
Homework 3. Solutions

1 a) Show explicitly that matrix Aϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
is an orthogonal matrix.

b) Show explicitly that under the transformation {e′, f ′} = {e1, f ′}Aϕ an orthonormal

basis transforms to an orthonormal one.

c) Show that for orthogonal matrix Aϕ the following relations are satisfied:

A−1ϕ = A
T

ϕ = A−ϕ , Aϕ+θ = Aϕ ·Aθ .

a) Check straightforwardly that ATϕ ·A = I (this is definition of orthogonal matrix):

ATϕ ·A =

(
cosϕ sinϕ
− sinϕ cosϕ

)(
cosϕ − sinϕ
sinϕ cosϕ

)
=(

cos2 ϕ+ sin2 ϕ − cosϕ sinϕ+ sinϕ cosϕ
− sinϕ cosϕ+ cosϕ sinϕ sin2 ϕ+ cos2 ϕ

)
=

(
1 0
0 1

)
b) Let {e, f} be an orthonormal basis, i.e. scalar products (e, e) = 1 and (e, f) = 0.

Then

{e′, f ′} = {e, f}Aϕ = {e, f}
(

cosϕ − sinϕ
sinϕ cosϕ

)
, i.e.

{
e′ = cosϕe + sinϕf
f ′ = − sinϕe + cosϕf

.

We have to check that {e′, f ′} is also orthonormal basis, i.e. scalar products (e′, e) =

(f ′, f ′) = 1 and (e′, f ′) = 0. Calculate:

(e′, e′) = (cosϕe+sinϕf , cosϕe+sinϕf) = cos2 ϕ(e, e)+2 cosϕ sinϕ(e, f)+sin2 ϕ(f , f) =

cos2 ϕ · 1 + 2 cosϕ sinϕ · 0 + sin2 ϕ · 1 = 1 ,

(f ′, f ′) = (− sinϕe+cosϕf2,− sinϕe+cosϕf) = sin2 ϕ(e, e)−2 cosϕ sinϕ(e, f)+cos2 ϕ(f , f) =

cos2 ϕ · 1 + 2 cosϕ sinϕ · 0 + sin2 ϕ · 1 = 1 ,

and

(e′, f ′) = (cosϕe + sinϕf ,− sinϕe + cosϕf) =

− cosϕ sinϕ(e, e)+(cos2 ϕ−sin2 ϕ)(e, f)+sinϕ cosϕ(f , f) = − cosϕ sinϕ+sinϕ cosϕ = 0 .

c) We have that Aϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
. Then calculate inverse matrix A−1ϕ . One

can see that A
T

ϕ = A−1ϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)
, because A

T

ϕAϕ = I . On the other hand

cosϕ = cos(−ϕ) and sinϕ = − sin(−ϕ). Hence

A
T

ϕ = A−1ϕ =

(
cosϕ sinϕ
− sinϕ cosϕ

)
=

(
cos(−ϕ) − sin(−ϕ)
sin(−ϕ) cos(−ϕ)

)
= A−ϕ .
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Now prove that Aϕ+θ = Aϕ ·Aθ:

Aϕ·Aθ =

(
cosϕ − sinϕ
sinϕ cosϕ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
(cosϕ cos θ − sinϕ sin θ) −(cosϕ sin θ + sinϕ cos θ)
(cosϕ sin θ + sinϕ cos θ) (cosϕ cos θ − sinϕ sin θ)

)
=

(
cos(ϕ+ θ) − sin(ϕ+ θ)
sin(ϕ+ θ) cos(ϕ+ θ)

)
= Aϕ+θ

Remark Geometrical meaning of this relation is that composition of “rotations” on

angle ϕ and θ is “rotation” on angle ϕ+ θ.

2 Let e, f be orthonormal basis in Euclidean space E2. Consider a vector

nϕ = e cosϕ+ f sinϕ .

Let A be a linear orthogonal operator acting on the space E2 such that A(e) = nϕ.

We know that detA = ±1 since A is orthogonal operator.

In the case if detA = 1, find the image A(f) of vector f and an image A(x) of an

arbitrary vector x = ae + bf , write down the matrix of operator A in the basis e, f and

explain geometrical meaning of the operator A.
† How the answer will change if detA = −1?

Let

(
a b
c d

)
be transition matrix of operator A in the orthonormal basis {e, f}:

{e′, f ′} = {e, f}A = {e, f}
(
a b
c d

)
,

{
e′ = ae + cf
f ′ = be + cf

.

