Homework 3. Solutions

1 a) Show explicitly that matrix $A_{\varphi}=\left(\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right)$ is an orthogonal matrix.
b) Show explicitly that under the transformation $\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right\}=\left\{\mathbf{e}_{1}, \mathbf{f}^{\prime}\right\} A_{\varphi}$ an orthonormal basis transforms to an orthonormal one.
c) Show that for orthogonal matrix A_{φ} the following relations are satisfied:

$$
A_{\varphi}^{-1}=A_{\varphi}^{T}=A_{-\varphi}, \quad A_{\varphi+\theta}=A_{\varphi} \cdot A_{\theta}
$$

a) Check straightforwardly that $A_{\varphi}^{T} \cdot A=I$ (this is definition of orthogonal matrix):

$$
\begin{aligned}
& A_{\varphi}^{T} \cdot A=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)= \\
&\left(\begin{array}{cc}
\cos ^{2} \varphi+\sin ^{2} \varphi & -\cos \varphi \sin \varphi+\sin \varphi \cos \varphi \\
-\sin \varphi \cos \varphi+\cos \varphi \sin \varphi & \sin ^{2} \varphi+\cos ^{2} \varphi
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

b) Let $\{\mathbf{e}, \mathbf{f}\}$ be an orthonormal basis, i.e. scalar products $(\mathbf{e}, \mathbf{e})=1$ and $(\mathbf{e}, \mathbf{f})=0$. Then

$$
\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right\}=\{\mathbf{e}, \mathbf{f}\} A_{\varphi}=\{\mathbf{e}, \mathbf{f}\}\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \text {, i.e. }\left\{\begin{array}{l}
\mathbf{e}^{\prime}=\cos \varphi \mathbf{e}+\sin \varphi \mathbf{f} \\
\mathbf{f}^{\prime}=-\sin \varphi \mathbf{e}+\cos \varphi \mathbf{f}
\end{array}\right.
$$

We have to check that $\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right\}$ is also orthonormal basis, i.e. scalar products $\left(\mathbf{e}^{\prime}, \mathbf{e}\right)=$ $\left(\mathbf{f}^{\prime}, \mathbf{f}^{\prime}\right)=1$ and $\left(\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right)=0$. Calculate:

$$
\left(\mathbf{e}^{\prime}, \mathbf{e}^{\prime}\right)=(\cos \varphi \mathbf{e}+\sin \varphi \mathbf{f}, \cos \varphi \mathbf{e}+\sin \varphi \mathbf{f})=\cos ^{2} \varphi(\mathbf{e}, \mathbf{e})+2 \cos \varphi \sin \varphi(\mathbf{e}, \mathbf{f})+\sin ^{2} \varphi(\mathbf{f}, \mathbf{f})=
$$

$$
\cos ^{2} \varphi \cdot 1+2 \cos \varphi \sin \varphi \cdot 0+\sin ^{2} \varphi \cdot 1=1
$$

$\left(\mathbf{f}^{\prime}, \mathbf{f}^{\prime}\right)=\left(-\sin \varphi \mathbf{e}+\cos \varphi \mathbf{f}_{2},-\sin \varphi \mathbf{e}+\cos \varphi \mathbf{f}\right)=\sin ^{2} \varphi(\mathbf{e}, \mathbf{e})-2 \cos \varphi \sin \varphi(\mathbf{e}, \mathbf{f})+\cos ^{2} \varphi(\mathbf{f}, \mathbf{f})=$ $\cos ^{2} \varphi \cdot 1+2 \cos \varphi \sin \varphi \cdot 0+\sin ^{2} \varphi \cdot 1=1$,
and

$$
\left(\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right)=(\cos \varphi \mathbf{e}+\sin \varphi \mathbf{f},-\sin \varphi \mathbf{e}+\cos \varphi \mathbf{f})=
$$

$-\cos \varphi \sin \varphi(\mathbf{e}, \mathbf{e})+\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right)(\mathbf{e}, \mathbf{f})+\sin \varphi \cos \varphi(\mathbf{f}, \mathbf{f})=-\cos \varphi \sin \varphi+\sin \varphi \cos \varphi=0$.
c) We have that $A_{\varphi}=\left(\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right)$. Then calculate inverse matrix A_{φ}^{-1}. One can see that $A_{\varphi}^{T}=A_{\varphi}^{-1}=\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)$, because $A_{\varphi}^{T} A_{\varphi}=I$. On the other hand $\cos \varphi=\cos (-\varphi)$ and $\sin \varphi=-\sin (-\varphi)$. Hence

$$
A_{\varphi}^{T}=A_{\varphi}^{-1}=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)=\left(\begin{array}{cc}
\cos (-\varphi) & -\sin (-\varphi) \\
\sin (-\varphi) & \cos (-\varphi)
\end{array}\right)=A_{-\varphi}
$$

