Homework 5b. Solutions.

Here we focus attention on calculations in Cartesian and polar coordinates
1 Calculate differential forms $\omega=x d y-y d x, \sigma=x d x+y d y$ and vector fields $\mathbf{A}=$ $x \partial_{x}+y \partial_{y}, \mathbf{B}=x \partial_{y}-y \partial_{x}$ in polar coordinates.

This exercise was done during the XII-th lecture (see the subsection 2.3.5 "Differential forms in arbitrary coordinates" in Lecture notes). Just recall the answers:
$\omega=x d y-y d x=r^{2} d \varphi, \sigma=x d x+y d y=r d r, \quad \mathbf{A}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}=r \frac{\partial}{\partial r}, \mathbf{B}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}=\frac{\partial}{\partial \varphi}$,
where

$$
\left\{\begin{array}{l}
x=r \cos \varphi \tag{1.1}\\
y=r \sin \varphi
\end{array}, \quad\left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\varphi=\arctan \frac{y}{x}
\end{array} .\right.\right.
$$

$\mathbf{2}$ Consider differential forms $\omega=x d y-y d x, \sigma=x d x+y d y$ and vector fields $\mathbf{A}=$ $x \partial_{x}+y \partial_{y}, \mathbf{B}=x \partial_{y}-y \partial_{x}$

Calculate $\omega(\mathbf{A}), \omega(\mathbf{B}), \sigma(\mathbf{A}), \sigma(\mathbf{B})$.
We will solve this problem first in Cartesian coordinates then in polar coordinates
Cartesian coordinates
$\omega(\mathbf{A})=(x d y-y d x)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)=$

$$
x^{2} d y\left(\frac{\partial}{\partial x}\right)+x y d y\left(\frac{\partial}{\partial y}\right)-y x d x\left(\frac{\partial}{\partial x}\right)-y^{2} d x\left(\frac{\partial}{\partial y}\right)=x^{2} \cdot 0+x y \cdot 1-y x \cdot 1-y^{2} \cdot 0=0 .
$$

Later we often denote vector field $\frac{\partial}{\partial x}$ by ∂_{x}, vector field $\frac{\partial}{\partial y}$ by $\partial_{y} \ldots$
$\omega(\mathbf{B})=(x d y-y d x)\left(x \partial_{y}-y \partial_{x}\right)=x^{2} d y\left(\partial_{y}\right)-x y d y\left(\partial_{x}\right)-y x d x\left(\partial_{y}\right)+y^{2} d x\left(\partial_{x}\right)=x^{2} \cdot 1-$ $x y \cdot 0-y x \cdot 0+y^{2} \cdot 1=x^{2}+y^{2}=r^{2}$,
$\sigma(\mathbf{A})=(x d x+y d y)\left(x \partial_{x}+y \partial_{y}\right)=x^{2} d x\left(\partial_{x}\right)+x y d x\left(\partial_{y}\right)+y x d y\left(\partial_{x}\right)+y^{2} d y\left(\partial_{y}\right)=x^{2} \cdot 1+$ $x y \cdot 0+y x \cdot 0+y^{2} \cdot 1=x^{2}+y^{2}=r^{2}$,
$\sigma(\mathbf{B})=(x d x+y d y)\left(x \partial_{y}-y \partial_{x}\right)=x^{2} d x\left(\partial_{y}\right)-x y d x\left(\partial_{x}\right)+y x d y\left(\partial_{y}\right)-y^{2} d y\left(\partial_{x}\right)=x^{2} \cdot 0-$ $x y \cdot 1+y x \cdot 1-y^{2} \cdot 0=0$.

Polar coordinates

Using formulae (1.1) and (1.2) from previous problem we come to
$\omega(\mathbf{A})=r^{2} d \varphi\left(r \frac{\partial}{\partial r}\right)=0, \omega(\mathbf{B})=r^{2} d \varphi\left(\frac{\partial}{\partial \varphi}\right)=r^{2}=x^{2}+y^{2}, \sigma(\mathbf{A})=r d r\left(r \frac{\partial}{\partial r}\right)=r^{2}=x^{2}+y^{2}$
Note that for this exercise, the solution in polar coordinates is much more shorter!

