
Homework 5b. Solutions.

Here we focus attention on calculations in Cartesian and polar coordinates

1 Calculate differential forms ω = xdy − ydx, σ = xdx + ydy and vector fields A =

x∂x + y∂y, B = x∂y − y∂x in polar coordinates.

This exercise was done during the XII-th lecture (see the subsection 2.3.5 ”Differential

forms in arbitrary coordinates” in Lecture notes). Just recall the answers:

ω = xdy−ydx = r2dϕ , σ = xdx+ydy = rdr , A = x
∂

∂x
+y

∂

∂y
= r

∂

∂r
,B = x

∂

∂y
−y ∂

∂x
=

∂

∂ϕ
,

(1.1)

where {x = r cosϕ
y = r sinϕ ,

{
r =

√
x2 + y2

ϕ = arctan y
x

. (1.2)

2 Consider differential forms ω = xdy − ydx, σ = xdx + ydy and vector fields A =

x∂x + y∂y, B = x∂y − y∂x
Calculate ω(A), ω(B), σ(A), σ(B).

We will solve this problem first in Cartesian coordinates then in polar coordinates

Cartesian coordinates

:

ω(A) = (xdy − ydx)
(
x ∂
∂x + y ∂

∂y

)
=

x2dy

(
∂

∂x

)
+xydy

(
∂

∂y

)
− yxdx

(
∂

∂x

)
− y2dx

(
∂

∂y

)
= x2 · 0 +xy · 1− yx · 1− y2 · 0 = 0 .

Later we often denote vector field ∂
∂x by ∂x, vector field ∂

∂y by ∂y...

ω(B) = (xdy− ydx) (x∂y − y∂x) = x2dy(∂y)− xydy(∂x)− yxdx(∂y) + y2dx(∂x) = x2 · 1−
xy · 0− yx · 0 + y2 · 1 = x2 + y2 = r2,

σ(A) = (xdx+ ydy) (x∂x + y∂y) = x2dx(∂x) + xydx(∂y) + yxdy(∂x) + y2dy(∂y) = x2 · 1 +

xy · 0 + yx · 0 + y2 · 1 = x2 + y2 = r2,

σ(B) = (xdx+ ydy) (x∂y − y∂x) = x2dx(∂y)− xydx(∂x) + yxdy(∂y)− y2dy(∂x) = x2 · 0−
xy · 1 + yx · 1− y2 · 0 = 0.

Polar coordinates

Using formulae (1.1) and (1.2) from previous problem we come to

ω(A) = r2dϕ

(
r
∂

∂r

)
= 0 , ω(B) = r2dϕ

(
∂

∂ϕ

)
= r2 = x2+y2 , σ(A) = rdr

(
r
∂

∂r

)
= r2 = x2+y2 , σ(B) = rdr

(
∂

∂ϕ

)
= 0 ,

Note that for this exercise, the solution in polar coordinates is much more

shorter!
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3 Consider a function f = x3 − y3.

Calculate the value of 1-form ω = df on the vector field B = x∂y − y∂x.

In Cartesian coordinates

df(B) = ∂Bf = (x∂y − y∂x)(x3 − y3) = −3xy2 − 3yx4 = −− 3xy(x+ y) .

Another solution in Cartesian coordinates ω = df = 3x2dx− 3y2dy, thus

ω(B) = 3x2dx− 3y2dy(x∂y − y∂x) = −3x2ydx(∂x)− 3y2dy(∂y) = −3xy(x+ y) .

in polar coordinates:

f = x3 − y3 = r3(cos3 ϕ− sin3 ϕ) hence using (1.1) we come to

df(B) = ∂Bf =
∂

∂ϕ

(
r3(cos3 ϕ− sin3 ϕ)

)
= −3r3 sinϕ cosϕ(cosϕ+ sinϕ) = −3xy(x+ y) .