New basis is also orthonormal. We have that e′ = nϕ = e cosϕ+ f sinϕ, hence matrix of

the orthogonal operator A in orthonormal basis {e, f} is(
a b
c d

)
=

(
cosϕ b
sinϕ d

)
Matrix of orthogonal operator in orthonormal basis is an orthogonal matrix. Hence(

cosϕ b
sinϕ d

)
is orthogonal matrix, i.e.

{
b cosϕ+ d sinϕ = 0
b2 + d2 = 1

.

Put b = sinψ, d = cosψ, then bearing in mind the condition that detA = d cosϕ−b sinϕ =

1, we come to equations{
b cosϕ+ d sinϕ = sinψ cosϕ+ cosψ sinϕ = sin(ϕ+ ψ) = 0
d cosϕ− b sinϕ = cosψ cosϕ− sinψ sinϕ = cos(ϕ+ ψ) = 1

,
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i.e. we come to ψ = −ϕ + 2πk. Matrix of operator A in the basis {e, f} is equal to(
cosϕ − sinϕ
sinϕ cosϕ

)
. A is operator of rotation on the angle ϕ (see the section 1.7.1. in

lecture notes). A(f) = be + df = − sinϕe + cosϕf . For arbitrary vector x we have that

A(x) = A(x1e + x2f) = x1A(e) + x2A(f) = x1(e cosϕ+ f sinϕ) + x2(−e sinϕ+ f cosϕ) =

(x1 cosϕ− x2 sinϕ)e + (x1 sinϕ+ x2 cosϕ)f ,

or in the other way: A(x) = A(x1e + x2f) =

= A

(
{e, f}

(
x1

x2

))
= {e, f}

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x1

x2

)
= {e, f}

(
x1 cosϕ− x2 sinϕ
x1 sinϕ+ x2 cosϕ

)
.

† One can see that in the case if detA = −1, then A is the operator of reflection with

respect to the line directed along the vector nϕ
2

= cos ϕ2 e + sin ϕ
2 f .

Remark Note that condition that one can find an angle ϕ such that A(e) = cosϕe+

sinϕf is automaticall fullfilled for orthogonal operator. In fact solving this problem we re-

peated the calculation of matrix of orthogonal operator in E2 (see lecture notes, subsection

1.7.1)

3 Let e, f be an orthonormal basis in Euclidean space E2.

Consider a vector N = e + f in E2.

Let A be an orthogonal operator acting on the space E2 such that AN = N. (N is

eigenvector of A with eigenvalue 1.) Suppose that A is not identity operator.

a) Find an action of operator A on the vector R = e− f in E2.

b) Explain geometrical meaning of the operator A.

c) Write down the matrix of operator A in the basis e, f .

a) Let A(R) = ae + bf . Vectors N and R are orthogonal to each other:

(N,R) = (e + f , e− f) = (e, e)− f , f = 1− 1 = 0 ,

Hence the vectors A(N) and A(R) have to be orthogonal to each other also, since orthog-

onal operator does not change the scalar product.

Hence vector A(R) has to be proportional to the vector R also, i.e. A(R) = aR.

The length of the vector is not changed under othogonal transformation, hence a = ±1.

If a = 1, i.e. A(R) = R we see that operator A is identical on two linear independent

vectors: A(R) = R, A(N) = N hence it is identical on their span, i.e. A = id. On the

other hand we know that A is not identity operator. Hence a = −1. We come to the

conclusion that A(R) = −R.

3



b) Operator A is reflection operator with respect to the line directed along the vector N.

c) We have that e = N+R
2 and f = N−R

2 . Hence

A(e) = A

(
N + R

2

)
=

N−R

2
= f , A(f) = A

(
N−R

2

)
=

N + R

2
= e ,

i.e. the matrix of operator A in the bases {e, f} is

(
0 1
1 0

)
.

4 Let {e, f ,g} be an orthonormal basis in Euclidean space E3. Consider a linear operator

P in E3 such that

e′ = P (e) = e, f ′ = P (f) =

√
2

2
f +

√
2

2
g, g′ = P (g) = −

√
2

2
f +

√
2

2
g .

Write down the matrix of operator P in the basis {e, f ,g} to the order

Show that P is an orthogonal operator.

Show that orthogonal operator P preserves the orientation of E3.

Find an axis of the rotation and the angle of the rotation.

