1

+
µ3c1
a1

)
x1 = 0,

where µ2 6= 0 or µ3 6= 0. Hence vectors x1,x2,x3 are linearly dependent ∗.

Solution of b)

Vectors e1, e2 are linearly independent:

ae1 + be2 = a(1, 0) + b(0, 1) = (a, b) = 0⇒ a = b = 0

We see that on one hand in R3 any trhee vectors are linearly dependent, and on the other hand there
exist two linearly independent vectors. Hence dimension of R2 is equal to 2. Hence these two vectors {e1, e2}
form a basis

Solution of c) Vectors a,b are also linearly independent:

xa + yb = x(2, 3) + y(3, 0) = (2x+ 3y, 3x) = 0⇒
{
x = 0
2x+ 3y = 0

⇒ x = y = 0 .

We see that two vectors a,b are linearly independent vectors in 2-dimensional space. Hence these two vectors
{a,b} form a basis

Solution of d) Vectors e1,b are linearly dependent, since

3e1 − b = 0 .

Hence this is not a basis.
4 a) Show that 〈x,y〉 = x1y1 + x2y2 does not define a scalar product in R3.
b) Show that (x,y) = x1y1 + 3x2y2 + 5x3y3 defines a scalar product in R3.
c) Show that (x,y) = x1y2 + x2y1 + x3y3 does not define a scalar product in R3.

f†) Find necessary and sufficient conditions for entries a, b, c of symmetrical matrix

(
a b
b c

)
such that

the formula

(x,y) = (x1, x2 )

(
a b
b c

)(
y1

y2

)
= ax1y1 + b(x1y2 + x2y1) + cx2y2

defines a scalar product in R2.

Solution

Recall that scalar product on a vector space V is a function B(x,y) = (x,y) on a pair of vectors which
takes real values and satisfies the the following conditions:

1) B(x,y) = B(y,x) (symmetricity condition)
2) B(λx + µy, z) = λB(x, z) + µB(y, z) (linearity condition (with respect to the first argument))
3) B(x,x) ≥ 0 , B(x,x) = 0⇔ x = 0 (positive-definiteness condition)
(The linearity condition with respect to the second argument follows from the conditions 2) and 1))

∗ You may say: why so long proof? We know already that dimension of R2 is equal to 2 then by definition
any three vectors in R2 have to be linear dependent. This ”proof” is in fact “circulus vicious ” since the
proof of the fact that dimR2 = 2 is founded on the statement of this exercise.
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Remark Note that x1, x2, x3—are components of the vector, do not be confused with exponents!

a) Show that B(x,y) = x1y1 + x2y2 does not define scalar product in R3.
To see that the formula (x,y) = x1y1 + x2y2 does not define scalar product check the condition 3) of

positive-definiteness: (x,x) = (x1)2 + (x2)2 may take zero values for x 6= 0. E.g. if x = (0, 0,−1) (x,x) = 0,
in spite of the fact that x 6= 0. The condition 3) of positive-definiteness is not satisfied. Hence it is not scalar
product.

b) Now show that (x,y) = x1y1 + 3x2y2 + 5x3y3 is a scalar product in R3.
We need to check all the conditions above for scalar product for (x,y) = x1y1 + 3x2y2 + 5x3y3:
1) (y,x) = y1x1 + 3y2x2 + 5y3x3 = x1y1 + 3x2y2 + 5x3y3 = (x,y). Hence it is symmetrical.
2) (λx + µy, z) = (λx1 + µy1)z1 + 3(λx2 + µy2)z2 + 5(λx3 + µy3)z3 =

= λ(x1z1 + 3x2z2 + 5x3z3) + µ(y1z1 + 3y2z2 + 5y3z3) = λ(x,y) + µ(y, z). Hence it is linear.
3) (x,x) = (x1)2 + 3(x2)2 + 5(x3)2 ≥ 0. It is non-negative. If x = 0 then obviously (x,x) = 0. If

