Homework 3. Solutions
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b) Show explicitly that under the transformation {€',f'} = {e1,f'}A, an orthonormal

1 a) Show explicitly that matriz A, = 1$ an orthogonal matrix.

basis transforms to an orthonormal one.

c¢) Show that for orthogonal matriz A, the following relations are satisfied:

AV = AL =Ay,  Age=Ay A

a) Check straightforwardly that Ag - A = I (this is definition of orthogonal matrix):
T cosyp  sing cosp —sinep
A, A= . . =
—siny cosp singp  cosp
cos? ¢ + sin? ¢ —cospsinp +sinpcosp) (1 0
— sin ¢ cos ¢ + cos Y sin sin? ¢ + cos? ¢ - \0 1

b) Let {e,f} be an orthonormal basis, i.e. scalar products (e,e) = 1 and (e,f) = 0.
Then

' ey B cosp —sing : e’ = cos pe + sin of
{e’f}_{e’f}A“"_{e’f}(singp Cos ¢ ) e {f’:—sincpe+cosgof'

We have to check that {e’,f’} is also orthonormal basis, i.e. scalar products (e’,e) =

(f',f') =1 and (€/,f") = 0. Calculate:

(e',€") = (cos e +sin pf, cos pe +sin of ) = cos? p(e, e) +2cos psin p(e, f) +sin® p(f, f) =
cos>p-1+2cospsing-0+sinp-1=1,

(f',£') = (— sin pe-+cos pfs, — sin pe+cos of) = sin? (e, e)—2 cos psin p(e, f)+cos? o(f, f) =|
cos?p-14+2cospsing-0+sinp-1=1,

and

(€', f") = (cos pe + sin pf, — sin pe + cos pf ) =
— cos psin p(e, e)+(cos® p—sin? p) (e, f) +sin @ cos o(f, f) = — cos psin p+sinpcosp = 0.

cosp —singp

c) We have that A, = (singp cos

). Then calculate inverse matrix A;l. One

can see that A = A-1 = CO.SSD S
® ® —singy cosy

cos p = cos(—¢) and sin p = —sin(—¢p). Hence

AT A=l ( cos @ singp) _ <cos(—g0) —sin(—go)) A

v @ —sing cosp sin(—¢)  cos(—y)

), because A;/Lp = I . On the other hand



Now prove that A,49 = A, - Ap:

AoA, — [cos¢ —singp cos —sinf\ [ (cospcosf —sinpsinf) —(cosesinf + siny cos
#7007 \sing  coso sinf  cosf )\ (cospsinf +sinpcosfh) (cospcosf — sinpsin

cos(p+0) —sin(p+0)\
(Sin((p +6) cos(p+0) ) = Agro

Remark Geometrical meaning of this relation is that composition of “rotations” on
angle ¢ and 6 is “rotation” on angle ¢ + 6.

2 Let e, f be orthonormal basis in Fuclidean space E?. Consider a vector
n, =ecosy +fsinyp.

Let A be a linear orthogonal operator acting on the space E? such that A(e) = n,,.

We know that det A = £1 since A is orthogonal operator.

In the case if det A = 1, find the image A(f) of vector £ and an image A(x) of an
arbitrary vector x = ae + bf, write down the matriz of operator A in the basis e,f and
explain geometrical meaning of the operator A.

T How the answer will change if det A = —17

Let (CCL Z) be transition matrix of operator A in the orthonormal basis {e, f}:

/ey _ a b e =ae+cf
{e7f}_{eaf}A_{e7f}(c d>7 {f’:be—|—0f :

New basis is also orthonormal. We have that ¢’ = n, = ecos¢ + fsin ¢, hence matrix of
the orthogonal operator A in orthonormal basis {e,f} is

a b\ [cosp b
c d) \singp d

Matrix of orthogonal operator in orthonormal basis is an orthogonal matrix. Hence

(Cf)SgO b) is orthogonal matrix, i.e.
sing d

{bcos<p+dsin90:0
bV +d*=1 '

Put b = sinv, d = cos ¢, then bearing in mind the condition that det A = d cos p—bsinp =

1, we come to equations

0
1

Y

bcos ¢ + dsin p = sin ) cos ¢ + cos ¥ sin p = sin(p + )
d cos @ — bsin p = cos 1) cos ¢ — siny sin p = cos(p + )
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i.e. we come to ©» = —p + 2wk. Matrix of operator A in the basis {e,f} is equal to
cosp —singp

( sinp  cosy

lecture notes). A(f) = be + df = —sin pe + cos pf. For arbitrary vector x we have that

A is operator of rotation on the angle ¢ (see the section 1.7.1. in

A(x) = A(acle + x2f) = xlA(e) + xQA(f) = xl(e cosp + fsinp) + m2(—e sin p 4 f cos p) =

2 1

(z' cosp — x? sinp)e + (2! sinp + 2% cos )f

or in the other way: A(x) = A(z'e + 2°f) =
_ A ({e,f} xt _ fe,f) cosp —singp zt\ (e, f} x'cosp — z?sin @
- ’ x? v sing  cosy z2 ) W xtsing +2%cosp ) -

T One can see that in the case if det A = —1, then A is the operator of reflection with

respect to the line directed along the vector ne = cos Ze +sin £f.

Remark Note that condition that one can find an angle ¢ such that A(e) = cos pe +
sin pf is automaticall fullfilled for orthogonal operator. In fact solving this problem we re-
peated the calculation of matrix of orthogonal operator in E? (see lecture notes, subsection
1.7.1)

3 Let e, f be an orthonormal basis in Euclidean space E2.

Consider a vector N = e +f in E2.

