
Solutions of Homework 6

1

Calculate the integrals of the form ω = xdy − ydx over the following three curves.

Compare answers.

C1: r(t)

{
x = R cos t
y = R sin t

, 0 < t < π, C2: r(t)

{
x = R cos 4t
y = R sin 4t

, 0 < t <
π

4

and C3: r(t)

{
x = Rt
y = R

√
1− t2 , −1 ≤ t ≤ 1.

This question was also discussed in lecture notes.

We have that∫
C

ω =

∫ t2

t1

ω(v(t))dt =

∫ t2

t1

(xdy − ydx)(xt∂x + yt∂y)dt =

∫ t2

t1

(−y(t)xt(t) + x(t)yt(t))dt ,

where v = (xt, yt) is velocity vector: dx(∂x) = dy(∂y) = 1, dx(∂y) = dy(∂x) = 0. )

For the first curve C1 we have v(t) = (−R sin t, R cos t) and
∫
C1
ω =

∫ π
0

(xdy −
ydx)(−R sin t∂x +R cos t∂y) =∫ π

0

(R cos tdy−R sin tdx)(−R sin t∂x+R cos t∂y) =

∫ π

0

(R2 cos2 t+R2 sin2 t)dt =

∫ π

0

R2·dt = πR2 .

For the second curve C2 we have v(t) = (−4R sin 4t, 4R cos 4t) and
∫
C2
ω =

∫ π
4

0
(xdy −

ydx)(−4R sin 4t∂x + 4R cos 4t∂y) =

∫ π
4

0

(R cos 4tdy−R sin 4tdx)(−4R sin 4t∂x+4R cos 4t∂y) =

∫ π
4

0

(4R2 cos2 4t+4R2 sin2 4t)dt =

∫ π
4

0

4R2·dt = πR2 .

Answer is the same. The second curve is reparameterised first curve (t 7→ 4t) and repa-

rameterisation preserves the orientation: (4t)′ = 4 > 0.

For the third curve C3 we have v(t) =
(
−R,− Rt√

1−t2

)
and ω(v(t)) = (xdy−ydx)(vx∂x+

v + y∂y) =

=
(
Rtdy −R

√
1− t2dx

)(
R∂x −

Rt√
1− t2

∂y

)
= −R2

√
1− t2 − R2t2√

1− t2
= − R2

1− t2
.

Hence ∫
C3

ω =

∫ 1

0

ω(v(t)) =

∫ 1

0

(
− R2

√
1− t2

)
dt = −R2

∫ 1

0

dt√
1− t2

= −πR2 .
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Answer is the same up to a sign: This curve is reparameterised first curve. If we put

t = cos τ then third curve C3 will transform to the first curve C1. This reparameterisation

changes the orientation, because (cos t)′ = − sin t < 0 on the interval (0, π/2).

Resumé: In these three examples was considered an integral over the same (non-

parameteresed) half-circle. All the answers are the same up to a sign. Sign changes if

reparameterisation changes an orientation. Sure if we already know the information about

orientation of these curves we did not need to calcualte all the three integrals:
∫
C1
ω,
∫
C2
ω,

and
∫
C3
ω. It is enough to calculate one of these integrals, e.g. the first one (the calculations

are little bit simpler for first one) then use the fact that curve C2 has the same orientation

with curve C1 and curve C3 has opposite orientation to the curve C1, hence∫
C1

ω = πR2 =

∫
C2

ω = −
∫
C3

ω .

(For solutions see also lecture notes the end of subsection 2.5)

2

Consider an arc of parabola x = 2y2 − 1, 0 < y < 1.

Give examples of two different parameterisations of this curve such that these param-

eterisations have the opposite orientation.

Calculate the integral of the form 1-form ω = sin ydx over this curve.

How does the answer depend on a parameterisation?

To consider a different parameterisation we may take an arbitrary number n 6= 0 and

consider

Cn: r(t)

{
x = 2n2t2 − 1
y = nt

, 0 < t < 1/n,

These two different parameterisation are related with the reparameterisation t′ = nt.