Now prove that $A_{\varphi+\theta}=A_{\varphi} \cdot A_{\theta}$:

$$
\begin{gathered}
A_{\varphi} \cdot A_{\theta}=\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array} { c }
{ (\operatorname { c o s } \varphi \operatorname { c o s } \theta - \operatorname { s i n } \varphi \operatorname { s i n } \theta) } \\
{ (\operatorname { c o s } \varphi \operatorname { s i n } \theta + \operatorname { s i n } \varphi \operatorname { c o s } \theta) }
\end{array} \left(\begin{array}{cc}
\cos \varphi \sin \theta+\sin \varphi \cos \\
\cos \varphi \cos \theta-\sin \varphi \sin \theta \\
\left(\begin{array}{cc}
\cos (\varphi+\theta) & -\sin (\varphi+\theta) \\
\sin (\varphi+\theta) & \cos (\varphi+\theta)
\end{array}\right)=A_{\varphi+\theta}
\end{array}\right.\right.
\end{gathered}
$$

Remark Geometrical meaning of this relation is that composition of "rotations" on angle φ and θ is "rotation" on angle $\varphi+\theta$.
$\mathbf{2}$ Let \mathbf{e}, \mathbf{f} be orthonormal basis in Euclidean space \mathbf{E}^{2}. Consider a vector

$$
\mathbf{n}_{\varphi}=\mathbf{e} \cos \varphi+\mathbf{f} \sin \varphi
$$

Let A be a linear orthogonal operator acting on the space \mathbf{E}^{2} such that $A(\mathbf{e})=\mathbf{n}_{\varphi}$. We know that $\operatorname{det} A= \pm 1$ since A is orthogonal operator.
In the case if $\operatorname{det} A=1$, find the image $A(\mathbf{f})$ of vector \mathbf{f} and an image $A(\mathbf{x})$ of an arbitrary vector $\mathbf{x}=a \mathbf{e}+b \mathbf{f}$, write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f} and explain geometrical meaning of the operator A.
\dagger How the answer will change if $\operatorname{det} A=-1$?
Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be transition matrix of operator A in the orthonormal basis $\{\mathbf{e}, \mathbf{f}\}$:

$$
\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right\}=\{\mathbf{e}, \mathbf{f}\} A=\{\mathbf{e}, \mathbf{f}\}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad\left\{\begin{array}{l}
\mathbf{e}^{\prime}=a \mathbf{e}+c \mathbf{f} \\
\mathbf{f}^{\prime}=b \mathbf{e}+c \mathbf{f}
\end{array}\right.
$$

New basis is also orthonormal. We have that $\mathbf{e}^{\prime}=\mathbf{n}_{\varphi}=\mathbf{e} \cos \varphi+\mathbf{f} \sin \varphi$, hence matrix of the orthogonal operator A in orthonormal basis $\{\mathbf{e}, \mathbf{f}\}$ is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\cos \varphi & b \\
\sin \varphi & d
\end{array}\right)
$$

Matrix of orthogonal operator in orthonormal basis is an orthogonal matrix. Hence $\left(\begin{array}{ll}\cos \varphi & b \\ \sin \varphi & d\end{array}\right)$ is orthogonal matrix, i.e.

$$
\left\{\begin{array}{l}
b \cos \varphi+d \sin \varphi=0 \\
b^{2}+d^{2}=1
\end{array}\right.
$$

