Solutions of Homework 7

$\mathbf{1}$ Let C be an ellipse in the plane \mathbf{E}^{2} such that its foci are at points $F_{1}=(-1,0)$ and $F_{2}=(1,0)$ and it passes through the point $K=(0,2)$.

Write down the analytical formula which defines this ellipse.
Find the area of this ellipse.
The foic of this ellipse are on the $O X$ axis, and the centre of this ellipse is at the point midpoint of the segment $\left[F_{1} F_{2}\right.$], it is the origin $L(0,0)$. Hence the analytical equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a is semi-major axis, and b is semi-minor axis, $a \geq b$. This ellipse intersects the axis $O Y$ at the point $x=0, y= \pm b$. Hence the point $K=(0,2)=(0, b)$, i.e. semi-minor axis $b=2$. Calculating the distances between the point K and foci we calculate the length of the semi-major axis

$$
\left|K F_{1}\right|+\left|K F_{2}\right|=\sqrt{2^{2}+1}+\sqrt{2^{2}+1}=2 \sqrt{5}=2 a \Rightarrow a=\sqrt{5}
$$

We see that $a=\sqrt{5}$ and $b=2$, thus analytical formual for the ellispe is

$$
\frac{x^{2}}{5}+\frac{y^{2}}{4}=1
$$

Area of the ellipse is equal to $S=\pi a b=2 \sqrt{5} \pi$.
2 Let C be an ellipse in the plane \mathbf{E}^{2} such that its foci are at the points $F_{1}=(-5,0)$, $F_{2}=(16,0)$. It is known that the point $K=(0,12)$ belongs to the ellipse.

Find intersections of the ellipse with $O X$ and $0 Y$ axis.
Find the area of the ellipse.
We know that $K=(0,12)$, We have that the point $K=(0,12)$ belongs to the ellipse. Hence

$$
\left|K F_{1}\right|+\left|K F_{2}\right|=\sqrt{12^{2}+(-5)^{2}}+\sqrt{12^{2}+16^{2}}=\sqrt{169}+4 \sqrt{25}=33 .
$$

Hence for an arbitrary D point on the ellipse $\left|D F_{1}\right|+\left|D F_{2}\right|=33$. If the ellispe intersects $O X$ axis at the point with coordinate $(x, 0)$ then

$$
\left|K F_{1}\right|+\left|K F_{2}\right|=33=|x-(-5)|+|x-16|=|x+5|+|x-16| .
$$

1-st case: $x>16,|x+5|+|x-16|=2 x-11=33 \Rightarrow x=22$.
2-nd case: $x<-5,-x-5-x+16=-2 x+11=33 \Rightarrow x=-11$.
The point of intersectin the $O Y$ axis is the point $K^{\prime}=(0 .-12)$ symmetrical to the point K.

Hence
The ellipse intersects axis at the points $(22,0),(-11,0),(0, \pm 12)$.
Now find the area of this ellipse.

To calculate area we calculate length of axis of the ellipse, the minor and the major. Foci of this ellipse are on the $O X$ axis. Ellipse intersects $O X$ axis at the points $(-11,0)$ and $(22,0)$. Hence major axis is equal to $2 a=33$. The distance between foci $2 c=16-(-5)=$ 21. Hence the minor axis b is equal to

$$
\begin{gathered}
b=\sqrt{a^{2}-c^{2}}=\sqrt{\left(\frac{33}{2}\right)^{2}-\left(\frac{21}{2}\right)^{2}}=\frac{1}{2} \sqrt{33^{2}-21^{2}}=\frac{1}{2} \sqrt{(33-21)(33+21)}= \\
\frac{1}{2} \sqrt{12 \cdot 54}=\frac{1}{2} \sqrt{3 \cdot 4 \cdot 3 \cdot 9 \cdot 2}=9 \sqrt{2} .
\end{gathered}
$$