(x,x) = (x1)2 + 3(x2)2 + 5(x3)2 = 0, then x1 = x2 = x3 = 0. Hence it is positive-definite.
All conditions are checked. Hence (x,y) = x1y1 + 3x2y2 + 5x3y3 is indeed a scalar product in R3

c) Show that B(x,y) = x1y2 + x2y1 + x3y3 does not define scalar product in R3.
To see that the formula (x,y) = x1y2 + x2y1 + x3y3 does not define scalar product check the condition

3): (x,x) = 2x1x2 + (x3)2 may take negative values. E.g. if x = (1,−1, 0) (x,x) = −2 < 0. The condition
3) of positive-definiteness is not satisfied. Hence it is not scalar product.

f) †)
The condition of linearity and symmetricity for the bilinear form

B(x,y) = (x1, x2 )

(
a b
b c

)(
y1

y2

)
= ax1y1 + b(x1y2 + x2y1) + cx2y2

are evidently obeyed.
The general answer on this question is: symmetric matrix is positive-definite if and only if all principal

minors are positive. For matrix under consideration it means that conditions a > 0 and ac − b2 > 0 are
necessary and sufficient conditions.

Give a proof for this special case.
Check the positive-definiteness condition.
For x = (1, 0) B(x,x) = a. Hence a > 0 is necessary condition. Now consider

B(x,x) = a(x1)2 + 2bx1x2 + c(x2)2 =
(ax1 + bx2)2 + (ac− b2)(x2)2

a
≥ 0⇔ ac− b2 ≥ 0

We see that B(x,x) > 0 for all x 6= 0 iff a > 0 and (ac− b2) > 0.
The positive-definiteness condition is id in fact the condition that discriminant of quadratic polynomial
at2 + 2bt+ c is non-positive, i.e. it does not take negative values (if a > 0).

5 a) Let e, f and g be three vectors in 3-dimensional Euclidean space E3 such that all these vectors have
unit length and they are pairwise orthogonal.

Show explicitly that the ordered set of these vectors {e, f ,g} is a basis.

The space is 3-dimensional. Hence to show that {e, f ,g} is a basis it suffices to show that vectors (e, f ,g)
are linearly independent. Suppose c1e + c2f + c3g = 0. Take scalar product of this equation on the vector
e. Since vectors e, f and g have unit length and they are pairwise orthogonal then

(c1e + c2f + c3g, e) = c1(e, e) + c2(f , e) + c3(g, e) = c1 · 1 + c2 · 0 + c3 · 0 = c1 = 0 .

In the same way we prove that c2 = c3 = 0. Hence vectors (e, f ,g) are linearly independent.

6 Let a,b and c be three vectors in 3-dimensional Euclidean space E3 such that vectors a and b have
unit length, and are orthogonal to each other and vector c has length

√
3 and it forms an angle ϕ = arccos 1√

3

with vectors a and b.
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Show that the ordered set {a,b, c− a− b} of vectors is an orthonormal basis in E3.

Since vectors a and b have unit length and they are orthogonal to each other then (a,a) = (b,b) = 1
and (a,b) = 0. Since angle ϕ between vectors a and c equals to arccos 1√

3
and length of vector c equals to

√
3 then

(a, c) = |a||c| cosϕ = 1 · ·
√

3 · 1√
3

= 1.

Analogously (b, c) = 1 too. Hence scalar product of vector c−a−b with vector a equals to (c−a−b,a) =
1 − 1 − 0 = 0, i.e. vector c− a− b is orthogonal to the vector a. In the same way we prove that vector
c− a− b is orthogonal to the vector b. Hence we proved that all vectors a,b and c− a− b are pairwise
orthogonal to each other. To see that {a,b, c− a− b} is orthonormal basis it remains to prove that vector
c− a− b is unit vector. This is the fact since

(c− a− b, c− a− b) = (c, c)+(a,a)+(b,b)−2(c,a)−2(c, b)+2(a,b) =
√

3 ·
√

3+1+1−2 ·1−2 ·1 = 1.