If n > 0, then reparameterisation preserves orientation, If n < 0, then reparameterisation

changes orientation of the curve. For example if we take n = 2 then we will come to the

curve

C2: r(t)

{
x = 8t2 − 1
y = 2t

, 0 < t < 1/2, , with the same orientation as initial curve

and if we will take n = −2 we will come to the curve

C ′2: r(t)

{
x = 8t2 − 1
y = −2t

, − 1
2 < t < 0, ,

we will come to the curve with orientation opposite to the orientation opposite to the

orientation of the initial curve.

Sure we can change parametersiation in a different way. E.g. we may consider

C3: r(t)

{
x = 2 cos2 t− 1 = cos 2t
y = cos t

, 0 < t < π
2
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Curve C3 has orientation opposite to the orientation of the curves C,C2 and the

same orienation with the curve C ′2 since reparameterisation t′ = cos t changes orienation

(dt
′

dt = − sin t < 0 for 0 ≤ t ≤ π
2 ).

Now we calculate integrals for all these curves. Sure we do not need to do it, it suffices

to calculate the integral just for one curve, and then using orientation arguments to find

integrals for other curves, but just for exercise we will do all examples.

For any curve r(t), t1 < t < t2∫
C

ω =

∫
C

sin ydx =

∫
C

sin ydx(v) =

∫ t2

t1

sin y(t)
dx(t)

dt
dt

where v = (xt, yt).

For the first curve C1 xt = 4t and∫
C1

ω =

∫ 1

0

4t sin tdt = 4(−t cos t+ sin t)
∣∣1
0

= −4 cos 1 + 4 sin 1

For the second curve C2 xt = 16t and∫
C2

ω =

∫ 1/2

0

16t sin 2tdt = 4(−2t cos 2t+ sin 2t)
∣∣1/2
0

= −4 cos 1 + 4 sin 1 .

Answer is the same. Non-surprising. The second curve is reparameterised first curve

(t 7→ 2t) and reparameterisation preserves the orientation.

For the third curve C ′2 xt = 16t and∫
C2

ω =

∫ 0

−1/2
16t sin(−2t)dt = −4(−2t cos 2t+ sin 2t)

∣∣0
−1/2 = 4 cos 1− 4 sin 1 .

Answer is the same up to a sign. Non-surprising. This curve is reparameterised first curve

(t 7→ −2t) and reparameterisation changes the orientation.

For the last curve xt = −2 sin 2tdt and∫
C3

w =

∫ π
2

0

(−2 sin 2t) sin(cos t)dt = −4 (cos t cos(cos t)− sin(cos t))
∣∣π/2
−1/2 = 4 cos 1−4 sin 1

Answer is the same as for the previous curve: This curve is reparameterised first curve with

opposite orientation (t 7→ cos t) and reparameterisation changes the orientation, because

(cos t)′ = − sin t < 0 on the interval (0, π/2). hence the first integral is equal to the third

on and it has a sign opposite to the second and first one.

Resumé: In these three examples an integral over the same (non-parameteresed)

curve was considered. All the answers are the same up to a sign. Sign changes if reparam-

eterisation changes an orientation.
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3

Calculate the integral of the form ω = xdy over the following curves

a) closed curve x2 + y2 = 12y.

b) arc of the ellipse x2 + y2/9 = 1 defined by the condition y ≥ 0.

a) Consider closed curve x2 + y2 = 12y. We have

0 = x2 + y2 − 12y = x2 + (y − 6)2 − 36 .

That is this curve is a circle of the radius 6 with a centre at the point (0, 6). The parametric

equation of this circle is {
x = 6 cos t
y = 6 + 6 sin t

, 0 ≤ t ≤ 2π .

We have that

v =

(
−6 sin t
6 cos t

)
and ω(v) = xdy(vx∂x + vy∂y) = xvy = 6x(t) · 6 cos t = 36 cos2 t ,

∫
C

ω =

∫ 2π

0

ω(v(t))dt =

∫ 2π

0

36 cos2 t dt = 36 · 2π

2
= 36π .

