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1 Differentiable manifolds and smooth maps

Roughly, “manifolds” are sets where one can introduce coordinates. Before
giving precise definitions, let us discuss first the fundamental idea of coordi-
nates. What are coordinates?

1.1 Coordinates on familiar spaces. Examples.

Example 1.1. Standard coordinates on Rn: Rn 3 x ↔ (x1, . . . , xn). In
particular, the standard coordinates x, y, z on R3 (traditional notation).

Example 1.2. A linear change of coordinates on Rn. E.g. for R2 “new” coor-

dinates x′, y′ are such that

{
x′ = ax + by

y′ = cx + dy
, where

(
a b
c d

)
is non-degenerate

matrix.

Example 1.3. Polar coordinates on R2 and spherical coordinates on R3.
For example, R2 3 x ↔ (r, ϕ), where x = r cos ϕ, y = r sin ϕ (0 < r < ∞

and 0 < ϕ < 2π or −π < ϕ < π). Note: coordinates (r, ϕ) ‘serve’ not for the
whole R2, but only for a part of it (an open subset).

For spherical coordinates R3 3 x ↔ (r, θ, ϕ), 0 < θ < π, 0 < ϕ < 2π, and
x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. The same note: coordinates
(r, θ, ϕ) ‘serve’ not for the whole R3.
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Example 1.4. (stereographic coordinate) Consider the circle S1 : x2+y2 = 1
in R2. Consider the straight line which passes through the point N = (0, 1)
(north pole of S1) and he point (x, y) on the circle. It intersects x-axis at
the point (u, 0) where where u = x

1−y
. It is so called stereographic coordinate

on the circle. One can see that x = 2u
u2+1

, y = u2−1
u2+1

. This coordinate is
”good” for all points of the circle except the “north pole”. One can consider
another stereographic coordinate u′ ∈ R, where u′ = x

1+y
, and conversely

x = 2u′
u′2+1

, y = 1−u′2
u′2+1

. This coordinate is good for all points of the circle
except the point S = (0, 1) (the “south pole”). (See for details Homework)

Example 1.5. Similarly, stereographic coordinates can be defined for the
unit sphere S2 in R3 and, more generally, for Sn ⊂ Rn+1 (See Homework).

Example 1.6. Another way of introducing a coordinate on S1 is to consider
the polar angle ϕ. It is defined initially up to an integral multiple of 2π.
To make it single-valued, we may restrict 0 < ϕ < 2π and thus we have to
exclude the point (1, 0). We may introduce ϕ′ so that −π < ϕ′ < π and thus
we have to exclude the point (−1, 0).

Example 1.7. Similarly, to obtain coordinates on S2 ⊂ R3, one may use
the angles θ, ϕ making part of the spherical coordinates on R3. (To be able
to define such angular coordinates as single-valued functions, certain points
have to be excluded from the sphere. To cover the whole S2, it will be
necessary to consider several angular coordinate systems, each defined in a
particular domain.)

To deal with the next example you may consider n = 2, 3 or even n = 1.

Example 1.8. Recall the notion of a projective space. The real projective
space RP n is defined as the set of all straight lines through the origin in
Rn+1. Fix a hyperplane (a plane of dimension n) H ⊂ Rn+1 not through
the origin. For example, it is possible to take the hyperplane xn+1 = 1.
Each line through the origin O intersects H at a unique point, except for
the lines parallel to H, which do not intersect H. The hyperplane H can be
identified with Rn by dropping the last coordinate xn+1 = 1. Therefore the
projective space RP n can be visualised as the ordinary n-dimensional space
Rn ‘completed’ by adding extra points to it. Notice that these extra points
correspond to the straight lines through the origin in Rn ⊂ Rn+1 (considered
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as the coordinate hyperplane xn+1 = 0). Hence they make RP n−1, and we
have

RP n = Rn ∪ RP n−1 = Rn ∪ Rn−1 ∪ . . . ∪ R1 ∪ R0

(where R0 is a single point). This construction introduces a coordinate sys-
tem on the part RP n \ RP n−1 of RP n. An inclusion RP n−1 ⊂ RP n is
equivalent to a choice of hyperplane H in Rn−1. To cover by coordinates a
different part of RP n, one has to choose a different H. It is not difficult to
see that by considering the n+1 coordinate hyperplanes xk = 1 as H, where
k = 1, . . . , n + 1, we obtain n + 1 coordinate systems covering together the
whole RP n.

Example 1.9. The complex projective space CP n is defined similarly to
RP n (with real numbers replaced by complex numbers). One can introduce
coordinates into CP n in the same way as above.

1.2 Definition of a manifold.

Recall that a set V ⊂ Rn is open if for each point x ∈ V there is an open
ε-neighborhood entirely contained in V . (In greater detail, there ε > 0 such
that Bε(x) ⊂ V , where Bε(x) = {y ∈ Rn | |x − y| < ε}. In other words,
Bε(x) is an open ball of radius ε with center at x.)

There are many reasons why open sets in Rn are important. For us the main motivation
is differential calculus, where one studies how the function changes if its argument is given
a small increment, i.e., a given initial value of the argument is replaced by adding a small
vector (which can point in an arbitrary direction). Therefore its is necessary to be able to
consider a function on a whole neighborhood of any given point. So domains of definitions
of functions have to be open if we wish to apply to them differential calculus.

Let X be an abstract set. Fix a natural number n.
Let U be a subset on X.
A chart (U,ϕ) on X is a bijective map ϕ : U → V , where V ⊂ Rn is an

open set in Rn. (Recall that a map between two sets is bijective means that
it establishes one-one correspondence between these sets.) The inverse map
ϕ−1 : V → X is an injection of open domain V in X. There is a one-to-one
correspondence between points in U ⊂ X and arrays (x1, . . . , xn) ∈ V ⊂ Rn

given by the maps ϕ and ϕ−1:

X ⊃ U 3 x, ϕ(x) = (x1, . . . , xn) ∈ V ⊂ Rn .
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The numbers ϕ(x) = (x1, . . . , xn) are coordinates of a point x ∈ U ⊂ X. A
chart ϕ on U ⊂ X is a coordinate system on X. It is also called a ‘local’
coordinate system to emphasize that ϕ is defined only for a subset U ⊂ X.

An atlas A on X is a collection of charts, A = (Uα, ϕα), where ϕα : Uα →
Vα ⊂ Rn for all α, such that the subspaces {Uα} cover the whole space X:

X =
⋃
α

Uα .

It is convenient to think that Rn’s for different Vα are ‘different copies’
of the space Rn and denote them, respectively, by Rn

(α), so that we have
Vα ⊂ Rn

(α). One should keep in mind a geographical atlas, pages of which

correspond to different Rn
(α) (geographical ‘maps’ of the Earth corresponding

to mathematical ‘charts’).
Consider sets Uα and Uβ such that Uα ∩ Uβ 6= ∅. Any point x ∈ Uα ∩

Uβ has two coordinate descriptions: ϕα(x) = (x1
(α), . . . , x

n
(α)) and ϕβ(x) =

(x1
(β), . . . , x

n
(β)). There is a transition map

Ψαβ(x1, . . . , xn) = ϕα ◦ ϕ−1
β (x1, . . . , xn) : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) (1.1)

ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ), (x1
β, . . . , xn

β) 7→ (x1
α, . . . , xn

α),

which we call the change of coordinates between charts ϕa and ϕβ, or tran-
sition functions form coordinates ((x1

β, . . . , xn
β) to coordinates (x1

α, . . . , xn
α).

The family of transition functions {Ψαβ} are defined on domains of Rn and
take values in domains of Rn. Thus we can apply technique of calculus

Definition 1.1. An atlas A = {(Uα, ϕα)}, (ϕα : Uα → X) is differentiable or
smooth if all sets ϕα(Uα ∩Uβ) are open and the functions {Ψαβ} of changing
of coordinates (Ψαβ = ϕα ◦ ϕ−1

β are differentiable (smooth) functions.

Remark 1.1. “Smoothness” in differential geometry usually means having as
many derivatives as necessary, unless we are specifically interested in finding
the minimal order of differentiability for a particular problem. Therefore,
in these lectures by smooth or differentiable (which we use interchangeably)
will always mean the class C∞, i.e., infinitely many continuous derivatives.

Definition 1.2. A differentiable manifold, or smooth manifold (shortly: man-
ifold) is a set X endowed with a smooth atlas. The number n is called the
dimension.
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Besides letters such as X, Y and Z, other traditional letters for denoting
manifolds are M , N , P , and Q.

The dimension of a manifold M is often indicated by a superscript, e.g.,
M = Mn.