Let A be an orthogonal operator acting on the space E? such that AN = N. (N is
eigenvector of A with eigenvalue 1.) Suppose that A is not identity operator.

a) Find an action of operator A on the vector R = e — f in E2.

b) Explain geometrical meaning of the operator A.

c) Write down the matrixz of operator A in the basis e, f.

a) Let A(R) = ae + bf. Vectors N and R are orthogonal to each other:
(NJR)=(e+f,e—f)=(e,e)—f,f=1-1=0,

Hence the vectors A(N) and A(R) have to be orthogonal to each other also, since orthog-
onal operator does not change the scalar product.

Hence vector A(R) has to be proportional to the vector R also, i.e. A(R) = aR.
The length of the vector is not changed under othogonal transformation, hence a = +1.
If a =1, ie. A(R) = R we see that operator A is identical on two linear independent
vectors: A(R) = R, A(N) = N hence it is identical on their span, i.e. A = id. On the
other hand we know that A is not identity operator. Hence a = —1. We come to the
conclusion that A(R) = —R.



b) Operator A is reflection operator with respect to the line directed along the vector IN.

c) We have that e = NtB and f = M5B Hence

A(e):A(N+R> _N-R

2 2

:f,A(f)zA(N_R) _N+R

:e’
2 2

i.e. the matrix of operator A in the bases {e,f} is <(1) (1))

4 Let {e,f,g} be an orthonormal basis in FBuclidean space E3. Consider a linear operator
P in E3 such that

¢ =Ple)=e, f =P(f)= \/T—H V2 o= Plg) = —\/—_f+§
Write down the matriz of operator P in the basis {e,f,g} to the order
Show that P is an orthogonal operator.
Show that orthogonal operator P preserves the orientation of E3.

Find an axis of the rotation and the angle of the rotation.

The matrix of operator P in the basis {e,f, g} is the trnasition matrix from basis
{e,f,g} to the basis {e/,f',g’'} = {P(e), P(f), P(g)}. We have

{ff\/_f}

{e',f', g} = {P(e), P(f), P(g)} =

2 5 &7y
1 0 0
fe.fg}| 0 ¥ ¥ (1)
0 X2 2
2 2

One can see that the matrix in (1) is invertible. The triple {€’,f’, g’} is a basis. It is easy
to see that the new basis {e’,f’, g’} is orthonormal basis since the former basis {e,f, g}
is orthonormal one: (€’,€') = (f',f') = (g',g’) = 1 and (&/,f') = (¢/,g') = (f',g') = 0.
Linear operator P is orthogonal operator and its matrix in orthonormal basis is orthogonal
matrix operator.

One can check the condition of orthogonality of matrix in equation (1) straightfor-

wardly:
1 0 0 1 0 0 1 0 O
prpo (0 2 2V [ oz E) (o0
V2 V2 V2 V2
0 - ¥ 0 % ¥ 001

We see that det P = 1, hence he linear operator P does not change orientation.
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One can see from expression (1) that operator P rotates space E3 with rspect to the

axis directed along the vector e on the angle Z:

4
1 0 0 1 0 0
P = 0 \/75 - \/75 = 0 cosi —sin%
0 \/75 \/75 0 sinf cos?

5 Consider a linear operator Py in E3 such that it transforms the orthonormal basis {e, f, g}

into the orthonormal basis {f, e, g}:
Pi(e)=f, Pi(f)=e, Pi(g)=g.

Consider also a linear orthogonal operator P, such that it is the reflection operator with
respect to the plane spanned by vectors e and f.

Do operators Py, Py preserve orientation?

Does operator P = Py o Py preserve orientation?

Find eignevectors of operator P.

Show that P is rotation operator.

Operator P; is orthogonal operator since it transforms orthonormal basis to orthonor-
mal one. We have that

Pi(e) =1, Pi(f) =e, Pi(g) =8g. (7.1)
The transition matrix of basis {e, f, g} to basis {f,e, g} is a matrix

0
since {f,e,g} = {e,f,g} | 1

O = O
— o O

1 1 0

0 0 0

0 0 0 1

Its determinant equals —1 < 0. Hence linear operator P; changes orientation. It is
reflection operator (with respect to the plan spanned by vectors e + f and g,

These vectors and their arbitrary linear combinations are eigenvalues of this operator:
Ple+f)=f+e=e+f,  P(g)=g,P(Ae+f)+ug)=Ae+f)+ug.

Now consider orthogonal operator P,. The plane spanned by vectors e,f remains
intact, hence Py(e) = e and Py(f) = f. Vector g transforms to vector —g since it is
orthogonal to vectors e and f. We have

P2<e):ea PQ(f):fa P2(g):_g (72)

Vectors e, f and g are eigenvectors with eigenvalues 1, 1, —1 respectively. Matrix of operator
1 0 0

P, in the basis {e,f,g} isequal to | 0 1 0 | Determinant of operator P is equal to
0 0 -1



product of eigenvalues: det P =1-1-(—1) = 1. (Or you can calculate it using matrix of
operator P. )

This orthogonal operator as well as orthogonal operator P; does not preserve orien-
tation. Using equations (7.1) and (7.2) we have that for operator P = Py o P,

P(e) = PyoPy(e) = Po(f) = £, P(f) = PoPi(f) = P2(e) = e, P(g) = P2oPi(g) = Pa(g) = —.

det P = det(Py 0o P;) = det P, - det P, = (—1)(—1) = 1. P is orthogonal matrix which
preserves orientation.

Consider the vector N = e + f. This is eigenvector of operator P:
P(N)=P(e+f)=f+e=N

We see that N is an eigenvector of non-identical orthogonal operator preserving orientation.
Thus axis of rotation is along the vector N. To calculate the angle of rotation notice that
vector g transforms to vector —g. Hence the rotation is on the angle = ().

(1) One can see that an arbitrary vector a orthogonal to vector N (“axis”) changes to
vector —a.