So for an arbitrary parameterisation answer will be ±36π. (36π if orientation is the same

and −36π if opposite) E.g. if we change parameterisation above on the parameterisa-

tion τ = −t then integral will change a sign, since this reparameterisation changes the

orientation of the circle.

b) For the the arc of the ellipse x2 + y2/9 = 1, y ≥ 0 choose a parameterisation:{
x = cos t
y = 3 sin t

, 0 ≤ t ≤ π. Then v = (− sin t, 3 cos t) and

∫
C

ω =

∫ π

0

ω(v)dt =

∫ π

0

x(t)ytdt =

∫ π2

0

3 cos t cos tdt =

∫ π

0

3 cos2 tdt = 3π/2

So for an arbitrary parameterisation answer will be ±3π/2, sign is depending on orientation

of parameterisation. E.g. if we change parameterisation above on the parameterisation τ =

−t then integral will change a sign, since this reparameterisation changes the orientation

of the ellipse.

4 a) Calculate the integrals
∫
C1
ω and

∫
C2
ω of the 1-form ω = xdy − ydx over the

curves C1: x2 + y2 = 9 and C2: x2 + y2 = 6y.

b) Perform the calculations of integrals
∫
C1
ω and

∫
C2
ω in polar coordinates.

Hint Performing the calculations for the curve C2 one may use the polar coordinates

r′, ϕ′ with the centre at the point (a, b):
{x = a+ r cosϕ
y = b+ r sinϕ

.

4



These both curves are circles, in particular C2:x2 + y2 = 6y ⇔ (y − 3)2 + x2 = 9

Choose for these curves parameterisations:

C1:

{
x = 3 cos t
y = 3 sin t

, 0 ≤ t < 2π ,

{
x = 3 cos t
y = 3 + 3 sin t

, 0 ≤ t < 2π . (4.1)

For the both curves the velocity vector v =

(
xt
yt

)
=

(
−3 sin t
3 cos t

)
is the same.

We have that for the first curve

ω(v(t)) = xdy−ydx
(
−3 sin t

∂

∂x
+ 3 cos t

∂

∂y

)
= 3x(t) cos t+3y(t) sin t = 9 cos2 t+9 sin2 t = 9 ,

hence ∫
C1

ω =

∫ 2π

0

ω(v(t))dt =

∫ 2π

0

9dt = 18π .

Now perform analogous calculations for the second curve C2:

ω(v(t)) = xdy−ydx
(
−3 sin t

∂

∂x
+ 3 cos t

∂

∂y

)
= 3x(t) cos t+3y(t) sin t = 3(3 cos t) cos t+(3+3 sin t)3 sin t = 9+9 sin t ,

hence ∫
C1

ω =

∫ 2π

0

ω(v(t))dt =

∫ 2π

0

(9 + 9 sin t)dt = 18π .

The answer is the same (it is the area of the interior of the circle.).

Now perform calcualtions in polar coordinates.

Recall that the form ω = xdy − ydx = dϕ in polar coordinates (see lecture notes) is

equal to r2dϕ:

xdy−ydx = (r cosϕ)(sinϕdr+r cosϕdϕ)−(r sinϕ)(cosϕdr−r sinϕdϕ) = r2(cos2 ϕ+sin2 ϕ)dϕ = r2dϕ, .

The equation of the curve C1 in polar coordinates is

{
r(t) = 3
ϕ(t) = t

, 0 ≤ t < 2π. Velocity vecor

v =

(
rt
ϕt

)
=

(
0
1

)
, ω(v(t)) = r2(t)dϕ

(
∂
∂ϕ

)
= 9, and

∫
C1

ω =

∫ 2π

0

ω(v(t)) = 0 · 2π = 18π.

In the case of the second curve we have to choose coordinates, adjusted to this curve.