Strictly speaking, a manifold is not just a set, but a pair consisting of a
set, say, M and a smooth atlas on M , as described above. With a common
abuse of language, we shall speak of a ‘manifold M ’, with a certain atlas
implicitly understood.

In view of the remark above it is clear that one can define manifolds of
a particular class of smoothness Ck, for a fixed given k (i.e., k continuous
derivatives), but we shall not do it. For us a manifold is always smooth (in
the sense of C∞), therefore we shall often drop the adjective.

Example 1.10. Consider M = R2. Introduce two charts: (U1, ϕ1), (U2, ϕ2),
where open set U1 is R2 itself, U1 = R2, and open set U2 is R2 without points
of the left ray of x axis: U2 = R2\I−, where I− = {(x, y), y = 0, x ≤ 0}. Take
ϕ1 = id and ϕ2 : (x, y) 7→ (r, t) are polar coordinates. These two charts form
an atlas {(U1, ϕ1), (U2, ϕ2)}. Transition functions are defined on open sets
and they are equal to

Ψ12(r, t) = ϕ1ϕ
−1
2 : (r, t) 7→ (x = r cos t, y = r sin t)

Ψ21(x, y) = ϕ2ϕ
−1
1 : (x, y) 7→ (r =

√
x2 + y2, t = arctan y

x
)

(1.2)

Example 1.11. Consider S1 as the set of the point x2 + y2 = 1 on R2.
Introduce two charts: ϕ1 on U1 = S1\N and ϕ2 on U2 = S1\S, where
N = (0, 1) is North Pole, S = (0,−1) is the South pole, and

ϕ1(x, y) = u =
2x

1− y
, ϕ2(x, y) = u′ =

2x

1 + y

(see Example 1.4) are stereographic projections. They correspond to the
stereographic projections from the ‘north pole’ N = (0, 1) and the ‘south
pole’ S = (0,−1) respectively. For the change of coordinates we obtain, that
uu′ = 1

u′ = Ψ21(u) = ϕ2ϕ
−1
1 (u) =

1

u
,

Therefore it is smooth, and we conclude that S1 with this atlas is a smooth
manifold of dimension 1. (See also Homeworks 1 and 2)
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In the same way we can obtain a smooth atlas consisting of two charts
on any sphere Sn ⊂ Rn+1. (See Homeworks 1,2) This makes Sn a smooth
manifold of dimension n.

Example 1.12. A point of RP n can be identified with a non-zero vector
v = Rn+1 considered up to a non-zero scalar factor, v ∼ kv, k 6= 0. The
coordinates of v considered up to a factor are written as [x1 : . . . : xn : xn+1]
and traditionally called the homogeneous coordinates on RP n. (They are not
coordinates in the true sense, because are defined only up to a factor.) The
construction described in Example 1.8 gives a chart ϕ : Un+1 → Rn,

[y1 : y2 : · · · : yn : 1] 7→ (y1, . . . , yn)

where Un+1 is the set of points [y1 : y2 : · · · : yn : yn+1] in RP n such that
yn+1 6= 0. The image of U is the whole Rn.

Similarly we can define other charts (Uk, ϕ(k), k = 1, . . . , n, where Uk is
the set of points [y1 : y2 : · · · : yn : yn+1] in RP n such that yk 6= 0. Together
with the chart (Un+1, ϕ(n+1)) they make an atlas for RP n consisting of n + 1
charts. It is smooth. Hence, RP n with this atlas becomes an n-dimensional
smooth manifold. Coordinates in any of these charts are traditionally called
the inhomogeneous coordinates on RP n. (See also the Homework 1,2)

Example 1.13. Acting similarly for CP n, we obtain the n + 1 charts

ϕ(k) : Cn → CP n

again giving a smooth atlas. Hence CP n has the structure of a 2n-dimensional
manifold. (Each complex coordinate gives two real coordinates.)

Before moving forward, the following remark should be made. Suppose on the same
set M , two smooth atlases are defined, so we have two smooth manifolds, (M,A1) and
(M,A2), where we used script letters A1 and A2 for denoting atlases. For example, for
the circle S1 (or the sphere Sn) we can consider the atlas consisting of the two ‘stereo-
graphic’ charts as above or an atlas constructed using angular coordinates. Do they define
“the same” circle as a smooth manifold, or not? We obviously have to introduce some
equivalence relation between atlases. This goes as follows. Two smooth atlases A1 and
A2 on the same set M are equivalent if their union A1 ∪ A2 is also a smooth atlas. This
is equivalent to saying that all changes of coordinates between charts from A1 and charts
from A2 are smooth. (Clearly, this holds for the those two atlases for S1 or Sn.) We may,
therefore, amend slightly our Definition 1.2 by saying that a manifold is a pair consisting
of a set and an equivalence class of smooth atlases. (Practically, we shall always work with
some particular atlas from this class.)
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Example 1.14. Numerous ‘natural’ ways of introducing a manifold structure on the
sphere Sn, namely, by using angular coordinates; by using the stereographic projection;
see also Example 1.25, — all give equivalent atlases, as one can check. Therefore we may
unambiguously speak of Sn as of a smooth manifold.

1.3 Smooth functions and smooth maps

Consider a manifold M . In the sequel we assume for each manifold a partic-
ular smooth atlas is chosen, and when we speak of charts, we mean charts
from that atlas.

Let f be a function on the smooth manifold M . If A = {Uα, ϕα} is an
atlas on M then one can consider for any chart ϕα : Uα → Vα ⊂ Rn the
function

fα = f ◦ ϕ−1
α : (x1

(α), . . . x
n
(α)) → R (1.3)

These local functions are functions take number value and are defined on
Rn—these functions we study in the course of many variables.

Definition 1.3. A function f : M → R is called smooth (or differentiable,
note remarks made above) if for all charts ϕα : Uα → Vα ⊂ Rn the compo-
sitions fα = f ◦ ϕ−1

α : Uα → R are smooth functions on open sets Vα ⊂ Rn.
The set of all smooth functions on M is denoted C∞(M).

Simply speaking, if we describe points of M by their coordinates (w.r.t.
a particular chart), then smooth functions on M are expressed as smooth
function of coordinates. The requirement that all changes of coordinates
ϕ−1

α ◦ ϕβ are smooth, can be seen as a compatibility condition: if a function
on M is smooth in one coordinate system, it will be smooth also in any other
coordinate system. (The composition of smooth functions defined on open
domains of Euclidean spaces is smooth, as it follows from the chain rule.)

In a similar way we can define smooth maps between manifolds. Consider
manifolds Mn1

1 and Mn2
2 . We shall denote charts on Mn1

1 and Mn2
2 by adding

subscripts, such as ϕ1α : U1α → M1, etc. Let F : M1 → M2 be a map.
Consider the subset F−1(U2µ) ∩ U1α and assume that it is not empty. Then
F maps it to U2µ; on the other hand, consider its image ϕ1α (F−1(U2µ) ∩ U1α).
We have a map

ϕ2µ ◦ F ◦ ϕ−1
1α : ϕ1α

(
F−1(U2µ) ∩ U1α

) → V2µ .
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Definition 1.4. A map F : M1 → M2 is smooth if all sets ϕ1α (F−1(U2µ) ∩ U1α)
are open and the above map ϕ−1

2µ ◦ F ◦ ϕ1α is a smooth map (from an open
set of Rn1 to an open set in Rn2), for all indices α, µ. The set of all smooth
maps from M1 to M2 is denoted C∞(M1,M2).

The same as for functions f : M → R, a map F : M1 → M2 is smooth,
simply speaking, if it is smooth when expressed in coordinates (using arbi-
trary coordinate systems on both manifolds).

Theorem 1.1. The composition of smooth maps of manifolds is smooth. The
identity map, for any manifold, is smooth.

Hence we have a category of smooth manifolds (see Appendix).
Isomorphisms in this category are called diffeomorphisms.

Definition 1.5. A map of manifolds F : M1 → M2 is a diffeomorphism if it
is smooth, invertible, and the inverse map F−1 : M2 → M1 is also smooth.
Manifolds M1 and M2 are called diffeomorphic if there is a diffeomorphism
F : M1 → M2. Notation: M1

∼= M2.

Example 1.15. R+
∼= R. Use the maps exp and log.

Example 1.16. (Counterexample). Consider the bijection x 7→ x3,
R→ R. It is not diffeomorphism (see Homework 2).

Let us consider elementary properties of smooth functions.

Theorem 1.2. Consider a manifold Mn. All constants are smooth functions.
The sum and product of smooth functions are smooth functions.