Put $b=\sin \psi, d=\cos \psi$, then bearing in mind the condition that $\operatorname{det} A=d \cos \varphi-b \sin \varphi=$ 1 , we come to equations

$$
\left\{\begin{array}{l}
b \cos \varphi+d \sin \varphi=\sin \psi \cos \varphi+\cos \psi \sin \varphi=\sin (\varphi+\psi)=0 \\
d \cos \varphi-b \sin \varphi=\cos \psi \cos \varphi-\sin \psi \sin \varphi=\cos (\varphi+\psi)=1
\end{array}\right.
$$

i.e. we come to $\psi=-\varphi+2 \pi k$. Matrix of operator A in the basis $\{\mathbf{e}, \mathbf{f}\}$ is equal to $\left(\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right) . A$ is operator of rotation on the angle φ (see the section 1.7.1. in lecture notes). $A(\mathbf{f})=b \mathbf{e}+d \mathbf{f}=-\sin \varphi \mathbf{e}+\cos \varphi \mathbf{f}$. For arbitrary vector \mathbf{x} we have that

$$
\begin{aligned}
A(\mathbf{x})=A\left(x^{1} \mathbf{e}+x^{2} \mathbf{f}\right)= & x^{1} A(\mathbf{e})+x^{2} A(\mathbf{f})=x^{1}(\mathbf{e} \cos \varphi+\mathbf{f} \sin \varphi)+x^{2}(-\mathbf{e} \sin \varphi+\mathbf{f} \cos \varphi)= \\
& \left(x^{1} \cos \varphi-x^{2} \sin \varphi\right) \mathbf{e}+\left(x^{1} \sin \varphi+x^{2} \cos \varphi\right) \mathbf{f}
\end{aligned}
$$

or in the other way: $A(\mathbf{x})=A\left(x^{1} \mathbf{e}+x^{2} \mathbf{f}\right)=$

$$
=A\left(\{\mathbf{e}, \mathbf{f}\}\binom{x^{1}}{x^{2}}\right)=\{\mathbf{e}, \mathbf{f}\}\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\binom{x^{1}}{x^{2}}=\{\mathbf{e}, \mathbf{f}\}\binom{x^{1} \cos \varphi-x^{2} \sin \varphi}{x^{1} \sin \varphi+x^{2} \cos \varphi} .
$$

${ }^{\dagger}$ One can see that in the case if $\operatorname{det} A=-1$, then A is the operator of reflection with respect to the line directed along the vector $\mathbf{n}_{\frac{\varphi}{2}}=\cos \frac{\varphi}{2} \mathbf{e}+\sin \frac{\varphi}{2} \mathbf{f}$.

Remark Note that condition that one can find an angle φ such that $A(\mathbf{e})=\cos \varphi \mathbf{e}+$ $\sin \varphi \mathbf{f}$ is automaticall fullfilled for orthogonal operator. In fact solving this problem we repeated the calculation of matrix of orthogonal operator in \mathbf{E}^{2} (see lecture notes, subsection 1.7.1)

3 Let \mathbf{e}, \mathbf{f} be an orthonormal basis in Euclidean space \mathbf{E}^{2}.
Consider a vector $\mathbf{N}=\mathbf{e}+\mathbf{f}$ in \mathbf{E}^{2}.
Let A be an orthogonal operator acting on the space \mathbf{E}^{2} such that $A \mathbf{N}=\mathbf{N}$. (\mathbf{N} is eigenvector of A with eigenvalue 1.) Suppose that A is not identity operator.
a) Find an action of operator A on the vector $\mathbf{R}=\mathbf{e}-\mathbf{f}$ in \mathbf{E}^{2}.
b) Explain geometrical meaning of the operator A.
c) Write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f}.
a) Let $A(\mathbf{R})=a \mathbf{e}+b \mathbf{f}$. Vectors \mathbf{N} and \mathbf{R} are orthogonal to each other:

$$
(\mathbf{N}, \mathbf{R})=(\mathbf{e}+\mathbf{f}, \mathbf{e}-\mathbf{f})=(\mathbf{e}, \mathbf{e})-\mathbf{f}, \mathbf{f}=1-1=0
$$

Hence the vectors $A(\mathbf{N})$ and $A(\mathbf{R})$ have to be orthogonal to each other also, since orthogonal operator does not change the scalar product.