4 Calculate the derivatives of the functions f = x2+y2 , g = y2−x2 and h = q log |r| =
q log

(√
x2 + y2

)
(q is a constant) along vector fields A = x∂x + y∂y and B = x∂y − y∂x

a) calculating directional derivatives ∂Af, ∂Ag, ∂Ah, ∂Bf, ∂Bg, ∂Bh

b) calculating df(A), dg(A), dh(A), df(B), dg(B), dh(B).

First do using directional derivatives in Cartesian coordinates, then using formula

(1.1), (1.2) in polar coordinates:

For vector field A = x ∂
∂x + y ∂

∂y = r ∂
∂r , we have

in Cartesian coordinates ∂Af =
(
x ∂
∂x + y ∂

∂y

)
(x2 + y2) = x · 2x+ y · 2y = 2(x2 + y2),

in polar coordinates: f = r2, ∂Af = r ∂
∂r r

2 = 2r2 = 2(x2 + y2).

in Cartesian coordinates ∂Ag =
(
x ∂
∂x + y ∂

∂y

)
(y2−x2) = x·(−2x)+y ·2y = 2(y2−x2),

in polar coordinates: g = r2(sin2 ϕ− cos2 ϕ) = −2r2 cos 2ϕ, ∂Ag = r ∂
∂r (−r2 cos 2ϕ) =

2r2 = −2r2 cos 2ϕ.

in Cartesian coordinates ∂Ah = x∂h
∂x + y ∂h

∂y = x2q
x2+y2 + y2q

x2+y2 = q,

in polar coordinates: ∂Ah = r ∂
∂r q log r = q.

For vector field B = x ∂
∂y − y

∂
∂x = ∂

∂ϕ ,

we have

in Cartesian coordinates ∂Bf =
(
x ∂
∂y − y

∂
∂x

)
(x2 + y2) = −y · 2x+ x · 2y = 0,

in polar coordinates: f = r2, ∂Bf = ∂
∂ϕr

2 = 0.

in Cartesian coordinates ∂Bg = −y ∂g
∂x + x∂g

∂y = −y · (−2x) + x · 2y = 4xy,
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in polar coordinates: g = −r2 cos 2ϕ, ∂Bg = ∂
∂ϕ (−r2 cos 2ϕ) = 2r2 sin 2ϕ = 4r2 cosϕ sinϕ =

(4r cosϕ)(r sinϕ) = 4xy.

in Cartesian coordinates ∂Bh = −y ∂h
∂x + x∂h

∂y = −xyq
x2+y2 + xyq

x2+y2 = 0,

in polar coordinates: ∂Bh = ∂
∂ϕq log r = 0.

b) Now calculate using 1-form using the fact that ∂Af = df(A):

We have that df = d(x2 + y2) = 2xdx + 2ydy, dg = d
(
y2 − x2

)
= gxdx + gydy =

(2ydy − 2xdx), dh = d
(
q log

√
x2 + y2

)
= hxdx+ hydy = qxdx+qydy

x2+y2 .

Hence

in Cartesian: ∂Af = df(A) = (2xdx + 2ydy)(x∂x + y∂y) = 2x2dx(∂x) + 2y2dy(∂y) =

2x2 + 2y2,

in polar f = r2, = df = 2rdr, ∂Af = df(A) = (2rdr)(r∂r) = 2r2.

in Cartesian: ∂Ag = dg(A) = (2ydy − 2xdx)((x∂x + y∂y)) = 2ydy(y∂y)− 2xdx(x∂x) =

2y2 − 2x2.

in polar g = −r2 cos 2ϕ, dg = 2r2 sin 2ϕdϕ−2r cos 2ϕdr, ∂Ag = dg(A) = (2r2 sin 2ϕdϕ−
2r cos 2ϕdr)(r∂r) = −2r2 cos 2ϕ.

in Cartesian ∂Ah = dh(A) = qxdx+qydy
x2+y2 (x∂x + y∂y) =

qxdx(x∂x)+qydy(y∂y)
x2+y2 = qx2+qy2

x2+y2 = q

in polar h = q log r ∂Ah = dh(A) = qdr
r

(
∂
∂r

)
= q.