Proof. Consider, for example, the sum of two functions f, g ∈ C∞(M). We
need to check that f + g also belongs to C∞(M). By definition that means
that for any chart ϕ : V → M (where V ⊂ Rn), the composition (f + g) ◦ ϕ
belongs to C∞(V ). We have ((f + g) ◦ ϕ)(x) = (f + g)(ϕ(x)) = f(ϕ(x)) +
g(ϕ(x)) = (f ◦ϕ)(x)+(g ◦ϕ)(x) = (f ◦ϕ+g ◦ϕ)(x) for all x ∈ V . Therefore
(f + g) ◦ ϕ = f ◦ ϕ + g ◦ ϕ ∈ C∞(V ), since the sum of two smooth function
of n variables is a smooth function.

Recall that an algebra over any field is a vector space which is also a
ring, such that multiplication is a linear operation, i.e. (ka)b = k(ab) for all
algebra elements a, b and field elements k.
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Theorem 1.2 means that C∞(M) is an algebra over the field of real num-
bers R. The algebra C∞(M) is associative and commutative, and there is a
unit 1.

Elements of C∞(Mn) have local appearance as smooth functions of n
real variables (that is how they are defined).

Example 1.17. Elements of the algebra C∞(S1) can be locally written as
smooth functions f = f(ϕ) of the polar angle ϕ ∈ (0, 2π) or as smooth
functions of the variable u = uN introduced above.

Example 1.18. Similarly, functions on S2 locally look as functions of the
variables u1, u2 defined by a stereographic projection, or as functions of the
angles θ, ϕ, (or any other local coordinates that can be introduced on the
sphere).

Recall that a homomorphism of algebras is a linear map (of algebras
regarded as vector spaces) preserving products: ψ(ab) = ψ(a)ψ(b). An iso-
morphism of algebras is an algebra homomorphism which is invertible.

Since, in general, coordinates on a manifold are defined only locally (there
is no coordinate chart covering the whole manifold), the algebra C∞(Mn)
for an n-dimensional manifold and the algebra C∞(Rn) are not isomorphic
in spite of their elements having the same ‘local’ appearance.

Let X and Y be arbitrary sets, F : X → Y , an arbitrary map of sets.
Denote by Fun(X) and Fun(Y ) the sets of all functions X → R and Y → R,
respectively. Obviously, they are algebras. Consider g ∈ Fun(Y ). The
operation g 7→ g ◦ F is a map Fun(Y ) → Fun(X).

Definition 1.6. The operation g 7→ g ◦F is called the pullback F . Notation:
F ∗(g) = g ◦ F .

The pullback F ∗ is a map Fun(Y ) → Fun(X) (in the opposite direction
to F : X → Y !).

Lemma 1.1.
(F ◦G)∗ = G∗ ◦ F ∗ (1.4)

Proof. Left as exercise.

Notice the opposite order in the RHS of formula (1.4).

Theorem 1.3. Suppose F : M1 → M2 is a smooth map of manifolds. Then the pullback
is an algebra homomorphism F ∗ : C∞(M2) → C∞(M1).
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Proof. We have to check that the pull-back of a smooth function on M2 under a smooth
map F : M1 → M2 is a smooth function on M1. Indeed, by the definition, for f ∈
C∞(M2), we have F ∗f = f ◦ F , which as smooth as the composition of smooth maps.
Now we need to check that F ∗ is a homomorphism, i.e., it is linear and maps products to
products. It is the same as the proof that C∞(M) for a given M is an algebra. For example,(
F ∗(fg)

)
(x) = ((fg) ◦ F )(x) = (fg)(F (x) = f(F (x))g(F (x)) =

(
(f ◦ F )(g ◦ F )

)
(x) =(

F ∗f F ∗g
)
(x) for all x ∈ M1. In other words, F ∗(fg) = F ∗f · F ∗g.

Example 1.19. Consider a map F : R → S1 that sends t ∈ R to F (t) = (cos t, sin t) ∈
S1 ⊂ R2. It is smooth. Because it is onto, the pullback is injective. (Check!) It follows
that C∞(S1) can be identified with its image in C∞(R), which is the subalgebra consisting
of all 2π-periodic functions.

1.4 Constructions of manifolds.

Products.

Let X and Y are manifolds of dimensions n and m, respectively. Then the
Cartesian product X ×Y has a natural structure of a manifold of dimension
n + m.

Construction: if ϕ1α : U1α → V1α are charts for X and ϕ2µ : U2µ → V2µ

are charts for Y (here V1α ⊂ Rn, V2µ ⊂ Rm), then U1α × U2α are subsets in
X × Y and

ϕ1α × ϕ2µ : U1α × U2µ → V1α × V2µ

are charts for X × Y . Here

for(x,y) ∈ X× Y ϕ1α × ϕ2µ : (x,y) 7→ (x1, . . . , xn, y1, . . . , ym) ,

ϕ1α(x) = (x1, . . . , xn), ϕ2µ(y) = (y1, . . . , ym) .

If {(V1α, ϕ1α)} and {(V2µ, ϕ2µ)} are smooth atlases, then a direct check shows
that the atlas {(V1α × V2µ, ϕ1α × ϕ2µ)} is also smooth.

Example 1.20. The product S1×S1 is called the 2-torus, and is diffeomor-
phic with the “surface of a bagel” in R3.

Example 1.21. For any n, the n-fold product S1 × . . . × S1 is called the
n-torus. Notation: T n.

Example 1.22. For any manifold M , the product M × R is called an (infi-
nite) cylinder over M .
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Example 1.23. If we replace R by the open interval (0, 1), we obtain a finite
cylinder M × (0, 1). (Sketch a picture for M = S1.)

Remark 1.2. The product of a manifold with a closed segment [0, 1] will not
be a manifold. (Why?) It gives an example of a “manifold with boundary”,
a notion to be discussed later.

Specifying manifolds by equations

First of all, we need to recall what ‘independent equations’ means.

Example 1.24. Let k ≤ N . Consider a linear system

Ay = 0 (1.5)

where y ∈ RN and A is an k×N matrix. Equations (1.5) are called indepen-
dent if the k rows of the matrix A are linearly independent. As we know, in
this case the set of solutions of (1.5) is a vector space of dimension N − k. If
we solve this system by Gauss elimination, we arrive at some N −k variables
that are ‘free’ (can be set to any values), and the other k are expressed as
linear functions of them, and this gives the general solution.

This example is a linear model of the general situation.
Consider in RN a system of k equations





F 1(y1, . . . , yN) = 0

. . .

F k(y1, . . . , yN) = 0

(1.6)

where the LHS’s are smooth functions. Denote by S ⊂ RN the set of solutions
of (1.6), i.e., the set of all points of RN satisfying equations (1.6). We say
that equations (1.6) are independent if the rows of the matrix of partial
derivatives

∂F

∂y
=




∂F 1

∂y1
∂F 1

∂y2 . . . ∂F 1

∂yN

. . .
∂F k

∂y1
∂F k

∂y2 . . . ∂F k

∂yN


 (1.7)

are linearly independent (at least at the points belonging to the set of solu-
tions S ⊂ RN).

Theorem 1.4. If equations (1.6) are independent, then the set of solutions
S has a natural structure of a smooth manifold of dimension N − k.
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Proof. Suppose the set of solutions S is non-empty. (If empty, nothing to prove: empty
set is a manifold.) For each y0 ∈ S, we can apply the implicit function theorem: near y0,
for a solution of the system (1.6), from the N coordinates y1, . . . , yN one can choose some
N −k coordinates as independent variables and express the rest as functions of them. For
concreteness, let it be the last N − k coordinates: there are smooth functions ϕ1, . . . ϕk

defined in a neighborhood of (yk+1
0 , . . . , yN

0 ) ∈ RN−k so that the points y of the form

y =
(
ϕ1(yk+1, . . . , yN ), . . . , ϕ1(yk+1, . . . , yN ), yk+1, . . . , yN

) ∈ RN

satisfy the system (1.6) for all values of yk+1, . . . , yN in the said neighborhood. Rename
yk+1, . . . , yN as u1, . . . , uN−k. The map (u1, . . . , uN−k) 7→ (

ϕ1(u1, . . . , uN−k), . . . , ϕ1(u1, . . . , uN−k), u1, . . . , uN−k
)

is a chart for the set S. The inverse map is simply given by the projection on the last N−k
coordinates: (y1, . . . , yN ) 7→ (u1 = yk+1, . . . , uN−k = yN ). There is such a chart defined
for each point in S. Therefore their collection gives an atlas for S. We immediately see
that when a point y ∈ S can be covered by two charts, the change of coordinates between
them will be smooth (as composition of smooth maps). Hence S is a smooth manifold.

We often use the special case of this Theorem when the set is defined by
one equation F = 0 in the space RN . The condition (1.8) in this case means
that the vector (

∂F

∂y1
,
∂F

∂y2
, . . . ,

∂F

∂yN

)

is not equal to zero at least at the points of S.
If this condition is satisfied then the set S is the manifold of the dimension

N − 1.