Hence vector $A(\mathbf{R})$ has to be proportional to the vector \mathbf{R} also, i.e. $A(\mathbf{R})=a \mathbf{R}$. The length of the vector is not changed under othogonal transformation, hence $a= \pm 1$. If $a=1$, i.e. $A(\mathbf{R})=\mathbf{R}$ we see that operator A is identical on two linear independent vectors: $A(\mathbf{R})=\mathbf{R}, A(\mathbf{N})=\mathbf{N}$ hence it is identical on their span, i.e. $A=\mathbf{i d}$. On the other hand we know that A is not identity operator. Hence $a=-1$. We come to the conclusion that $A(\mathbf{R})=-\mathbf{R}$.
b) Operator A is reflection operator with respect to the line directed along the vector \mathbf{N}.
c) We have that $\mathbf{e}=\frac{\mathbf{N}+\mathbf{R}}{2}$ and $\mathbf{f}=\frac{\mathbf{N}-\mathbf{R}}{2}$. Hence

$$
A(\mathbf{e})=A\left(\frac{\mathbf{N}+\mathbf{R}}{2}\right)=\frac{\mathbf{N}-\mathbf{R}}{2}=\mathbf{f}, A(\mathbf{f})=A\left(\frac{\mathbf{N}-\mathbf{R}}{2}\right)=\frac{\mathbf{N}+\mathbf{R}}{2}=\mathbf{e}
$$

i.e. the matrix of operator A in the bases $\{\mathbf{e}, \mathbf{f}\}$ is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
$\mathbf{4}$ Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be an orthonormal basis in Euclidean space \mathbf{E}^{3}. Consider a linear operator P in \mathbf{E}^{3} such that

$$
\mathbf{e}^{\prime}=P(\mathbf{e})=\mathbf{e}, \quad \mathbf{f}^{\prime}=P(\mathbf{f})=\frac{\sqrt{2}}{2} \mathbf{f}+\frac{\sqrt{2}}{2} \mathbf{g}, \quad \mathbf{g}^{\prime}=P(\mathbf{g})=-\frac{\sqrt{2}}{2} \mathbf{f}+\frac{\sqrt{2}}{2} \mathbf{g} .
$$

Write down the matrix of operator P in the basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ to the order
Show that P is an orthogonal operator.
Show that orthogonal operator P preserves the orientation of \mathbf{E}^{3}.
Find an axis of the rotation and the angle of the rotation.
The matrix of operator P in the basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is the trnasition matrix from basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ to the basis $\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}, \mathbf{g}^{\prime}\right\}=\{P(\mathbf{e}), P(\mathbf{f}), P(\mathbf{g})\}$. We have

$$
\begin{gather*}
\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}, \mathbf{g}^{\prime}\right\}=\{P(\mathbf{e}), P(\mathbf{f}), P(\mathbf{g})\}=\left\{\mathbf{e}, \frac{\sqrt{2}}{2} \mathbf{f}+\frac{\sqrt{2}}{2} \mathbf{g},-\frac{\sqrt{2}}{2} \mathbf{f}+\frac{\sqrt{2}}{2} \mathbf{g}\right\}= \\
\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right) \tag{1}
\end{gather*}
$$

One can see that the matrix in (1) is invertible. The triple $\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}, \mathbf{g}^{\prime}\right\}$ is a basis. It is easy to see that the new basis $\left\{\mathbf{e}^{\prime}, \mathbf{f}^{\prime}, \mathbf{g}^{\prime}\right\}$ is orthonormal basis since the former basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is orthonormal one: $\left(\mathbf{e}^{\prime}, \mathbf{e}^{\prime}\right)=\left(\mathbf{f}^{\prime}, \mathbf{f}^{\prime}\right)=\left(\mathbf{g}^{\prime}, \mathbf{g}^{\prime}\right)=1$ and $\left(\mathbf{e}^{\prime}, \mathbf{f}^{\prime}\right)=\left(\mathbf{e}^{\prime}, \mathbf{g}^{\prime}\right)=\left(\mathbf{f}^{\prime}, \mathbf{g}^{\prime}\right)=0$. Linear operator P is orthogonal operator and its matrix in orthonormal basis is orthogonal matrix operator.

One can check the condition of orthogonality of matrix in equation (1) straightforwardly:

$$
P^{T} \cdot P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We see that $\operatorname{det} P=1$, hence he linear operator P does not change orientation.

One can see from expression (1) that operator P rotates space \mathbf{E}^{3} with rspect to the axis directed along the vector \mathbf{e} on the angle $\frac{\pi}{4}$:

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
0 & \sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right)
$$

5 Consider a linear operator P_{1} in \mathbf{E}^{3} such that it transforms the orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ into the orthonormal basis $\{\mathbf{f}, \mathbf{e}, \mathbf{g}\}$:

$$
P_{1}(\mathbf{e})=\mathbf{f}, \quad P_{1}(\mathbf{f})=\mathbf{e}, \quad P_{1}(\mathbf{g})=\mathbf{g} .
$$

Consider also a linear orthogonal operator P_{2} such that it is the reflection operator with respect to the plane spanned by vectors \mathbf{e} and \mathbf{f}.