One may calculate semi-minor axis b also in another way: The centre is at the midpoint of the segment $\left(F_{1}, F_{2}\right)=(-5,16)$: the point $\left(\frac{11}{2}, 0\right)$. If semi-minor axis is equal to b then consider the point $P=\left(\frac{11}{2}, b\right)$. This point is at the equal distances from foci thus $\left|P F_{1}\right|+\left|P F_{2}\right|=2\left|P F_{1}\right|=2 \sqrt{\left(\frac{11}{2}-(-5)\right)^{2}+b^{2}}=33$. We come to

$$
\left(\frac{11}{2}-(-5)\right)^{2}+b^{2}=\left(\frac{21}{2}\right)^{2}+b^{2}\left(\frac{33}{2}\right)^{2} \Rightarrow b=\frac{1}{2} \sqrt{33^{2}-21^{2}}=9 \sqrt{2}
$$

We calculated lengths of semi-minor and semi-major axes:

$$
a=\frac{33}{2}, b=9 \sqrt{2} .
$$

Hence the area of the ellipse is equal to

$$
S=\pi \cdot \text { vertical half-axis } \cdot \text { horisontal half-axis }=\pi a b=\frac{297 \sqrt{2}}{2}
$$

3 3a) Let H be hyperbola in the plane \mathbf{E}^{2} such that it passes through the point $P=$ $(2,3)$, and its foci are at the points $F_{1,2}=(\pm 2,0)$,

Find the intersection points of the hyperbola with $O X$ axis.
Write down the analytical formula which defines this hyperbola, i.e. the equation defining this hyperbola in Cartesian coordinates (x, y).

Explain why this hyperbola does not intersect the axis OY.
$\mathbf{3} b)$ Let H be hyperbola in the plane \mathbf{E}^{2} such that it passes through the point $P=(2,3)$, and its foci are at the points $F_{1,2}=(0, \pm 2)$,

Compare this question with the previous one.
Write down the analytical formula which defines this hyperbola.
3a) By geometrical definition of hyperbola we have that for arbitrary point K of hyperbola
$\left|\left|K F_{1}\right|-\left|K F_{2}\right|\right|=\left|\left|P F_{1}\right|-\left|P F_{2}\right|\right|=\left|\sqrt{(2-2)^{2}+(3-0)^{2}}-\sqrt{(2-(-2))^{2}+(3-0)^{2}}\right|=|3-5|=2$.

If the hyperbola intersects $O X$ axis at the point $(x, 0)$ then

$$
\left\|K F_{1}\left|-\left|K F_{2}\|=2=\| x-2\right|-|x--2|\right|=\right\| x-2|-| x+2 \| .
$$

This means that $|x-2|-|x+2|= \pm 2$.
1 -st case $|x-2|-|x+2|=2 \Rightarrow x=-1$
2-nd case $|x-2|-|x+2|=-2 \Rightarrow x=1$
Hyperbola intersects $O X$ axis at the points $(\pm 1, \pm 0)$.
The anaylitcal formula defining this hyperbola is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \text { with } \quad\left|F_{1} F_{2}\right|=2 c, b^{2}=c^{2}-a^{2}
$$

We have $a= \pm 1, c=2$, thus $b^{2}=3$ and equation defining the hyperbola is

$$
\frac{x^{2}}{1}-\frac{y^{2}}{3}=1
$$

Check that a point $(2,3)$ belongs to this hyperbola: $\frac{2^{2}}{1}-\frac{3^{2}}{3}=1$.
This hyperbola does not intersect the axis $O Y$ because the points of this axis are on the equal distance from foci of the hyperbola.