Example 1.25. Consider once again the sphere S2 (defined as the unit
sphere in R3). It is specified by the equation

x2 + y2 + z2 = 1 ,

where we used traditional notation for coordinates on R3. In other words,
we have a “system” consisting of one equation

F (x, y, z) = 0

where F (x, y, z) = x2 + y2 + z2 − 1. The set of solutions S is our sphere S2.
The matrix of partial derivatives is the row matrix

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
= (2x, 2y, 2z) .

We see that this row vector never vanishes for (x, y, z) 6= 0, in particular,
it does not vanish for all (x, y, z) ∈ S. Therefore our “system” (consisting

13



of a single equation) is independent and Theorem 1.4 applies. Once again
we obtain the manifold structure of S2. (The main point in Theorem 1.4 is
the possibility to solve the system in question w.r.t. some of the variables
so that the remaining variables are ‘free’ and can be taken as coordinates,
thus giving a manifold structure. This is deduced from the implicit function
theorem. For the equation of the sphere we, of course, can resolve it w.r.t.
to one the coordinates directly.)

Counterexample Consider the set S in E3 defined by the equation

x2 + y2 + z2 = 0

The vector
(

∂F
∂x

, ∂F
∂y

, ∂F
∂z

)
= (2x, 2y, 2z) is equal to zero if x2 + y2 + z2 = 0.

So the conditions of the Theorem are not satisfied.
The set S is the point x = y = z = 0. It is not 2-dimensional manifold.
One can see other examples in Homeworks 2,3.
In practical situations it often happens that interesting objects are defined by equations

that are not independent, and constructing an equivalent system of independent equations
may be awkward, if at all possible. The following generalisation of the previous theorem
is helpful (we skip a proof):

Theorem 1.5 (Manifolds specified by equations of constant rank). If a system as
above is not necessarily independent, but has a constant rank r, then its set of solutions is
a manifold of dimension N − r.

Let us explain what is meant by ‘constant rank’ here. We say that a system of
equations (1.6) has constant rank if at all points of the set of solutions S, the rank of the
matrix of partial derivatives (1.7) is a constant number r ≤ k (the same for all points
y ∈ S). Recall that the rank of a matrix is the dimension of the vector space spanned by
its rows (the row space) or the dimension of the vector space spanned by its columns (the
column space). These two numbers coincide. (A particular case is of course r = k, i.e.,
the case of independent equations treated in Theorem 1.4.)

How do we practically know that the rank is constant? We should look at the vector
space of solutions of the following auxiliary linear system:

∂Fµ

∂ya
(y)ẏa = 0 . (1.8)

Here y is a given point in the set of solutions. The unknowns are variables that we denoted
by ẏa. The matrix of the system is exactly the matrix of partial derivatives for which we
want to know whether its rank is constant (independent of y), or not. From linear algebra
we know that the dimension of the space of solutions of (1.8) is the number of variables
(which is N) minus the rank of the matrix (which is r). Therefore the rank r of the matrix
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(
∂F µ

∂ya (y)
)

is constant for y ∈ S if and only if the dimension of the space of solutions
of (1.8) does not depend on y ∈ S.

Notice that the linear system (1.8) can be obtained by the formal differentiation of the
system (1.6) w.r.t. a parameter t (“time”), so that ‘dot’ stands for the “time derivative”.
(Later we shall see the geometrical meaning of this.)

Example 1.26. Recall that a matrix A is called orthogonal is AAT = E, where E is the
identity matrix. The set of all real orthogonal n × n matrices is denoted O(n). One can
check that O(n) is a group, called the orthogonal group. We claim that O(n) has a natural
manifold structure. Let us apply Theorem 1.5. Notice that a single matrix equation such
as AAT = E is in fact a system of n2 equations for the matrix entries. To see that it has
constant rank we consider A as a function of a parameter t, A = A(t), and differentiate
the equation w.r.t. t. We obtain the linear system ȦAT + AT Ȧ = 0 or (ȦAT )T = −ȦAT .
(Here A ∈ O(n) and the unknown is Ȧ.) The space of solutions is therefore isomorphic to
the space of all skew-symmetric n×n matrices. Hence it has constant dimension n(n−1)/2
independent of A and the rank of the original system is constant. The dimension of the
manifold is n(n− 1)/2. (The dimension of the space of all skew-symmetric n×n matrices
can be counted as the number of independent entries for such a matrix: 1

2 (n2−n), where
n is the number of the diagonal entries, which all have to be zero.)

Example 1.27. A particular simple case is the group O(2) of the orthogonal 2×2 matrices.
The equation AAT = E for n = 2 can be solved explicitly (do this!). Any orthogonal 2×2
matrix is either

A =
(

cos α − sin α
sinα cosα

)

or

A =
(− cos β sin β

sin β cosβ

)
.

(Geometrically it is either the rotation through some angle α or a rotation followed by the
inversion in a coordinate axis.) As expected we obtain an example of a one-dimensional
manifold: 2(2 − 1)/2 = 1. Moreover, we see that O(2) ∼= S1 ∪ S1 (the disjoint union of
two circles).

Manifolds obtained as above are called surfaces of codimension r (or dimension N−r)
in RN . Actually, any manifold is a “multidimensional surface” in this sense, as stated in
the following theorem.

We defined manifolds in abstract way. In this susbsection we showed that
some manifolds can be realised as subsets in Rn.

In fact there is a very deep theorem

Theorem 1.6. Any manifold Mn can be embedded into a Euclidean space
RN for some N .
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Proof to be discussed later. Two points: 1) there is no ‘standard’ or
‘canonical’ way (a prescription good for all manifolds) of embedding mani-
folds to RN , and the dimension N depends on how we arrange an embedding
(we shall discuss minimizing N later); 2) knowing that a particular manifold
is a surface in RN does not usually help and is a rather superfluous informa-
tion. Practically it is more convenient to work intrinsically (in terms on a
manifold itself) rather then in terms of an ambient RN .

1.5 Appendix. The notion of a category

A category is an algebraic structure (generalizing groups and semigroups) consisting of
the following data: a set whose elements are called objects and a set whose elements are
called arrows or morphisms, so that for each arrow there are two uniquely defined objects
called its source and target (it is said that an arrow ‘goes’ from its source to its target);
there is a binary operation called the product or composition of arrows, defined for any
two arrows a1 and a2 if the target of a2 coincides with the source of a1; then the source
of the composition a1 ◦ a2 is equal to the source of a2 and the target of a1 ◦ a2, to that of
a1. Two properties are satisfied: composition is associative and for each object X there
is a morphism 1X , called the identity for X, such that a ◦ 1X = a and 1X ◦ a = a for all
arrows a going from, and to X respectively.

(Categorical constructions are best understood by drawing diagrams where arrows
are represented by actual arrows joining letters denoting the corresponding sources and
targets.)

One obtains a group if there is only one object and all arrows are assumed to be
invertible, i.e., for each a there is a−1 such that a ◦ a−1 = 1 and a−1 ◦ a = 1, where
1 stands for the identity corresponding to the single object. The arrows are the group
elements in this case. If no invertibility of arrows is assumed, a category with a single
object is what is known as a monoid (or a ‘semigroup with identity’).

In the same way as groups appear as transformation groups, i.e., families of certain
invertible transformations of a given object (a set, a vector space, etc.), semigroups or
monoids appear as families of not necessarily invertible transformations of a fixed object.
Categories can appear as families of transformations between different objects. For exam-
ple, for a fixed vector space V , all invertible linear operators A : V → V make a group
(called the general linear group of V ); all linear operators A : V → V , not necessarily
invertible, make a monoid, where the identity is the identity operator 1V : V → V ; finally,
the collection of arbitrary linear transformations A : V → W between all vector spaces
make a category. The ‘objects’ for this category are the vector spaces and the ‘arrows’,
the linear maps. The ‘source’ and the ‘target’ of a map have their natural meanings. The
composition is the composition of maps in the natural sense. This category is called the
category of vector spaces.

Similarly appear such examples of categories as the category of sets (objects are sets,
morphisms are arbitrary maps of sets), the category of topological spaces (objects are
topological spaces, morphisms are continuous maps), the category of groups (objects are
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groups, morphisms are group homomorphisms), the category of associative rings (objects
are associative rings, morphisms are ring homomorphisms), etc. From the viewpoint of
category theory, in all these examples ‘objects’ are treated as whole entities without in-
ternal structure (which was used only for specifying the set of arrows); it is morphisms
that play a role. One should also note that, the same as ‘abstract’ groups not arising
as transformation groups, there are ‘abstract’ categories where arrows are not defined as
maps. An example is the pair category of a given set S where the objects are defined
as the elements of S and the arrows are defined as the pairs (X, Y ) ∈ S × S, with the
composition law (X, Y ) ◦ (Y, Z) = (X, Z).