Choose polar coordinates (u, θ) with the centre at the point (0, 3) such that{
x = u cos θ
y = 3 + u sin θ

.
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Then in these polar coordinates the curve C2:x2 + y2 = 6y looks nice: one can see that

the equation of the curve C2 in polar coordinates u, θ is

{
u(t) = 3
θ(t) = t

, 0 ≤ t < 2π. C2 then

we have

xdy−ydx = u cos θ((sin θdu+u cos θdθ)−(3+u sin θ)(cos θdu−u sin θdθ) = u2(cos2 θ+sin2 θ)dθ =

u2dθ − 3 cos θdu+ 3u sin θdθ ,

and ω(v(t)) = u2dθ − 3 cos θdu+ 3u sin θdθ
(
∂
∂θ

)
= 9 + 9 sin t,

the appearance of the form ω and ω(v(t)) is not such simple as for the first curve, but

the result of integration is the same:∫
C1

ω =

∫ 2π

0

ω(v(t)) =

∫ 2π

0

(9 + 9 sin t)dt = 18π.

5

Calculate the integral
∫
C
ω where ω = xdx+ ydy and C is

a) the straight line segment x = t, y = 1− t, 0 ≤ t ≤ 1

b) the segment of parabola x = t, y = 1− tn, 0 ≤ t ≤ 1, n = 2, 3, 4, . . .

c) an arbitrary curve starting at the point (0, 1) and ending at the point ((1, 0).

For any of these curves we can perform calculations naively just using definition of

integral

E.g. for the curve a)∫
C

ω =

∫ 1

0

(x(t)xt + y(t)yt)dt =

∫ 1

0

(t+ (1− t)(−1))dt =

∫ 1

0

(2t− 1)dt = 0 ,

for the curve b) if n = 2∫
C

ω =

∫ 1

0

(x(t)xt+y(t)yt)dt =

∫ 1

0

(x(t)xt+y(t)yt)dt =

∫ 1

0

(t+(1−t2)(−2t))dt =

∫ 1

0

(2t3−3t2)dt = 0 ,

for the curve b) in general case:∫
C

ω =

∫ 1

0

(x(t)xt + y(t)yt)dt =

∫ 1

0

(x(t)xt + y(t)yt)dt =

∫ 1

0

(t+ (1− tn)(−ntn−1))dt =

∫ 1

0

(t− ntn−1 + nt2n−1)dt = 0 .

But there is another nice way to calculate these integrals. We immediately come to

these results in a clear and elegant way if we use the fact that ω = xdx+ ydy is an exact
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form, i.e. ω = df where f = x2+y2

2 . Indeed using Theorem we see that for an arbitrary

curve starting at the point A = (0, 1) and ending at the point B = (1, 0)∫
C

ω =

∫
C

df = f(x, y)|BA = f(1, 0)− f(0, 1) = 0 .

6

Show that the form 1-form ω = 3x2ydx+ x3dy is an exact 1-form. Calculate integral

of this form over the curves considered in exercises 2) and 3)

One can see that ω = 3xydx + x3dy = d(x3y) (d(x3y) = ∂(x3y)
∂x dx + ∂(x3y)

∂y dy =

3x2ydx+ x3dy.)

It is an exact form.

Integral of this exact form over the circle x2 + y2 = 12y (exercise 2a) equals to zero,

since it is closed curve: starting and ending points coincide.

Integral of this exact form over the arc of the ellipse x2 + y/9 = 1(exercise2b), y ≥ 0

and the integral over arc of the unit circle x2 +y2 = 1, y > 0 both are equal zero in spite of

the fact that these curves are not closed. The reason is that the function f = x3y (df = ω)

vanishes at starting and ending points of these curves.

The integral of this form over arc of the unit circle starting at the point A = (4, 0) and

ending at the point (2, 0) (see the exercise 3) is equal to
∫
C
ω = f |AB = f(1, 0) = f(0, 1) = 0

because f = x2y and f(1, 0) = f(0, 1) = 0. Answer is equal to zero. Hence it does not

depend on orientation of the curve.

7.