3 Consider a function $f=x^{3}-y^{3}$.
Calculate the value of 1 -form $\omega=d f$ on the vector field $\mathbf{B}=x \partial_{y}-y \partial_{x}$.
In Cartesian coordinates

$$
d f(\mathbf{B})=\partial_{\mathbf{B}} f=\left(x \partial_{y}-y \partial_{x}\right)\left(x^{3}-y^{3}\right)=-3 x y^{2}-3 y x^{4}=-3 x y(x+y) .
$$

Another solution in Cartesian coordinates $\omega=d f=3 x^{2} d x-3 y^{2} d y$, thus

$$
\omega(\mathbf{B})=3 x^{2} d x-3 y^{2} d y\left(x \partial_{y}-y \partial_{x}\right)=-3 x^{2} y d x\left(\partial_{x}\right)-3 y^{2} d y\left(\partial_{y}\right)=-3 x y(x+y) .
$$

in polar coordinates:
$f=x^{3}-y^{3}=r^{3}\left(\cos ^{3} \varphi-\sin ^{3} \varphi\right)$ hence using (1.1) we come to
$d f(\mathbf{B})=\partial_{\mathbf{B}} f=\frac{\partial}{\partial \varphi}\left(r^{3}\left(\cos ^{3} \varphi-\sin ^{3} \varphi\right)\right)=-3 r^{3} \sin \varphi \cos \varphi(\cos \varphi+\sin \varphi)=-3 x y(x+y)$.

4 Calculate the derivatives of the functions $f=x^{2}+y^{2}, g=y^{2}-x^{2}$ and $h=q \log |r|=$ $q \log \left(\sqrt{x^{2}+y^{2}}\right)$ (q is a constant) along vector fields $\mathbf{A}=x \partial_{x}+y \partial_{y}$ and $\mathbf{B}=x \partial_{y}-y \partial_{x}$
a) calculating directional derivatives $\partial_{\mathbf{A}} f, \partial_{\mathbf{A}} g, \partial_{\mathbf{A}} h, \partial_{\mathbf{B}} f, \partial_{\mathbf{B}} g, \partial_{\mathbf{B}} h$
b) calculating $d f(\mathbf{A}), d g(\mathbf{A}), d h(\mathbf{A}), d f(\mathbf{B}), d g(\mathbf{B}), d h(\mathbf{B})$.

First do using directional derivatives in Cartesian coordinates, then using formula (1.1), (1.2) in polar coordinates:

For vector field $\mathbf{A}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}=r \frac{\partial}{\partial r}$, we have
in Cartesian coordinates $\partial_{\mathbf{A}} f=\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\left(x^{2}+y^{2}\right)=x \cdot 2 x+y \cdot 2 y=2\left(x^{2}+y^{2}\right)$, in polar coordinates: $f=r^{2}, \partial_{\mathbf{A}} f=r \frac{\partial}{\partial r} r^{2}=2 r^{2}=2\left(x^{2}+y^{2}\right)$.
in Cartesian coordinates $\partial_{\mathbf{A}} g=\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\left(y^{2}-x^{2}\right)=x \cdot(-2 x)+y \cdot 2 y=2\left(y^{2}-x^{2}\right)$, in polar coordinates: $g=r^{2}\left(\sin ^{2} \varphi-\cos ^{2} \varphi\right)=-2 r^{2} \cos 2 \varphi, \partial_{\mathbf{A}} g=r \frac{\partial}{\partial r}\left(-r^{2} \cos 2 \varphi\right)=$ $2 r^{2}=-2 r^{2} \cos 2 \varphi$.
in Cartesian coordinates $\partial_{\mathbf{A}} h=x \frac{\partial h}{\partial x}+y \frac{\partial h}{\partial y}=\frac{x^{2} q}{x^{2}+y^{2}}+\frac{y^{2} q}{x^{2}+y^{2}}=q$, in polar coordinates: $\partial_{\mathbf{A}} h=r \frac{\partial}{\partial r} q \log r=q$.

For vector field $\mathbf{B}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}=\frac{\partial}{\partial \varphi}$,
we have
in Cartesian coordinates $\partial_{\mathbf{B}} f=\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)\left(x^{2}+y^{2}\right)=-y \cdot 2 x+x \cdot 2 y=0$, in polar coordinates: $f=r^{2}, \partial_{\mathbf{B}} f=\frac{\partial}{\partial \varphi} r^{2}=0$.
in Cartesian coordinates $\partial_{\mathbf{B}} g=-y \frac{\partial g}{\partial x}+x \frac{\partial g}{\partial y}=-y \cdot(-2 x)+x \cdot 2 y=4 x y$,
in polar coordinates: $g=-r^{2} \cos 2 \varphi, \partial_{B} g=\frac{\partial}{\partial \varphi}\left(-r^{2} \cos 2 \varphi\right)=2 r^{2} \sin 2 \varphi=4 r^{2} \cos \varphi \sin \varphi=$ $(4 r \cos \varphi)(r \sin \varphi)=4 x y$.
in Cartesian coordinates $\partial_{\mathrm{B}} h=-y \frac{\partial h}{\partial x}+x \frac{\partial h}{\partial y}=\frac{-x y q}{x^{2}+y^{2}}+\frac{x y q}{x^{2}+y^{2}}=0$,
in polar coordinates: $\partial_{\mathbf{B}} h=\frac{\partial}{\partial \varphi} q \log r=0$.
b) Now calculate using 1-form using the fact that $\partial_{\mathbf{A}} f=d f(\mathbf{A})$:

We have that $d f=d\left(x^{2}+y^{2}\right)=2 x d x+2 y d y, d g=d\left(y^{2}-x^{2}\right)=g_{x} d x+g_{y} d y=$ $(2 y d y-2 x d x), d h=d\left(q \log \sqrt{x^{2}+y^{2}}\right)=h_{x} d x+h_{y} d y=\frac{q x d x+q y d y}{x^{2}+y^{2}}$.

Hence
in Cartesian: $\partial_{\mathbf{A}} f=d f(\mathbf{A})=(2 x d x+2 y d y)\left(x \partial_{x}+y \partial_{y}\right)=2 x^{2} d x\left(\partial_{x}\right)+2 y^{2} d y\left(\partial_{y}\right)=$ $2 x^{2}+2 y^{2}$,
in polar $f=r^{2},=d f=2 r d r, \partial_{\mathbf{A}} f=d f(\mathbf{A})=(2 r d r)\left(r \partial_{r}\right)=2 r^{2}$.
in Cartesian: $\partial_{\mathbf{A}} g=d g(\mathbf{A})=(2 y d y-2 x d x)\left(\left(x \partial_{x}+y \partial_{y}\right)\right)=2 y d y\left(y \partial_{y}\right)-2 x d x\left(x \partial_{x}\right)=$ $2 y^{2}-2 x^{2}$.
in polar $g=-r^{2} \cos 2 \varphi, d g=2 r^{2} \sin 2 \varphi d \varphi-2 r \cos 2 \varphi d r, \partial_{\mathbf{A}} g=d g(\mathbf{A})=\left(2 r^{2} \sin 2 \varphi d \varphi-\right.$ $2 r \cos 2 \varphi d r)\left(r \partial_{r}\right)=-2 r^{2} \cos 2 \varphi$.
in Cartesian $\partial_{\mathbf{A}} h=d h(\mathbf{A})=\frac{q x d x+q y d y}{x^{2}+y^{2}}\left(x \partial_{x}+y \partial_{y}\right)=\frac{q x d x\left(x \partial_{x}\right)+q y d y\left(y \partial_{y}\right)}{x^{2}+y^{2}}=\frac{q x^{2}+q y^{2}}{x^{2}+y^{2}}=q$ in polar $h=q \log r \partial_{\mathbf{A}} h=d h(\mathbf{A})=\frac{q d r}{r}\left(\frac{\partial}{\partial r}\right)=q$.

Now for vector field \mathbf{B}
in Cartesian $\partial_{\mathbf{B}} f=d f(\mathbf{B})=(2 x d x+2 y d y)\left(-y \partial_{x}+x \partial_{y}\right)=-2 x y d x\left(\partial_{x}\right)+2 x y d y\left(\partial_{y}\right)=0$, in polar, $f=r^{2}, d f=2 r d r, \partial_{\mathbf{B}} f=d f(\mathbf{B})=(2 r d r)\left(\partial_{\varphi}\right)=0$,
in Cartesian $\partial_{\mathbf{B}} g=d g(\mathbf{A})=(2 y d y-2 x d x)\left(\left(x \partial_{y}-y \partial_{x}\right)\right)=2 y d y\left(x \partial_{y}\right)-2 x d x\left(-y \partial_{x}\right)=$ $2 x y+2 x y=4 x y$.
in polar, $g=-r^{2} \cos 2 \varphi, \partial_{\mathbf{B}} g=d g(\mathbf{B})=\left(-2 r \cos 2 \varphi d r+2 r^{2} \sin 2 \varphi d \varphi\right)\left(\frac{\partial}{\partial \varphi}\right)=2 r^{2} \sin 2 \varphi=$ $4 r^{2} \sin \varphi \cos \varphi=4 x y$.
in Cartesian $\partial_{\mathbf{B}} h=d h(\mathbf{A})=\frac{q x d x+q y d y}{x^{2}+y^{2}}\left(-y \partial_{x}+x \partial_{y}\right)=\frac{q x d x\left(-y \partial_{x}\right)+q y d y\left(x \partial_{y}\right)}{x^{2}+y^{2}}=\frac{-q x y+q x y}{x^{2}+y^{2}}=$ 0.
in polar $h=q \log r, d h=\frac{q d r}{r}, \partial_{\mathbf{B}} h=d h(\mathbf{B})=\frac{q d r}{r}\left(\frac{\partial}{\partial \varphi}\right)=0$.
$\mathbf{5}$ Let f be a function on \mathbf{E}^{2} given by $f(r, \varphi)=r^{3} \cos 3 \varphi$, where r, φ are polar coordinates in \mathbf{E}^{2}.