Category theory plays a very important role in modern mathematics, primarily as a
unifying language for many algebraic and geometric constructions.

A simplest “abstract” notion from category theory is that of an isomorphism. A
morphism a in a given category is called an isomorphism if there is a morphism b going
in the opposite direction such that a ◦ b and b ◦ a are the identities for the respective
objects. It follows that in this case b is defined uniquely (check from the axioms of a
category!). It is called the inverse of a and denoted a−1. Two objects X and Y are called
isomorphic if there is at least one isomorphism going from X to Y . One can see that this
defines an equivalence relation on the set of objects (check!), also called ‘isomorphism’.
Examples: in the category of groups, the isomorphisms are the isomorphisms of groups;
in the category of sets, the isomorphisms are the bijections; in the category of topological
spaces, the isomorphisms are the homeomorphisms. In the category of smooth manifolds,
the isomorphisms are the diffeomorphisms.

2 Tangent vectors and related objects

2.1 Tangent vectors

2.1.1 Velocity vectors

Consider a smooth manifold M = Mn. A (smooth) curve in M is a smooth
map γ : (α, β) → M . In other words, we have t 7→ x(t) ∈ M . How is it
possible to define the velocity of γ?

Let us fist examine the case of M = Rn. Then in a straightforward way
we can consider

x(t + ∆t)− x(t)

∆t
.

The top of the fraction is a vector in Rn (as the difference of two points), the
bottom is a number; hence the whole thing is a vector in Rn. It makes sense
to pass to the limit when ∆t → 0 and, assuming the limit exists, we obtain
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the vector

ẋ =
dx

dt
:= lim

∆→0

x(t + ∆t)− x(t)

∆t
,

which, by definition, is the velocity of our curve. Unfortunately, we cannot do
the same for an arbitrary manifold M , because taking difference of two points
will not make sense. The only tool we have for manifolds are coordinates.
Therefore we have to examine the case of Rn further and see how velocity
can be expressed using coordinates.

Writing x = (x1, . . . , xn) and working out the difference x(t+ ∆t)−x(t),
we arrive at

(
x1(t+∆t)−x1(t), . . . , xn(t+∆t)−xn(t)

)
. Therefore calculating

the velocity amounts to taking the time derivative of each coordinate, and
the velocity vector of a curve in Rn has the coordinate expression

ẋ =
dx

dt
= (ẋ1, . . . , ẋn)

in standard coordinates. Introducing the vectors ei=(0,. . . ,1. . . ,0) of the
standard basis, with 1 in the i-th position and 0 everywhere else, we can
re-write this also as

ẋ = ẋ1e1 + . . . ẋnen .

Example 2.1. For a curve in R3 we have

ẋ = (ẋ, ẏ, ż) = ẋe1 + ẏe2 + że3

using the traditional notation for coordinates, where e1 = (1, 0, 0), e2 =
(0, 1, 0), and e3 = (0, 0, 1). In R2 we have

ẋ = (ẋ, ẏ) = ẋe1 + ẏe2 .

To progress with our goal of defining velocity on arbitrary manifolds, we
need to find an expression of velocity vector for Rn in coordinate systems
that are not necessarily standard coordinates used above.

Example 2.2. Let us work out the expression for velocity of a curve in R2

in polar coordinates r, θ rather than Cartesian coordinates x, y. Suppose a
curve x = x(t) is defined using polar coordinates as r = r(t), θ = θ(t). To
calculate the velocity ẋ we use the chain rule: a point x ∈ R2 is considered
as a composite function of the time, first x = x(r, θ) and then r = r(t),
θ = θ(t). We obtain

ẋ = ṙ
∂x

∂r
+ θ̇

∂x

∂θ
(2.1)
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where partial derivatives w.r.t. r and θ are vectors, and ṙ, θ̇ are scalar
coefficients. If we introduce the vectors

er :=
∂x

∂r
and eθ :=

∂x

∂θ
, (2.2)

we may write
ẋ = ṙ er + θ̇ eθ ,

very similarly to the expression in Cartesian coordinates.

Sometimes for vectors er, et we use notations ∂
∂r

instead ∂x
∂r

and respec-
tively ∂

∂θ
instead ∂x

∂θ
.

Note that the vectors er, eθ associated with polar coordinates on R2

depend on a point x ∈ R2 and make a basis for each x except for the
origin, where er is not defined and eθ vanishes. (Indeed, one can find
er = (cos θ, sin θ), eθ = (−r sin θ, r cos θ) in standard coordinates.) Hence
the expression ẋ = ṙ er + θ̇ eθ is nothing but the expansion over this basis
(at a given point x). On the other hand, the vectors of the standard basis in
R2 can be also written as partial derivatives w.r.t. the coordinates:

e1 = (1, 0) =
∂

∂x
(x, y) =

∂x

∂x
, and e2 = (0, 1) =

∂

∂y
(x, y) =

∂x

∂y
.

Generalising to Rn, we conclude that for arbitrary “curvilinear” coordi-
nates y1, . . . , yn (we use a different letter to distinguish from standard coor-
dinates denoted above as x1, . . . , xn) there is an associated basis of vectors

e1 :=
∂x

∂y1
, . . . , en :=

∂x

∂yn

(although we use the same letters ei, these vectors are not to be confused
with the standard basis vectors above), depending on a point,2 with respect
to which the velocity of any curve in Rn has the expansion

ẋ = ẏ1 e1 + . . . + ẏn en .

In other words, we may say that in an arbitrary coordinate system on Rn,
the array of the time derivatives of the coordinates

(ẏ1, . . . , ẏn)

2The linear independence of the vectors ei for each x is, in fact, a part of the definition
of what is a ‘system of curvilinear coordinates’ on a domain of Rn, the other principal
condition being the that the correspondence between points and coordinates is one-to-one.
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gives the components of the velocity ẋ in this system.
On an arbitrary manifold Mn we simply use this as the definition:

Definition 2.1. For a curve γ : (a, b) → M , which we write as x = x(t), we
define the velocity vector

ẋ =
dx

dt
at t ∈ (a, b) to be the array of numbers

(ẋ1, . . . , ẋn) =

(
dx1

dt
, . . . ,

dxn

dt

)

given for each coordinate system x1, . . . , xn, where xi = xi(t), i = 1, . . . , n
is the coordinate expression of the curve x = x(t). We may also use the
notation such as γ̇ or dγ/dt for the velocity of a curve γ.

Let us emphasize the following. We have not yet defined what a ‘vector’
on a manifold is in general. Our definition of the velocity vector of a curve
on M will serve as a model for such a definition, which will be given below.
Hence it is very important to understand Definition 2.1. According to it,
the velocity vector for a curve x = x(t) at a given t is defined as a rule
associating an array (which may be written as a row-vector or row-column)
to each coordinate system near x(t). All these arrays are interpreted as
“representing” the velocity in different coordinate systems. (Unlike Rn, there
is no distinguished coordinate system and hence there is no distinguished
representation of the velocity vector as an element of Rn.)

Let us see how the components of velocity in different coordinate systems
are related with each other. Suppose we have coordinates that we denote
by x1, . . . , xn and another coordinates that we denote by x1′ , . . . , xn′ . (We
shall refer to them as ‘old’ and ‘new’ coordinates, though these names do not
carry any absolute meaning.) Then in the old coordinates the components
of velocity are ẋi, where i = 1, . . . , n, and in the new coordinates they are
ẋi′ , where i′ = 1′, . . . , n′. By the chain rule we have

ẋi =
∑

i′

∂xi

∂xi′ ẋi′ (2.3)

where the Jacobi matrix is taken at x(t). (More precisely, if the old coordi-
nates are written as functions of the new coordinates as xi = xi(x1′ , . . . , xn′),
the partial derivatives are taken at x1′ , . . . , xn′ corresponding to the point
x(t).) We see that the transformation law (2.3) depends on a point of M .
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2.1.2 Definition of a tangent vector

We use the transformation law for the components of velocity as the model
for a general definition of vectors. Consider a point x ∈ M of a manifold M .

Definition 2.2. A vector (or a tangent vector) v at a point x ∈ M is defined
as a rule assigning an array of numbers (v1, . . . , vn) to each coordinate system
x1, . . . , xn near x so that for any two coordinate systems, say, x1, . . . , xn and
x1′ , . . . , xn′ the respective arrays are related by the transformation

vi =
∑

i′

∂xi

∂xi′ vi′ (2.4)

where the partial derivatives are taken at the values of the coordinates
x1′ , . . . , xn′ corresponding to the point x.