Consider the following differential 1-forms in E2:

a) xdx , b) xdy c) xdx+ ydy , d)xdy + ydx, e) xdy − ydx
f) x4dy + 4x3ydx

a) Show that 1-forms a), c), d) and f) are exact forms

b)Why 1-forms b) and e) are not exact?

a) It is an exact form since xdx = df where f = x2

2 + c , where c is a constant.

b) Suppose ω = xdy is an exact form: ω = df = fxdx + fydy. Hence fx = 0, fy = x.

We see that fxy = ∂
∂xfy = 1. On the other hand fyx = ∂

∂yfx = fxy = 0. Contradiction.

Another solution; There is another way to show why ω = xdy is not an exact form. We

already calculated that the integral of the form ω = xdy over the closed circle x2+y2 = 12y

is equal to 36π 6= 0. (see the exercise 4) and its solution above)Hence ω is not exact, since

the integral of an exact form over an arbitrary closed curve is equal to zero.

c) It is an exact form since xdx+ ydy = d
(
x2+y2

2 + c
)

, (c is a constant).

d)It is an exact form since xdy + ydx = d(xy + c),where c is a constant.
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e)Suppose ω = xdy − ydx is an exact form: ω = df = fxdx + fydy. Hence fx =

−y, fy = x. We see that fxy = 1. On the other hand fyx = fxy = −1. Contradiction.

f) It is an exact form since x4dy + 4x3ydx = d(x4y + c), where c is a constant.

8 Consider 1-form

ω =
xdy − ydx
x2 + y2

(1)

This form is defined in E2 \ 0, i.e. in all the points except origin: x2 + y2 6= 0.

a) Write down this form in polar coordinates

b) † What values can take the integral
∫
C
ω of this form, if C is an arbitrary curve

starting at the point (0, 1) and ending at the point ((1, 0) (we suppose that the curve C

does not pass trough the origin)

a) We know (see the exercise 4 or Lecture notes) that in polar coordinates xdy−ydx =

r2dϕ, hence

ω =
xdy − ydx
x2 + y2

= dϕ .

b) † if the curve does not pass the origin then the integral is well-defined, It is

equal π
2 + 2πn. The integer n depends on the curve.

9† Let ω = a(x, y)dx+ b(x, y)dy be a closed form in E2, dω = 0.

Consider the function

f(x, y) = x

∫ 1

0

a(tx, ty)dt+ y

∫ 1

0

b(tx, ty)dt (2)

† Show that

ω = df .

( This proves that an arbitrary closed form in E2 is an exact form.

† Why we cannot apply the formula (2) to the form ω defined by the expression (1)?

Perform the calculations: df = fxd+ fydy.

fx =

∫ 1

0

a(tx, ty)dt+ x

∫ 1

0

ax(tx, ty)tdt+ y

∫ 1

0

bx(tx, ty)tdt .

and

fy =

∫ 1

0

b(tx, ty)dt+ x

∫ 1

0

ay(tx, ty)tdt+ y

∫ 1

0

by(tx, ty)tdt .

On the other hand dω = d(adx+ bdy) = (bx − ay)dx ∧ dy = 0. Hence bx = ay and

fx =

∫ 1

0

a(tx, ty)dt+x

∫ 1

0

ax(tx, ty)tdt+y

∫ 1

0

ay(tx, ty)tdt =

∫ 1

0

(
d

dt
(ta(tx, ty))

)
= ta(tx, ty)

∣∣1
0

= a(x, y) ,
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because
d

dt
(ta(tx, ty)) = a(tx, ty) + xtax(tx, ty) + ytay(tx, ty).

Analogously

fy =

∫ 1

0

b(tx, ty)dt+x

∫ 1

0

bx(tx, ty)tdt+y

∫ 1

0

by(tx, ty)tdt =

∫ 1

0

(
d

dt
(tb(tx, ty))

)
= tb(tx, ty)

∣∣1
0

= b(x, y) ,

We see that fx = a(x, y) and fy = b(x, y), i.e. df = adx+ bdy
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