The matrix of operator P in the basis {e, f ,g} is the trnasition matrix from basis

{e, f ,g} to the basis {e′, f ′,g′} = {P (e), P (f), P (g)}. We have

{e′, f ′,g′} = {P (e), P (f), P (g)} =

{
e,

√
2

2
f +

√
2

2
g,−
√

2

2
f +

√
2

2
g

}
=

{e, f ,g}

 1 0 0
0

√
2
2 −

√
2
2

0
√
2
2

√
2
2

 (1)

One can see that the matrix in (1) is invertible. The triple {e′, f ′,g′} is a basis. It is easy

to see that the new basis {e′, f ′,g′} is orthonormal basis since the former basis {e, f ,g}
is orthonormal one: (e′, e′) = (f ′, f ′) = (g′,g′) = 1 and (e′, f ′) = (e′,g′) = (f ′,g′) = 0.

Linear operator P is orthogonal operator and its matrix in orthonormal basis is orthogonal

matrix operator.

One can check the condition of orthogonality of matrix in equation (1) straightfor-

wardly:

PT · P =

 1 0 0
0

√
2
2

√
2
2

0 −
√
2
2

√
2
2

 1 0 0
0

√
2
2 −

√
2
2

0
√
2
2

√
2
2

 =

 1 0 0
0 1 0
0 0 1

 .

We see that detP = 1, hence he linear operator P does not change orientation.
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One can see from expression (1) that operator P rotates space E3 with rspect to the

axis directed along the vector e on the angle π
4 :

P =

 1 0 0
0

√
2
2 −

√
2
2

0
√
2
2

√
2
2

 =

 1 0 0
0 cos π4 − sin π

4
0 sin π

4 cos π4


5 Consider a linear operator P1 in E3 such that it transforms the orthonormal basis {e, f ,g}
into the orthonormal basis {f , e,g}:

P1(e) = f , P1(f) = e , P1(g) = g .

Consider also a linear orthogonal operator P2 such that it is the reflection operator with

respect to the plane spanned by vectors e and f .

Do operators P1, P2 preserve orientation?

Does operator P = P2 ◦ P1 preserve orientation?

Find eignevectors of operator P .

Show that P is rotation operator.

Operator P1 is orthogonal operator since it transforms orthonormal basis to orthonor-

mal one. We have that

P1(e) = f , P1(f) = e, P1(g) = g . (7.1)

The transition matrix of basis {e, f ,g} to basis {f , e,g} is a matrix 0 1 0
1 0 0
0 0 1

 since {f , e,g} = {e, f ,g}

 0 1 0
1 0 0
0 0 1

 .

Its determinant equals −1 < 0. Hence linear operator P1 changes orientation. It is

reflection operator (with respect to the plan spanned by vectors e + f and g,

These vectors and their arbitrary linear combinations are eigenvalues of this operator:

P (e + f) = f + e = e + f , P (g) = g , P (λ(e + f) + µg) = λ(e + f) + µg .

Now consider orthogonal operator P2. The plane spanned by vectors e, f remains

intact, hence P2(e) = e and P2(f) = f . Vector g transforms to vector −g since it is

orthogonal to vectors e and f . We have

P2(e) = e, P2(f) = f , P2(g) = −g . (7.2)

Vectors e, f and g are eigenvectors with eigenvalues 1, 1,−1 respectively. Matrix of operator

P2 in the basis {e, f , g} is equal to

 1 0 0
0 1 0
0 0 −1

 Determinant of operator P2 is equal to
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product of eigenvalues: detP = 1 · 1 · (−1) = 1. (Or you can calculate it using matrix of

operator P . )

This orthogonal operator as well as orthogonal operator P1 does not preserve orien-

tation. Using equations (7.1) and (7.2) we have that for operator P = P2 ◦ P1

P (e) = P2◦P1(e) = P2(f) = f , P (f) = P2◦P1(f) = P2(e) = e, P (g) = P2◦P1(g) = P2(g) = −g,

detP = det(P2 ◦ P1) = detP2 · detP1 = (−1)(−1) = 1. P is orthogonal matrix which

preserves orientation.

Consider the vector N = e + f . This is eigenvector of operator P :

P (N) = P (e + f) = f + e = N

We see that N is an eigenvector of non-identical orthogonal operator preserving orientation.

Thus axis of rotation is along the vector N. To calculate the angle of rotation notice that

vector g transforms to vector −g. Hence the rotation is on the angle π (1).

(1) One can see that an arbitrary vector a orthogonal to vector N (“axis”) changes to

vector −a.
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