The numbers vi are called the components or coordinates of the vector v
w.r.t. a given coordinate system. Below we shall discuss how tangent vectors
can be specified practically.

The transformation law for components of vectors defined by (2.4) is
called the vector law. Note that it depends on a point of M , since the Jacobi
matrix is not, in general, a constant matrix. Therefore tangent vectors are
attached to points. (It makes no sense to speak of a ‘vector’ on a manifold
without referring to a particular point. This is a big difference with Rn.) For
example, the velocity vector ẋ of a curve x = x(t) is a tangent vector on M
at the point x(t) ∈ M .

The set of all tangent vectors at x ∈ M is called the tangent space at x
and denoted TxM .

2.2 Tangent space

2.2.1 Properties

Theorem 2.1. The tangent space TxM is non-empty. With respect to the
evident operations (defined component-wise), it is a vector space of dimension
n = dim M , for each x ∈ M .

Proof. To prove that TxM is non-empty, one can simply bring up an example
of the velocity vector for some curve through x. More precisely, if γ : t 7→ x(t)
is a curve such that x(t0) = x (for some t = t0), then ẋ(t0) is an element of
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TxM . An alternative way of showing the existence of tangent vectors could
be as follows. Fix a coordinate system near x; suppose the coordinates are
denoted x1, . . . , xn. To define a tangent vector at x, take an arbitrary array
(v1, . . . , vn) ∈ Rn. We want to view vi, i = 1, . . . , n, as the components of
a tangent vector v w.r.t. the coordinate system xi. We need to define the
components of v in all other coordinate systems; we do so by setting

vi′ =
∑ ∂xi′

∂xi
vi

(i.e., by using the vector law). For consistency, we need to check that the
vector law holds for any two arbitrary coordinate systems, say, xi′ and xi′′ .
We have

vi′′ =
∑ ∂xi′′

∂xi
vi

and can express vi in terms of vi′ :

vi =
∑ ∂xi

∂xi′ vi′ .

Combining these formulas, we arrive at

vi′′ =
∑∑ ∂xi′′

∂xi

∂xi

∂xi′ vi′ =
∑ ∂xi′′

∂xi′ vi′ ,

(where we used the chain rule).
Now we need to prove that TxM has the structure of a vector space. To

define it, fix again some coordinate system and define the sum of two vectors
and the multiplication of a vector by a number componentwise:

(u + v)i := ui + vi, and (ku)i := kui

where u,v ∈ TxM and k ∈ R. We have to check that this definition does
not depend on a choice of coordinates. Indeed, transform u + v and ku into
another coordinate system using the vector law:

(u + v)i′ =
∑ ∂xi′

∂xi
(u + v)i =

∑ ∂xi′

∂xi
(ui + vi) =

∑ ∂xi′

∂xi
ui +

∑ ∂xi′

∂xi
vi = ui′ + vi′ ,

which shows that the expression for the sum of two vectors will have the
same form in all coordinate systems. This holds for the multiplication of a
vector by a number as well.
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A conclusion from the proof above is that to define a tangent vector it is
sufficient to define its components in a particular coordinate system. Such
components can be chosen absolutely arbitrarily — no restrictions. Hence,
the tangent space TxM can be identified with Rn. (Such an identification is
not unique and depends on a choice of coordinates near x.)

Remark 2.1. We used velocities of parametrized curves as a model for defin-
ing tangent vectors. In fact, for a given point x ∈ M , every vector v ∈ TxM
is the velocity vector for some curve through x. Indeed, in an arbitrary (but
fixed) coordinate system near x set xi(t) = xi + tvi, where xi are the coor-
dinates of the point x and vi, the components of the vector v. It is curve
passing through x at t = 0 and we have ẋ(0) = v. (The curve looks as a
‘straight line’ in the chosen coordinate system, but in another chart it would
have a different appearance.)

Each coordinate system near x ∈ M defines a basis in TxM . The basis
vectors are ei = ∂x

∂xi . Recall that partial derivatives are defined as follows: all
independent variables except one are fixed and only one is allowed to vary;
then the partial derivative is the ordinary derivative w.r.t. this variable.
Hence the vectors ei = ∂x

∂xi are precisely the velocity vectors of the coordinate
lines, i.e., the curves obtained by fixing all coordinates but one, which is the
parameter on the curve. By applying the definition of the velocity vector we
see that in the coordinate system x1, . . . , xn the basis vectors e1, . . . , en are
represented by the standard basis vectors of Rn:

e1 =
∂x

∂x1
has components

∂

∂x1
(x1, . . . , xn) = (1, 0, . . . , 0)

e2 =
∂x

∂x2
has components

∂

∂x2
(x1, . . . , xn) = (0, 1, . . . , 0)

. . .

en =
∂x

∂xn
has components

∂

∂xn
(x1, . . . , xn) = (0, 0, . . . , 1)

Hence e1, . . . , en is indeed a basis in TxM (for all x in the region where this
coordinate system is defined). It is called the coordinate basis (for a given
coordinate system), or the basis associated with it.

Sometimes when it will be convenient we omit the letter x and use nota-
tion ∂

∂xk instead ∂x
∂xk :

e1 =
∂

∂x1
, e2 =

∂

∂x2
, . . . , en =

∂

∂xn
(2.5)
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2.2.2 Practical description

Consider practical ways of describing tangent vectors.
Firstly, if we are given a chart, the tangent space at a point x is the linear

span of the coordinate basis vectors ei = ∂
∂xi . This is helpful, in particular,

if our manifold is defined as a parametrised surface in some RN .

Example 2.3. For S2 ⊂ R3 consider a parametrization by angles θ, ϕ:

x = cos ϕ sin θ, y = sin ϕ sin θ, z = cos θ .

We obtain the vectors eθ, eϕ as elements of R3:

eθ =
∂x

∂θ

∂

∂x
+

∂y

∂θ

∂

∂y
+

∂z

∂θ

∂

∂z
= cos ϕ cos θ

∂

∂x
+ sin ϕ cos θ

∂

∂y
− sin θ

∂

∂z
,

eϕ =
∂x

∂ϕ

∂

∂x
+

∂y

∂ϕ

∂

∂y
+

∂z

∂ϕ

∂

∂z
= − sin ϕ cos θ

∂

∂x
+ cos ϕ cos θ

∂

∂y

( ∂
∂x

= ex,
∂
∂y

= ey,
∂
∂z

= ez)
In other notations

eθ = (cos ϕ cos θ, sin ϕ cos θ,− sin θ)eϕ = (− sin ϕ sin θ, cos ϕ sin θ, 0) .

The tangent space TxS
2 at x ∈ S2 can be described as the subspace of R3

spanned by eθ, eϕ.

Secondly, if a manifold is specified by equations, then the tangent space at
each point appears as the space of solutions of the corresponding “linearized”
system.

Consider the simplest case when the manifold is specified by the equation
F (x1, . . . , xN) = 0 (the condition that vector ∂F

∂xi |F=0 6= 0 has to be obeyed).
Then to obtain the equation for the tangent space we assume that a vector

v ∈ TxM is the velocity of a curve x(t) on M . By differentiating the above
equation w.r.t. t, we arrive at the equation

N∑
i=1

∂F (x1, . . . , xN)

∂xi
ẋi = 0 .

Note that the coefficients of the matrix of this system are functions of a point
x ∈ M . This equation specifies a subspace of RN , the tangent space TxM
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at every point of the manifold. The dimension of this tangent space is equal
to N − 1. This means that linear system above have N − 1 independent
solutions, i.e. the vector

(
∂F

∂x1
,
∂F

∂x2
, . . . ,

∂F

∂x1

)

is not equal to zero at all the points F = 0 of the manifold M . This is
just the condition that set F = 0 is a manifold of dimension N − 1 (see the
Theorem 1.4).

Example 2.4. For the sphere S2 ⊂ R3, if we specify it by the equation

x2 + y2 + z2 = 1 ,

we obtain by differentiating

xẋ + yẏ + zż = 0 ,

(after dividing by 2). We see that (x, y, z) 6= 0 on the points where x2 + y2 +
z2 = 1. For each x = (x, y, z) ∈ S2, it is the equation of the tangent space
TxS

2 as a subspace of R3 (of dimension 2) (See also homework 3).

2.3 Tangent bundle and tangent maps

2.3.1 Tangent bundle

Consider a manifold M = Mn.

Definition 2.3. The union of the tangent spaces TxM for all points x ∈ M ,
i.e., the collection of all tangent vectors to M , is called the tangent bundle
of M and denoted TM ,

TM =
⋃
x∈M

TxM . (2.6)

Let us emphasize that tangent spaces at different points are, by the defi-
nition, different vector spaces, which cannot have common elements. Hence
the union (2.6) is a disjoint union.