3 b) In this exercise, the coordinates x and y swap comparing the exercise $3 a$)
Hence the equation of this hyperbola is:

$$
\frac{y^{2}}{1}-\frac{x^{2}}{3}=1
$$

4 Consider in the plane the curves C_{1}, C_{2} and C_{3} which are given in some Cartesian coordinates (x, y) by equations $C_{1}: \quad 4 x^{2}+4 x+y^{2}=0, C_{2}: \quad 4 x^{2}+4 x-y^{2}=0$,
$C_{3}: \quad 4 x^{2}+4 x+y=0$.
Show that C_{1} is ellipse, C_{2} is hyperbola, and C_{3} is parabola
We have

$$
C_{1}: 4 x^{2}=4 x+y^{2}=0 \Leftrightarrow 4 x^{2}=4 x+1+y^{2}=1 \Leftrightarrow 4\left(x+\frac{1}{2}\right)^{2}+y^{2}=1
$$

Choose new Cartesian coordinates $\left\{\begin{array}{l}x+\frac{1}{2}=x^{\prime} \\ y=y^{\prime}\end{array}\right.$ we come to

$$
C_{1}: 4 x^{2}=4 x+y^{2}=0 \Leftrightarrow 4 x^{2}=4 x+1+y^{2}=1 \Leftrightarrow 4\left(x+\frac{1}{2}\right)^{2}+y^{2}=1 \Leftrightarrow
$$

$$
y^{\prime 2}+4 x^{\prime 2}=1 .
$$

This is canonical equation of ellipse. (x^{\prime} is the second coordinate, and y^{\prime} is the first)
Now consider C_{2} :

$$
C_{2}: 4 x^{2}=4 x-y^{2}=0 \Leftrightarrow 4 x^{2}=4 x+1-y^{2}=1 \Leftrightarrow 4\left(x+\frac{1}{2}\right)^{2}-y^{2}=1
$$

Choose new Cartesian coordinates $\left\{\begin{array}{l}x+\frac{1}{2}=x^{\prime} \\ y=y^{\prime}\end{array}\right.$ we come to

$$
\begin{gathered}
C_{2}: 4 x^{2}=4 x-y^{2}=0 \Leftrightarrow 4 x^{2}=4 x+1-y^{2}=1 \Leftrightarrow 4\left(x+\frac{1}{2}\right)^{2}-y^{2}=1 \Leftrightarrow \\
4 x^{\prime 2}-y^{\prime 2}=1
\end{gathered}
$$

We see that this is canonical equation of hyperbola

Now consider C_{3} :

$$
C_{3}: 4 x^{2}+4 x+y=0 .
$$

This is equation of parabola. To make it canonical we have to choose Cartesian coordinates \tilde{x}, \tilde{y} such that in these coordinates the curve C_{3} have the appearance

$$
C_{3}: \tilde{y}^{2}=2 p \tilde{x} .
$$

We have

$$
\begin{gathered}
\mathbf{C}_{3}: 4 x^{2}+4 x+y=0 \leftrightarrow\left(4 x^{2}+4 x+1\right)+(y-1)=0 \Leftrightarrow 4\left(x+\frac{1}{2}\right)^{2}+(y-1)=0 \\
\Leftrightarrow\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}(1-y)=0
\end{gathered}
$$

Choose new Cartesian coordinates

$$
\left\{\begin{array}{l}
\tilde{x}=1-y \\
\tilde{y}=x+\frac{1}{2}
\end{array}\right.
$$

We see that in these coordinates

$$
C_{3}: \tilde{y}^{2}=2 p \tilde{x}, \quad \text { with } p=\frac{1}{8}
$$

5 Let H be hyperbola considered in the exercise $\mathbf{3}$.

Consider in the plane \mathbf{E}^{2} the ellpise such that it passes through the foci of the hyperbola H, and its foci are at the points where hyperbola H intersects axis OY. Write down equation of this ellipse.

