Homework 5a. Solutions.

1 Consider the following curves:

Draw the images of these curves.
Write down their velocity vectors.
Indicate parameterised curves which have the same image (equivalent curves).
In each equivalence class of parameterised curves indicate curves with same and opposite orientations.

$$
\begin{aligned}
C_{1}: \mathbf{v}(t) & =\binom{v_{x}}{v_{y}}=\binom{1}{4 t}, C_{2}: \mathbf{v}(t)=\binom{v_{x}}{v_{y}}=\binom{1}{4 t}, C_{3}: \mathbf{v}(t)=\binom{2}{16 t}, C_{4}: \mathbf{v}(t)= \\
\binom{-\sin t}{-2 \sin 2 t} & , \\
C_{5}: \mathbf{v}(t) & =\binom{1}{2}, C_{6}: \mathbf{v}(t)=\binom{-1}{-2}, C_{7}: \mathbf{v}(t)=\binom{\sin 2 t}{2 \sin 2 t}, \\
C_{8}: \mathbf{v}(t) & =\binom{1}{\frac{-t}{\sqrt{1-t^{2}}}}, C_{9}: \mathbf{v}(t)=\binom{-\sin t}{\cos t}, C_{10}: \mathbf{v}(t)=\binom{-2 \sin 2 t}{2 \cos 2 t} \\
C_{11}: \mathbf{v}(t) & =\binom{-\sin t}{\cos t}, C_{12}: \mathbf{v}(t)=\binom{-a \sin t}{b \cos t}
\end{aligned}
$$

$$
\text { Curves } C_{1}, C_{2}, C_{3}, C_{4}
$$

Curves C_{1}, C_{3} and C_{4} have the same image: it is piece of parabola $y=2 x^{2}-1$ between points $(0,1)$ and $(1,1)$. Image of the curve C_{2} is piece of the same parabola $y=2 x^{2}-1$ between points $(-1,1)$ and $(1,1)$. Image of curve C_{1} is a part of the image of the curve C_{2}.

Curve C_{3} can be obtained from the curve C_{1} by reparameterisation $t(\tau)=2 \tau, \mathbf{r}_{3}(\tau)=$ $\mathbf{r}_{1}(t(\tau))=\mathbf{r}_{1}(2 \tau)$. Respectively $\mathbf{v}_{3}(\tau)=t^{\prime}(\tau) \mathbf{v}_{1}(t(\tau))=2 \mathbf{v}_{1}(2 \tau)$. Curve C_{4} can be obtained from the curve C_{1} by reparameterisation $t(\tau)=\cos \tau, \mathbf{r}_{4}(\tau)=\mathbf{r}_{1}(t(\tau))=\mathbf{r}_{1}(\cos \tau)$. Respectively $\mathbf{v}_{4}(\tau)=\binom{-\sin \tau}{-2 \sin 2 \tau}=t^{\prime}(\tau) \mathbf{v}_{1}(t(\tau))=-\sin \tau \mathbf{v}_{1}(\cos \tau)=-\sin \tau\binom{1}{2 \cos \tau}$.

$$
\begin{aligned}
& C_{1}: \mathbf{r}(t)\left\{\begin{array}{l}
x=t \\
y=2 t^{2}-1
\end{array}, 0<t<1, \quad C_{2}: \mathbf{r}(t)\left\{\begin{array}{l}
x=t \\
y=2 t^{2}-1
\end{array},-1<t<1,\right.\right. \\
& C_{3}: \mathbf{r}(t)\left\{\begin{array}{l}
x=2 t \\
y=8 t^{2}-1
\end{array}, 0<t<\frac{1}{2}, \quad C_{4}: \mathbf{r}(t)\left\{\begin{array}{l}
x=\cos t \\
y=\cos 2 t
\end{array}, 0<t<\frac{\pi}{2},\right.\right. \\
& C_{5}: \mathbf{r}(t)\left\{\begin{array}{l}
x=t \\
y=2 t-1
\end{array}, 0<t<1, \quad C_{6}: \mathbf{r}(t)\left\{\begin{array}{l}
x=1-t \\
y=1-2 t
\end{array}, 0<t<1,\right.\right. \\
& C_{7}: \mathbf{r}(t)\left\{\begin{array}{l}
x=\sin ^{2} t \\
y=-\cos 2 t
\end{array}, \quad 0<t<\frac{\pi}{2}, \quad C_{8}: \mathbf{r}(t)\left\{\begin{array}{l}
x=t \\
y=\sqrt{1-t^{2}},-1<t<1,
\end{array}\right.\right. \\
& C_{9}: \mathbf{r}(t)\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array}, 0<t<\pi, \quad C_{10}: \mathbf{r}(t)\left\{\begin{array}{l}
x=\cos 2 t \\
y=\sin 2 t
\end{array}, 0<t<\frac{\pi}{2},\right.\right. \\
& C_{11}: \mathbf{r}(t)\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array}, 0<t<2 \pi, \quad C_{12}: \mathbf{r}(t)\left\{\begin{array}{l}
x=a \cos t \\
y=b \sin t
\end{array}, 0<t<2 \pi\right. \text { (ellipse), }\right.
\end{aligned}
$$