Remark 2.2. One should not be confused by the picture of tangent planes
to a surface in R3 where the planes seem to intersect: the ‘tangent planes’ at
this picture are not the actual tangent spaces of the corresponding manifold
M = M2, but their images under the maps ix : v 7→ x+v where both x ∈ M
and v ∈ TxM are regarded as elements of R3.
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There is a natural map p : TM → M that send each vector v ∈ Tx to
the point x to which it is attached. It is called the projection on TM .

The set TM has a natural structure of a manifold of dimension 2n, in-
duced by the manifold structure of Mn.

Consider smooth atlas A = {(Uα, ϕα)} on M . We define the atlas for TM
corresponding to this atlas in the following way: Any chart (Uα, ϕα) defines
a chart (Ūα, ϕ̄α) such that

Ūα = {(x,v) : x ∈ Uα,v ∈ TvM}
and

ϕ̄ : ((x,v)) 7→ (x1, x2, . . . , xn; v1, v2, . . . , vn)

where (x1, x2, . . . , xn) are coordinates of the point x in the chart ϕα, ϕ(x) =
(x1, x2, . . . , xn) and (v1, v2, . . . , vn) are components of the vector v in these
coordinates.

The changes of coordinates consist of the changes of coordinates on M
and the corresponding transformations of the components of vectors:

xi = xi(x1′ , . . . , xn′) , vi =
∑

i′

∂xi

∂xi′ (x
1′ , . . . , xn′) vi′ ,

where we denoted by xi, vi coordinates in the chart ϕ̃α and by xi′ , vi′ coordi-
nates in the chart ϕ̃β.

The projection map p : TM → M in coordinates has the form

(x1, . . . , xn, v1, . . . , vn) 7→ (x1, . . . , xn) ,

i.e., the standard projection Uα×Rn → Uα. We see that the tangent bundle
locally looks like a direct product (but it is not a product globally.)

2.3.2 Tangent map

Consider a smooth map F : M → N . Fix a point x ∈ M and denote
y = F (x) ∈ N . We shall define a linear map from the vector space TxM to
the vector space TyN ‘induced’ by the map F .

Each tangent vector v ∈ TxM can be interpreted as the velocity vector
of some curve γ : (a, b) → M through x:

v = ẋ =
dx

dt
.
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For concreteness let us assume that (a, b) = (−e, e) and x = x(0); the time
derivative above is therefore also taken at t = 0.

Consider the composition F ◦ γ; it is a smooth curve in N .

Definition 2.4. The tangent map for the map F at x ∈ M maps a vector
v = ẋ ∈ TxM to the velocity vector of the curve F ◦ γ in N at t = 0:

ẋ 7→ d

dt
F (x(t)) (2.7)

(the derivative is taken at t = 0). Notation for the tangent map: dF (x) or
TF (x) or DF (x) or F∗(x). (The indication to a point x is often dropped if
it is clear from the context.)

The tangent map for a smooth map F is also referred to as the differential
of F (at a point x ∈ M).

Theorem 2.2. The tangent map is a linear transformation TxM → TF (x)N .

Proof. Suppose v ∈ TxM is the velocity of curve γ : (−e, e) → M at t = 0.
Let us calculate the action of dF (x) on v using coordinates. Fix coordinate
systems on M and N so that coordinates on M are denoted as xi, i = 1 . . . , n,
and on N , as ya, a = 1 . . . ,m. Let the curve γ be represented in coordinates
as xi = xi(t), i = 1, . . . , n, and the map F , as ya = ya(x1, . . . , xn). We have
vi = ẋi(0). The image of v under dF (x) is the vector

d

dt

(
F (x(t))

)
,

(the derivative at t = 0), hence in coordinates it will be

(dF (x)(v))a =
d

dt
ya

(
x1(t), . . . , xn(t)

)
=

n∑
i=1

∂ya

∂xi

dxi

dt
=

n∑
i=1

∂ya

∂xi
vi .

Hence the tangent map dF at x ∈ M is a linear map (as claimed), with the
matrix (

∂ya

∂xi
(x1, . . . , xn)

)

w.r.t. the coordinate bases ei in TxM and ea in TF (x)N .
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Example 2.5. Consider a smooth function on M , i.e., a map f : M → R.
We identify tangent vectors to R with numbers. Hence the tangent map
df(x) at a point x ∈ M is a linear map TxM → R. In coordinates it is given
by the matrix (row-vector)

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The value of df(x) on a tangent vector v with coordinates vi will be

df(x)(v) =
∂f

∂x1
v1 + . . . +

∂f

∂xn
vn .

Thus we have recovered the classical understanding of the differential of a
function as the main (linear) part of the increment of the function for a
given increment of the independent variables. The value of df(x) on v is
traditionally denoted as ∂vf and is called the derivative along v (sometimes
also “directional derivative”, but it is not a good term, as it depends on a
vector v and not just on its direction).

Example 2.6. Consider the map F of S1 in R3, which is defined by the
relation

x = cos θ, y = sin θ, z = sin
(
θ +

π

4

)
, (2.8)

where θ is the polar angle on the circle S1 defined by the equation x2+y2 = 1
in R2. These relations define the smooth map, because functions cos θ, sin θ
are smooth periodical functions: the transformations θ 7→ θ − 2π does not
change these functions.

To be more pedantic the coordinate θ : 0 < θ < 2π is defined in all the
points except the point (1, 0).

One can consider another coordinate: the angle θ′ : −π < θ < π which is
defined at this point. The transition functions between coordinate θ, θ′ are
θ′ = θ or θ′ = θ − 2π. Hence the relations (2.9) are well-defined at all θ 3

3It is useful to consider the following counterexample, the map

x = cos θ, y = sin θ, z = cθ, (2.9)

This map defines the helix for 0 < theta < 2π, but this does not define the smooth map
from S1 to R3.
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Take any point x0 = θ0 on the circle and tangent vector ẋ = v ∂
∂θ

at this
point. Then dFx0 (ẋ) is the vector in R3:

dFx0 (ẋ) =

(
∂x

∂θ
v,

∂y

∂θ
v,

∂z

∂θ
v

)
=

(
− sin θ0v, v cos θ0, v cos

(
θ0 +

π

4

))

Suppose we have two smooth maps, G : M → N and F : N → P . Con-
sider their composition F ◦ G : M → P . Let x ∈ M , y = G(x) ∈ N , and
z = F (y) ∈ P . How to calculate the tangent map to the composition F ◦G
at x? It is supposed to be a linear transformation TxM → TzP .

Theorem 2.3. The tangent map d(F ◦G) for the composition F ◦G at x is
the composition of the linear transformations dF at y = F (x) and dG at x:

d(F ◦G)(x) = dF (y) ◦ dG(x) . (2.10)

Proof. One way of proving this is to write down both sides in coordinates. If x1, . . . , xn

are coordinates on M , y1, . . . , ym are coordinates on N , and z1, . . . , zr are coordinates on
P , and the maps F and G are specified, respectively, by the equations zµ = zµ(y1, . . . , ym)
and ya = ya(x1, . . . , xn), then the LHS of (2.10) has the matrix

(
∂zµ

∂xi

)
(2.11)

and the matrix of the RHS is the product of matrices

(
∂zµ

∂ya

)(
∂ya

∂xi

)
=

(∑
a

∂zµ

∂ya

∂ya

∂xi

)
, (2.12)

which coincides with (2.11) by the chain rule known from multivariate calculus. In other
words, the composition formula (2.10) is but an abstract version of the chain rule. It
is possible to come to (2.10) more geometrically, working directly from the definition.
Suppose v ∈ TxM is the velocity of a curve x(t) at t = 0. Then the image of v under
d(F ◦G)(x) is

d

dt
F (G(x(t))) (2.13)

(at t = 0). On the other hand, the image of dG(x)(v) under dF (y), i.e., the RHS of (2.10)
applied to v, is

d

dt
F (y(t)) (2.14)

for an arbitrary curve y(t) on N such that its velocity at t = 0 is dG(x)(v). We can take
y(t) := G(x(t)) as such a curve, and plugging it into (2.14), we arrive at (2.13). Hence
the LHS and the RHS of (2.10) coincide.
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Since there are maps dF (x) : TxM → TF (x)N for all points x ∈ M , they
assemble to a map of tangent bundles, denoted dF or TF or DF or F∗:

dF : TM → TN .

Properties of the tangent map dF can be used for studying properties of
a smooth map F .

A map F is called a submersion or we say that F is submersive if the linear map
dF (x) is an epimorphism (i.e., surjective) at each point x. It is called an immersion (or
an immersive map) if the linear map dF (x) is a monomorphism (i.e., injective) at each
point.