The foci of this ellipse are on the axis $O Y$ and its centre is at the origin, hence the equation of this ellipse is

$$
\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1,(a>b)
$$

The ellipse passes through the foci of the hyperbola the points $(0, \pm 2)$. Hence $\frac{y^{2}}{a^{2}}=1$ for $x=0$, i.e. $a=2$. Consider the point $(b, 0)$ on this ellipse. The sum of distances from this point to foci is equal to

$$
\sqrt{b^{2}+1^{2}}+\sqrt{b^{2}+(-1)^{2}}=2 \sqrt{b^{2}+1}=2 a=4 . \Rightarrow b=3 .
$$

Hence the equation of the ellipse is

$$
\frac{y^{2}}{4}+\frac{x^{2}}{3}=1 .
$$

Remark Notice that this equation is not canonical one: foci of this ellipse are on the axis $O Y$ not on the axis $O X$. Tis is related with the fact that corresponding hyperbola is not in canoncal coordinates: we have to swap coordinates x, y then and ellipse and hyperbola will be given in canonical Cartesina coordinates.

6 The ellipse C on the plane \mathbf{E}^{2} has foci at the vertices $A=(-1,-1)$ and $C=(1,1)$ of the square $A B C D$, and it passes through the other two vertices $B=(-1,1)$ and $D=(1,-1)$ of this square.

Find new Cartesian coordinates (u, v) (express them via initial coordinates (x, y)) such that the ellipse C has canonical form $C: \frac{u^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}=1$ in these coordinates.

Write down the equation of ellipse C in initial Cartesian coordinates (x, y)
Calculate the area of this ellipse.
Consider new Cartesian coordinates $O X^{\prime} Y^{\prime}$ such that axis $O X^{\prime}$ goes from focus $A=$ $(-1,-1)$ to the focus $C=(1,1)$. In these new Cartesian coordinates equation of the ellipse is

$$
\frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime 2}}{b^{2}}=1
$$

The foci are on the axis $A C$, the semi-minor axis of the ellise: $b=|O B|=\sqrt{2}, b=\sqrt{2}$. To calculate a use the fact that $2 a$ is equal to the sum of the distances from the arbitrary point to the foci: $2 a=|B C|+|B A|=2|B A|=4$, and $a=2$. We see that equation of the ellipse in new Cartesian coordinates is

$$
\frac{x^{\prime 2}}{4}+\frac{y^{\prime 2}}{2}=1
$$

Now find the relation between new coordinates $\left(x^{\prime}, y^{\prime}\right)$ and the genuine coordinates (x, y).

The line AC is the bisectrix of the angle $X O Y$. Hence we come from Cartesian coordinates $O X Y$ to Cartesian coordinates $O X^{\prime} Y^{\prime}$ by rotation on the angle $\frac{\pi}{4}$: Having in mind that $\cos \frac{\pi}{4}=\frac{\sin \pi}{4}=\frac{\sqrt{2}}{2}$, and that the new coordinates $\left(x^{\prime}, y^{\prime}\right)$ of the point A are $(-\sqrt{2}, 0)$, and the new coordinates $\left(x^{\prime}, y^{\prime}\right)$ of the point C are $(0, \sqrt{2})$ we see that

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right)\binom{x}{y}, \quad\left\{\begin{array}{l}
x^{\prime}=\frac{x+y}{\sqrt{2}} \\
y^{\prime}=\frac{-x+y}{\sqrt{2}}
\end{array}\right.
$$

Thus equation of ellipse is

$$
\frac{x^{\prime 2}}{4}+\frac{y^{\prime 2}}{2}=1 \Leftrightarrow \frac{1}{4}\left(\frac{x+y}{\sqrt{2}}\right)^{2}+\frac{1}{2}\left(\frac{-x+y}{\sqrt{2}}\right)^{2}=1 \Leftrightarrow 3 x^{2}+3 y^{2}-2 x y=8
$$