Now for vector field B

in Cartesian ∂Bf = df(B) = (2xdx+2ydy)(−y∂x+x∂y) = −2xydx(∂x)+2xydy(∂y) = 0,

in polar, f = r2, df = 2rdr, ∂Bf = df(B) = (2rdr)(∂ϕ) = 0,

in Cartesian ∂Bg = dg(A) = (2ydy − 2xdx)((x∂y − y∂x)) = 2ydy(x∂y)− 2xdx(−y∂x) =

2xy + 2xy = 4xy.

in polar, g = −r2 cos 2ϕ, ∂Bg = dg(B) = (−2r cos 2ϕdr+2r2 sin 2ϕdϕ)
(

∂
∂ϕ

)
= 2r2sin2ϕ =

4r2 sinϕ cosϕ = 4xy.

in Cartesian ∂Bh = dh(A) = qxdx+qydy
x2+y2 (−y∂x + x∂y) =

qxdx(−y∂x)+qydy(x∂y)
x2+y2 = −qxy+qxy

x2+y2 =

0.

in polar h = q log r, dh = qdr
r , ∂Bh = dh(B) = qdr

r

(
∂
∂ϕ

)
= 0.

5 Let f be a function on E2 given by f(r, ϕ) = r3 cos 3ϕ, where r, ϕ are polar coordi-

nates in E2.

Calculate the 1-form ω = df .

Calculate the value of the 1-form ω = df on the vector field X = r∂r + ∂ϕ.

Express the 1-form ω in Cartesian coordinates x, y1)

1) You may use the fact that cos 3ϕ = 4 cos3 ϕ− 3 cosϕ.
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ω = 3r2cos3ϕdr − 3r3 sin 3ϕdϕ.

The value of the form ω = df on the vector field X = r∂r + ∂ϕ is equal to

ω(A) =
(
3r2 cos 3ϕdr − 3r2 sin 3ϕdϕ

)
(r∂r + ∂ϕ) = 3r3 cos 3ϕdr(∂r)−3r3 sin 3ϕdϕ(∂ϕ) = 3r3(cos 3ϕ−sin 3ϕ) .

because dr(∂r) = 1, dr(∂ϕ) = 0 and dr(∂ϕ) = 0, dϕ(∂ϕ) = 1.

Another solution

ω(X) = df(X) = ∂Xf =

(
r
∂

∂r
+

∂

∂ϕ

)
(r3 cos 3ϕ) = r·3r2 cos 3ϕ−3r3 sin 3ϕ = 3r3(cos 3ϕ−sin 3ϕ) .

To express the form ω in Cartesian coordinates it is easier to express f in Cartesian

coordinates and then to calculate ω = df :

f = r3 cos 3ϕ = r3(4 cos3 ϕ−3 cosϕ) = 4(r cosϕ)3−3r2(r cosϕ) = 4x3−3x(x2+y2) = x3−3xy2

Hence ω = d(x3 − 3xy2) = (3x2 − 3y2)dx− 5xydy.

We call 1-form ω exact if there exists a function F such that ω = dF

6 Show that 1-form ω = xdy + ydx is exact.

Show that 1-form ω = sin ydx+ x cos ydy is exact.

Show that 1-form ω = x3dy is not an exact 1=form.

We have ω = xdy + ydx = d(xy). Hence this is exact form.

We have ω = sin ydx+ x cos ydy = d(x sin y). Hence this is exact form.

Now show that 1-form ω = x3dy is not an exact 1=form. Suppose it is an exat form.

Then there exists a function F = F (x, y) such that

ω = x3dy =
∂F

∂x
dx+

∂F

∂y
dy ⇒

{
0 = ∂F

∂x

x3 = ∂F
∂y

⇒

{
∂2F
∂y∂x = 0
∂2F
∂x∂y = 3x2

⇒ ∂2F

∂y∂x
6= 0

∂2F

∂x∂y
, Contradiction
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