Calculate the 1-form $\omega=d f$.
Calculate the value of the 1-form $\omega=d f$ on the vector field $\mathbf{X}=r \partial_{r}+\partial_{\varphi}$.
Express the 1-form ω in Cartesian coordinates $x, y^{1)}$

1) You may use the fact that $\cos 3 \varphi=4 \cos ^{3} \varphi-3 \cos \varphi$.
$\omega=3 r^{2} \cos 3 \varphi d r-3 r^{3} \sin 3 \varphi d \varphi$.
The value of the form $\omega=d f$ on the vector field $\mathbf{X}=r \partial_{r}+\partial_{\varphi}$ is equal to
$\omega(\mathbf{A})=\left(3 r^{2} \cos 3 \varphi d r-3 r^{2} \sin 3 \varphi d \varphi\right)\left(r \partial_{r}+\partial_{\varphi}\right)=3 r^{3} \cos 3 \varphi d r\left(\partial_{r}\right)-3 r^{3} \sin 3 \varphi d \varphi\left(\partial_{\varphi}\right)=3 r^{3}(\cos 3 \varphi$ because $d r\left(\partial_{r}\right)=1, d r\left(\partial_{\varphi}\right)=0$ and $d r\left(\partial_{\varphi}\right)=0, d \varphi\left(\partial_{\varphi}\right)=1$.

Another solution
$\omega(\mathbf{X})=d f(\mathbf{X})=\partial_{\mathbf{X}} f=\left(r \frac{\partial}{\partial r}+\frac{\partial}{\partial_{\varphi}}\right)\left(r^{3} \cos 3 \varphi\right)=r \cdot 3 r^{2} \cos 3 \varphi-3 r^{3} \sin 3 \varphi=3 r^{3}(\cos 3 \varphi-\sin 3 \varphi)$.
To express the form ω in Cartesian coordinates it is easier to express f in Cartesian coordinates and then to calculate $\omega=d f$:
$f=r^{3} \cos 3 \varphi=r^{3}\left(4 \cos ^{3} \varphi-3 \cos \varphi\right)=4(r \cos \varphi)^{3}-3 r^{2}(r \cos \varphi)=4 x^{3}-3 x\left(x^{2}+y^{2}\right)=x^{3}-3 x y^{2} \boldsymbol{\square}$
Hence $\omega=d\left(x^{3}-3 x y^{2}\right)=\left(3 x^{2}-3 y^{2}\right) d x-5 x y d y$.
We call 1-form ω exact if there exists a function F such that $\omega=d F$
6 Show that 1 -form $\omega=x d y+y d x$ is exact.
Show that 1 -form $\omega=\sin y d x+x \cos y d y$ is exact.
Show that 1 -form $\omega=x^{3} d y$ is not an exact $1=$ form.
We have $\omega=x d y+y d x=d(x y)$. Hence this is exact form.
We have $\omega=\sin y d x+x \cos y d y=d(x \sin y)$. Hence this is exact form.
Now show that 1 -form $\omega=x^{3} d y$ is not an exact $1=$ form. Suppose it is an exat form. Then there exists a function $F=F(x, y)$ such that
$\omega=x^{3} d y=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y \Rightarrow\left\{\begin{array}{l}0=\frac{\partial F}{\partial x} \\ x^{3}=\frac{\partial F}{\partial y}\end{array} \Rightarrow\left\{\begin{array}{l}\frac{\partial^{2} F}{\partial y \partial x}=0 \\ \frac{\partial^{2} F}{\partial x \partial y}=3 x^{2}\end{array} \Rightarrow \frac{\partial^{2} F}{\partial y \partial x} \neq 0 \frac{\partial^{2} F}{\partial x \partial y}\right.\right.$, Contradiction