Area of the ellipse is equal to the product of semi-major axis on semi-minor axis and on π :

$$
S=\pi \sqrt{2} \cdot 2=2 \pi \sqrt{2} .
$$

7 Consider a curve defined in Cartesian coordinates (x, y) by the equation

$$
C: \quad p x^{2}+p y^{2}+2 x y+\sqrt{2}(x+y)=0,
$$

where p is a parameter.
How looks this curve
if $p>1$? if $p=1$? if $-1<p<1$? if $p=-1$? if $p<-1$?
Find an affine transformation

$$
\left\{\begin{array}{l}
x=a u+b v+e \tag{1}\\
y=c u+d v+f,
\end{array} \quad\left(\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \neq 0\right)\right.
$$

which transforms this curve to the circle $u^{2}+v^{2}=1$ in the case if $p>1$
We have
$C: p x^{2}+p y^{2}+2 x y+\sqrt{2}(x+y)=0$.
Rotate coordinates on the angle $\frac{\pi}{4}$:

$$
\binom{x}{y}=\left(\begin{array}{cc}
\cos \frac{\pi}{4} & \sin \frac{\pi}{4} \\
-\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right)\binom{u}{v}, \quad\left\{\begin{array}{l}
x=\frac{u+v}{\sqrt{2}} \\
y=\frac{-u+v}{\sqrt{2}}
\end{array}\right.
$$

(Compare with changing of coordinates in the previous exercise).

We have in new Cartesian coordinates (u, v)
$C: p x^{2}+p y^{2}+2 x y+\sqrt{2}(x+y)=p\left(\frac{u+v}{\sqrt{2}}\right)^{2}+p\left(\frac{-u+v}{\sqrt{2}}\right)^{2}+2\left(\frac{u+v}{\sqrt{2}}\right)\left(\frac{-u+v}{\sqrt{2}}\right)+2 u=$

$$
(p-1) u^{2}+(p+1) v^{2}+2 u=0 .
$$

1) $p>1$

$$
C:(p-1) u^{2}+(p+1) v^{2}+2 u=(p-1)\left(u+\frac{1}{p+1}\right)^{2}+(p-1) v^{2}=\frac{1}{p-1}
$$

This is an ellipse
2) $p=1$

$$
(p-1) u^{2}+(p+1) v^{2}+2 u=0=2 V^{2}+2 U=0 .
$$

This is a parabola.
3) $-1<p<1$

$$
C:(p-1) u^{2}+(p+1) v^{2}+2 u=(p+1) v^{2}-(1-p)\left(u+\frac{1}{p+1}\right)^{2}=\frac{1}{p-1}
$$

This is hyperbola.
4) $p=-1$

$$
(p-1) u^{2}+(p+1) v^{2}+2 u=2\left(u-u^{2}\right)=2 u(u-1) .
$$

two parallel lines
5) $p<-1$ it is again ellipse:

$$
C:(p-1) u^{2}+(p+1) v^{2}+2 u=(p-1)\left(u+\frac{1}{p+1}\right)^{2}+(p-1) v^{2}=\frac{1}{p-1}
$$

it is again an ellipse.
Consider the following transformation from Cartesian coordinates u, v to new coordinates u^{\prime}, v^{\prime} :

$$
\left\{\begin{array}{l}
u^{\prime}=\sqrt{p-1} u \\
v^{\prime}=\sqrt{p+1} v
\end{array} .\right.
$$

In these coordinates (they are not Cartesian coordinates!) the curve C for will become a circle.
8^{*} (pursuit problem) Consider two point in the plane \mathbf{E}^{2}, A, and B. Let point A starts moving at the origin, and moves along $O Y$ with constant velocity $v:\left\{\begin{array}{l}x=0 \\ y=v t\end{array}\right.$.

Let point B starts moving at the point $(L, 0)$, its speed is equal to v, and velocity vector is directed on the paricle A, i.e. at any moment of time the particle B moves in the direction of the segment $B A$ with the same speed v.

Of course the particle B never will reach the particle A becuase their speeds are the same. On the other hand the particle B asymptotically will be tended to vertical axis. What is the distance between these particles at $t \rightarrow \infty$?

Hint: Consider the reference frame in which particle A is not moved, i.e. consider coordinates $\left\{\begin{array}{l}x^{\prime}=x \\ y^{\prime}=y+v t\end{array}\right.$.

Show that in these coordinates the trajectory of particle B will be a parabola.
See one of the last etudes in my homepage on Geometry:" Cobnic sections and pursuit problem"