Do operators P_{1}, P_{2} preserve orientation?
Does operator $P=P_{2} \circ P_{1}$ preserve orientation?
Find eignevectors of operator P.
Show that P is rotation operator.
Operator P_{1} is orthogonal operator since it transforms orthonormal basis to orthonormal one. We have that

$$
\begin{equation*}
P_{1}(\mathbf{e})=\mathbf{f}, P_{1}(\mathbf{f})=\mathbf{e}, P_{1}(\mathbf{g})=\mathbf{g} . \tag{7.1}
\end{equation*}
$$

The transition matrix of basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ to basis $\{\mathbf{f}, \mathbf{e}, \mathbf{g}\}$ is a matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \text { since }\{\mathbf{f}, \mathbf{e}, \mathbf{g}\}=\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Its determinant equals $-1<0$. Hence linear operator P_{1} changes orientation. It is reflection operator (with respect to the plan spanned by vectors $\mathbf{e}+\mathbf{f}$ and \mathbf{g},

These vectors and their arbitrary linear combinations are eigenvalues of this operator:

$$
P(\mathbf{e}+\mathbf{f})=\mathbf{f}+\mathbf{e}=\mathbf{e}+\mathbf{f}, \quad P(\mathbf{g})=\mathbf{g}, P(\lambda(\mathbf{e}+\mathbf{f})+\mu \mathbf{g})=\lambda(\mathbf{e}+\mathbf{f})+\mu \mathbf{g} .
$$

Now consider orthogonal operator P_{2}. The plane spanned by vectors e,f remains intact, hence $P_{2}(\mathbf{e})=\mathbf{e}$ and $P_{2}(\mathbf{f})=\mathbf{f}$. Vector \mathbf{g} transforms to vector $-\mathbf{g}$ since it is orthogonal to vectors \mathbf{e} and \mathbf{f}. We have

$$
\begin{equation*}
P_{2}(\mathbf{e})=\mathbf{e}, P_{2}(\mathbf{f})=\mathbf{f}, P_{2}(\mathbf{g})=-\mathbf{g} . \tag{7.2}
\end{equation*}
$$

Vectors \mathbf{e}, \mathbf{f} and \mathbf{g} are eigenvectors with eigenvalues $1,1,-1$ respectively. Matrix of operator P_{2} in the basis $\{\mathbf{e}, \mathbf{f}, g\}$ is equal to $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ Determinant of operator P_{2} is equal to
product of eigenvalues: $\operatorname{det} P=1 \cdot 1 \cdot(-1)=1$. (Or you can calculate it using matrix of operator P.)

This orthogonal operator as well as orthogonal operator P_{1} does not preserve orientation. Using equations (7.1) and (7.2) we have that for operator $P=P_{2} \circ P_{1}$
$P(\mathbf{e})=P_{2} \circ P_{1}(\mathbf{e})=P_{2}(\mathbf{f})=\mathbf{f}, P(\mathbf{f})=P_{2} \circ P_{1}(\mathbf{f})=P_{2}(\mathbf{e})=\mathbf{e}, P(\mathbf{g})=P_{2} \circ P_{1}(\mathbf{g})=P_{2}(\mathbf{g})=-\mathbf{g}$,
$\operatorname{det} P=\operatorname{det}\left(P_{2} \circ P_{1}\right)=\operatorname{det} P_{2} \cdot \operatorname{det} P_{1}=(-1)(-1)=1 . \quad P$ is orthogonal matrix which preserves orientation.

Consider the vector $\mathbf{N}=\mathbf{e}+\mathbf{f}$. This is eigenvector of operator P :

$$
P(\mathbf{N})=P(\mathbf{e}+\mathbf{f})=\mathbf{f}+\mathbf{e}=\mathbf{N}
$$

We see that \mathbf{N} is an eigenvector of non-identical orthogonal operator preserving orientation. Thus axis of rotation is along the vector \mathbf{N}. To calculate the angle of rotation notice that vector \mathbf{g} transforms to vector $-g$. Hence the rotation is on the angle $\pi^{(1)}$.

[^0]
[^0]: ${ }^{(1)}$ One can see that an arbitrary vector a orthogonal to vector \mathbf{N} ("axis") changes to vector $-\mathbf{a}$.