We see that curves C_{1}, C_{3}, C_{4} are equivalent. They belong to the same equivalence class of non-parameterised curves. Equivalent curves C_{1} and C_{3} have the same orientation because diffeomorphism $t=2 \tau$ has positive derivative. Equivalent curves C_{1} and C_{4} (and so C_{3} and C_{4}) have opposite orientation because diffeomorphism $t=\cos \tau$ has negative derivative (for $0<t<1$).

$$
\text { Curves } C_{5}, C_{6}, C_{7}
$$

Now consider curves C_{5}, C_{6}, C_{7}. It is easy to see that they all have the same imagesegment of the line between point $(0,-1)$ and $(1,1)$. These three curves belong to the same equivalence class of non-parameterised curves. Curve C_{6} can be obtained from the curve C_{5} by reparameterisation $t(\tau)=1-\tau, \mathbf{r}_{6}(\tau)=\mathbf{r}_{5}(t(\tau))=\mathbf{r}_{5}(1-\tau)$. Respectively $\mathbf{v}_{6}(\tau)=t^{\prime}(\tau) \mathbf{v}_{5}(t(\tau))=-\mathbf{v}_{5}(1-\tau)$. (Velocity just changes its direction on opposite.) Curve C_{7} can be obtained from the curve C_{5} by reparameterisation $t(\tau)=\sin ^{2} \tau, \mathbf{r}_{7}(\tau)=$ $\mathbf{r}_{5}(t(\tau))=\mathbf{r}_{5}(\sin \tau)$. Respectively $\mathbf{v}_{7}(\tau)=\binom{\sin 2 \tau}{2 \sin 2 \tau}=t^{\prime}(\tau) \mathbf{v}_{5}(t(\tau))=\sin 2 \tau \mathbf{v}_{5}(\sin \tau)=$ $\sin 2 \tau\binom{1}{2}$.

Equivalent curves C_{5} and C_{7} have the same orientation because derivative of diffeomorphism $t=\sin ^{2} \tau$ is positive (on the interval $0<t<1$). Curve C_{6} has orinetation opposite to the orientation of the curves C_{5} and C_{6} because derivative of diffeomorphism $t=1-\tau$ is negative. Or in other words when we go to the curve C_{6} starting point becomes ending point and vice versa.

$$
\text { Curves } C_{8}, C_{9}, C_{10}
$$

Now consider curves C_{8}, C_{9}, C_{10}. It is easy to see that they all have the same imageupper part of the circle $x^{2}+y^{2}=1$. These three curves belong to the same equivalence class of non-parameterised curves. Curve C_{9} can be obtained from the curve C_{8} by reparameterisation $t(\tau)=\cos \tau$. Then $\mathbf{r}_{9}(\tau)=\mathbf{r}_{8}(t(\tau))=\mathbf{r}_{8}(\cos \tau)$. Respectively $\mathbf{v}_{9}(\tau)=t^{\prime}(\tau) \mathbf{v}_{8}(t(\tau))=-\sin \tau \mathbf{v}_{8}(\cos \tau)$.

Curve C_{10} can be obtained from the curve C_{8} by reparameterisation $t(\tau)=2 \tau$, $\mathbf{r}_{10}(\tau)=\mathbf{r}_{8}(t(\tau))=\mathbf{r}_{8}(2 \tau)$. Respectively $\mathbf{v}_{10}(\tau)=t^{\prime}(\tau) \mathbf{v}_{8}(t(\tau))=2 \tau \mathbf{v}_{8}(2 \tau)$.

Equivalent curves C_{8} and C_{10} have the same orientation because derivative of diffeomorphism $t=2 \tau$ is positive. Curve C_{9} has orinetation opposite to the orientation of the curves C_{8} and C_{10} because derivative of diffeomorphism $t=\cos \tau$ on the interval $0<t<\pi$ is negative.

$$
\text { Curves } C_{11}, C_{12}
$$

Image of the curve C_{11} is circle $x^{2}+y^{2}=1$.
Image of the curve C_{12} is ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