7 Let {e1, e2, e3} be an orthonormal basis of Euclidean space E3. Consider the ordered set of vectors
{e′1, e′2, e′3} which is expressed via basis {e1, e2, e3} in the following way:

a) e′1 = e2, e′2 = e1, e′3 = e3;
b) e′1 = e1, e′2 = e1 + 3e3, e′3 = e3;
c) e′1 = e1 − e2, e′2 = 3e1 − 3e2, e′3 = e3;
d) e′1 = e2, e′2 = e1, e′3 = e1 + e2 + λe3 (where λ is an arbitrary coefficient)?

i) Find out is the ordered set of vectors {e′1, e′2, e′3} a basis in E3. Is this basis an orthonormal basis of
E3?

ii) Write down explicitly transition matrix which transforms the basis {e1, e2, e3} to the ordered set of
the vectors {e′1, e′2, e′3}. Is this matrix non-degenerate, or no? Is this matrix orthogonal?

Answer question i) using the properties of corresponding transition matrices.

(you have to consider all cases a),b) c) and d)).

Find out is the ordered set of vectors {e′1, e′2, e′3} a basis in E3. Is this basis an orthonormal basis of E3?
(you have to consider all cases a),b) c) and d)).

To analyse the cases we use the definition of basis: 3 vectors in 3-dimensional space form a basis if and
only if these vectors are linearly independent.

Case a) Vectors e′1 = e2, e
′
2 = e1, e

′
3 = e3 are linearly independent, since {e1, e2, e3} is a basis. Hence

{e′1, e′2, e′3} is a basis too. Al vectors of this basis have unit lenght and they are orthogonal to each other.
Hence this is orthonormal basis.

Case b) Vectors e′1 = e1, e
′
2 = e1 + 3e3, e

′
3 = e3 are linearly dependent. Indeed

e′1 − e′2 + 3e′3 = e1 − (e1 + 3e3) + 3e3 = 0 .

Hence it is not a basis.
Case c) First two vectors e′1 = e1 − e2, e

′
2 = 3e1 − 3e2 are already linearly dependent: e′1 = 3e′2. Hence

these three vectors do not form a basis.

Case d) Check are vectors linearly independent or not. Let c1e
′
1 + c2e

′
2 + c3e

′
3 = 0, i.e.

c1e
′
1 + c2e

′
2 + c3e

′
3 = c1e2 + c2e1 + c3(e1 + e2 + λe3) = (c2 + c3)e1 + (c1 + c3)e2 + c3λe3 = 0 .

I-st case λ 6= 0. We have c2 + c3 = c1 + c3 = λc3 = 0. Hence c3 = 0, c1 = 0, c2 = 0. These three vectors are
linearly independent. This means that ordered triple {e′1, e′2, e′3} is a basis.

II-nd case λ = 0. We have c2 + c3 = c1 + c3 = 0c3 = 0. Hence c3 can be an arbitrary number
and c1 = −c3, c2 = −c3. c3 These three vectors are linearly dependent. This means that ordered triple
{e′1, e′2, e′3} is not a basis.
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Now we will answer the same questions using transition matrices.
Case a) The ordered set {e′1, e′2, e′3} = {e2, e1, e3} is evidently orthonormal basis since all vectors have

unit length, and they are orthogonal to each other. We answered this question above. Now we will answer
this question again, using transition matrix.

Calculate the transition matrix: Transition matrix T =

 0 1 0
1 0 0
0 0 1

,

{e′1, e′2, e′3} = {e1e2, e3}T .

This matrix is non-degenerate, its rank is equal to 3 (detT = 1 6= 0). It is orthogonal matrix, because all
the rows have unit length, and are orthogonal to each other.

Since transition matrix from orthonormal basis {e1e2, e3}, matrix T is an orthogonal matrix, hence the
row {e′1, e′2, e′3}, ({e′1, e′2, e′3} = {e1, e2, e3}T ) is on orthonormal basis also. We come to the same answer as
in the previous exercise.

Case b) The ordered set {e′1, e′2, e′3} = {e1, e1 + 3e3, e3} is not a basis because vectors are linear
dependent: e′1 − e′2 + 3e′3 = 0. We answered this question above. Now we answer ths question using
transition matrix.

Calculate the transition matrix. Transition matrix T =

 1 1 0
0 0 0
0 3 1

,

{e′1, e′2, e′3} = {e1, e2, e3}T .

This matrix is degenerate, its rank ≤ 2. One can see it noting that rows are linear dependent or noting
that detT = 0. Vectors {e′1, e′2, e′3} are linear dependent. On the other hand vectors {e′1, e′2} are linear
independent. Hence rank of the matrix T is equal to 2, and this matrix is non-degenerate (its determinant
vanishes). Of course this matrix is not orthogonal— orthogonal matrix has to be at least non-degenerate.
(determinant of orthogonal matrix is equal to ±1).

Since transition matrix from basis {e1e2, e3}, matrix T is degenerate matrix (detT = 0), hence the row
{e′1, e′2, e′3}, ({e′1, e′2, e′3} = {e1, e2, e3}T ) is a row of linear dependent vectors, this is not a basis. We come
to the same answer as in the previous exercise.

Case c) The ordered set {e′1, e′2, e′3} = {e1 − e2, 3e1 − 3e2, e3} is not a basis because vectors are linear
dependent: 3e′1 − e′2 = 0. We answered this question above. One can see it also studying the transition
matrix.

Transition matrix T =

 1 3 0
−1 −3 0
0 0 1

,

{e′1, e′2, e′3} = {e1, e2, e3}T .

This matrix is degenerate: the second column is proportional to the first column, ( detT = 0.) Hence the
row {e′1, e′2, e′3}, ({e′1, e′2, e′3} = {e1, e2, e3}T ) is a row of linear dependent vectors, this is not a basis. We
come to the same answer as in the previous exercise.

(Rank of the matrix rank ≤ 2. On the other hand second and third column of this matrix are linear
independent. Hence rank of the matrix T is equal to 2).

Case d)
The transition matrix from the basis {e1, e2, e3} to the ordered triple {e′1, e′2, e′3} = {e2, e1, e1+e2+λe3}

is T =

 0 1 1
1 0 1
0 0 λ

, (e′1, e
′
2, e
′
3) = (e1, e2, e3)T

I-st case. λ 6= 0. The ordered set {e′1, e′2, e′3} is a basis because vectors are linear independent. This
basis is not orthogonal, because the length of vector e′3 is not equal to 1 ((e′3, e

′
3) = |e′3|2 = 2 + λ2). This

matrix is not orthogonal, because the new basis is not orthonormal.
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II-nd case λ = 0. The ordered set {e′1, e′2, e′3} is not a basis because vectors are linear independent:
e′1 + e′2 − e′3 = 0.

We answered this question in the previous exercise. Now we will answer yousing the transition matrix.
Calculate deterinant of the transition matrix: detT = −λ. If λ 6= 0, the matrix T is non-degenerate, and the
ordered set {e′1, e′2, e′3} is a basis, but this basis is not orthonormal, because the matrix T is not orthogonal
( the second row of this matrix has not unit length.)

If λ = 0, the matrix T is degenerate, the vectors e′1, e
′
2, e
′
3 are linearly dependent, thus the ordered set

{e′1, e′2, e′3} is not a basis. (The transition matrix T has rank less or equal to 2, because vectors are linear
dependent. On the other hand vectors e′1, e

′
2 are linear independent. Hence the rank of the matrix is equal

to 2.)

8† Prove the Cauchy–Bunyakovsky–Schwarz inequality

(x,y)2 ≤ (x,x)(y,y) ,

where x,y are arbitrary two vectors and ( , ) is a scalar product in Euclidean space.
Hint: For any two given vectors x,y consider the quadratic polynomial At2 +2Bt+C where A = (x,x),

B = (x,y), C = (y,y). Show that this polynomial has at most one real root and consider its discriminant.

Consider quadratic polynomial P (t) =
∑n

i=1(txi+yi)2 = At2+2Bt+C, where A =
∑n

i=1(xi)2 = (x,x),
B =

∑n
i=1(xiyi) = (x,y), C =

∑n
i=1(yi)2 = (y,y). We see that equation P (t) = 0 has at most one root (

and this is the case if only vector x is collinear to the vector y). This means that discriminant of this equation
is less or equal to zero. But discriminant of this equation is equal to 4B2− 4AC. Hence B2 ≤ AC. It is just
CBS inequality. ((x,y)2 = (x,x)(y,y), i.e. discriminant is equal to zero ⇔ vectors x, y are colinear.
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