One can show, by using the implicit function theorem, that every immersion is “lo-
cally” an injective map. However, it is possible for a smooth map to be injective but not
immersive. (Example: the map R → R, x 7→ x3.) A smooth map F : M → N that is
both injective and immersive has a very important property: its image F (M) ⊂ N has a
natural structure of a smooth manifold and, moreover, it is what is called a submanifold
of N . We skip the details referring the reader to textbooks on differentiable manifolds.
When we say that there is an embedding of one manifold into the other we understand
that there is a map that is both injective and immersive.

3 Topology of a manifold

Last updated: January 15, 2009.

3.1 Topology induced by manifold structure

Recall what is the topology.
Let X be a set covered by the family F = {Uα} of subsets such that the

following conditions are obeyed:

•

empty set ∅ and the whole set X belongs to the family F , ,∅ ∈ F , X ∈ F
∗

•
For any subset I of indices the union

⋃
α∈I Uα ∈ F . ∗∗
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•

For any finite subset of indices I, (|I| < ∞)
⋂

α∈I Uα ∈ F . ∗ ∗ ∗

In other words the union of any subfamily of F and intersection of any
finite subfamily of sets in F belong to F 4

Then the family F is called topology on X and the space X equipped with
the family F is called topological space. The subsets Uα are called open sets.

Example 3.1. The basic example of topological space is Rn equipped with
the family F = open sets where ”open” means to be open in standard sense
(the set is open if any point is internal)

Now we define a topology on a manifold compatible with the structure of
smooth manifold.

Consider a differentiable (smooth) manifold M = (M,A), where the atlas
A = {Uα, ϕα}, and ϕα : Uα → Vα) are charts on the open domains in Rn.

Definition 3.1. A subset A ⊂ M is open if and only if for each chart
(Uα, ϕα), the set ϕa(A ∩ Uα) ⊂ Rn is.

Example 3.2. Each Uα is an open set. Indeed by definition of the atlas for
an arbitrary chart ϕβ, ϕβ(U − α ∩ Uβ) are open in Rn. Hence each Uα is
open.

Example 3.3. M itself is an open. Indeed for an arbitrary chart ϕα, ϕα(M∩
Uα) = ϕα(Uα) = Vα is open in Rn. Hence M is open.

Example 3.4. Counterexample Take an arbitrary point x ∈ M . Show
that this is not an open set. Take a chart (Uα, ϕα) such that x ∈ Uα. We see
that ϕα(x) is a point in Rn. It is not open set. Hence x is not an open set
in manifold M .

One can easy to check that

Theorem 3.1. Open subsets of a manifold M (defined as above) satisfy the
axioms of a topology.

4Note that empty set can be considered as a union of empty subfamily of sets in F and
the whole set can be considered as a intersection of empty family of sets in F . Hence the
first axiom follows from the second and third one.
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E.g. if we consider intersection A∩B of two open sets A,B. Then for an
arbitrary chart (Uα, ϕa)

ϕα

(
(A ∩B)

⋂
Uα

)
= ϕα

(
(A ∩ Uα)

⋂
(B ∩ Uα)

)
ϕα ((A ∩ Uα))

⋂
ϕα ((B ∩ Uα))

is the open set in Rn, because it is the intersection of two open sets in Rn.
Hence A ∩B is open set in M .

Therefore each manifold can be considered as a topological space. We
shall refer to the topology defined above as to the manifold topology or the
topology given by a manifold structure.

What is the relation between smoothness and continuity?

Theorem 3.2. A smooth map is continuous.

Remark 3.1. The statement of this theorem seems to be foolish, because
we often told that smooth function is continuous and it has infinitely

many derivatives. But these statements were made about smooth functions
from Rn to Rm. We never did before any statements about continuity of
functions defined on manifold, because topology was not defined.

Recall such fundamental notions as compactness and connectedness (and
path-connectedness).

1. The topological space X is called compact if an arbitrary covering
with open sets contains finite subcovering, i.e. if for the family {Va} of open
sets (Vα ∈ F)

X =
⋃

Vα , (3.1)

then there exist a finite subcollection {Vα1 , Vα2 , . . . , Vαk
} such that

X = Vα1 ∪ Vα2 ∪ Vα3 ∪ · · · ∪ Vαk−1
∪ Vαk

(3.2)

2. The topological space X is called connected if for an arbitrary two
open sets A,B ∈ F the following condition is satisfied

X = A ∪B&A ∩B = ∅⇒ A = ∅ or B = ∅ (3.3)

or in other words the topological space is not connected if there exist
two non-empty open sets A,B such that their intersection is empty but their
union covers the space X.

E.g. Sn is compact and connected.
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3.2 Tangent vectors as derivations

After we have introduced topological notions, we can come back to analysis
on manifolds.

Let M = Mn be a manifold. Consider a vector v ∈ TxM . Suppose
γ : (−e, e) → M is a curve such that v = dx

dt
at t = 0.

Definition 3.2. For an arbitrary function f : M → R the number

∂vf :=
d

dt
f(x(t)) .

(the derivative at t = 0) is called the derivative of f along v.

Comparing it with the definition of the differential, we see that

∂vf = df(v)
∣∣
x
.

If x1, . . . , xn are coordinates near x and vi, i = 1, . . . , n are the compo-
nents of v, we have

∂vf =
n∑

i=1

vi ∂f

∂xi
(x).

Proposition 3.1. The operation ∂v : C∞(M) → R satisfies the following
properties: linearity over R and the Leibniz rule:

∂v(λf + µg) = λ∂vf + µ∂vg , ∀λ, µ ∈ R (3.4)

∂v(fg) = ∂vf · g(x) + f(x) · ∂vg . (3.5)

Proof. Immediate.

Note that the map sending a function f ∈ C∞(M) to the number f(x) ∈
R is a homomorphism, called the evaluation homomorphism at x. Sometimes
denoted evx.

There is a fundamental notion.

Definition 3.3. Suppose α : A1 → A2 is a homomorphism of algebras. A
linear map D : A1 → A2 is called an derivation over the homomorphism α if
there is a ‘Leibniz rule’

D(ab) = D(a) · α(b) + α(a) ·D(b)

for all a, b ∈ A1.
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The derivative ∂v in the Proposition above was just a derivation of algebra
C∞(M) over homomorphism evx : f 7→ f(x)

It turns out that all the derivations of the algebra of functions on a
manifold to numbers are of the form ∂v. To show this, let us explore first
the case of Rn.

Theorem 3.3. Let x0 ∈ Rn. For an arbitrary derivation D : C∞(Rn) → R
over the evaluation homomorphism evx0 there exists a vector v ∈ Tx0Rn such
that D = ∂v.

In other words this theorem states that if D is linear operation on func-
tions with values in real numbers such that at the point x0 the Leibnitz rule
is satisfied:

D(fg) = Dfg(x0) + f(x0)Dg ,

then there exists a vector v tangent at the point x0 to Rn such that

D = ∂v

This theorem justifies our notation of vector fields by derivatives.
The proof uses the following simple but fundamental statement:

Lemma 3.1 (Hadamard’s Lemma). For any smooth function f ∈ C∞(Rn)
and any x0 ∈ Rn there is an expansion

f(x) = f(x0) +
n∑

i=1

(xi − xi
0)gi(x) (3.6)

where gi ∈ C∞(Rn) are some smooth functions.

Proof. Consider the segment joining x and x0 and write

f(x) = f(x0) +

∫ 1

0

d

dt
f(x0 + t(x− x0)) dt =

f(x0) +
∑

(xi − xi
0)

∫ 1

0

∂f

∂xi
(x0 + t(x− x0)) dt

Corollary 3.1.

gi(x)
∣∣
x=x0

=
∂f

∂xi

∣∣
x=x0

(3.7)
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Proof. Differentiating left and right hand sides of the equation (3.6) (all
functions are smooth) we come to the relation:

∂fx

∂xi
= gi(x) +

∑
(xk − xk

0)
∂g(x)

∂xi

Put x = x0 in this relation and we come to equation (3.7)

Now we can prove the main theorem.

Proof of Theorem 3.3. Let D : C∞(Rn) → R. Apply D to the expansion (3.6).
First note that derivations kill constants; indeed, D(1) = D(1 · 1) = D(1) ·
1 + 1 ·D(1) = 2D(1), hence D(1) = 0 and then D(c) = D(c · 1) = 0 for any
c ∈ R. Therefore using (3.6) and (3.7) we obtain that

D(f) = D(f(x0) +
∑

i

(xi− xi
0)gi) =

∑
D(xi)gi(x0) =

∑
i

vi ∂f

xi
|x=x0 (3.8)

for v = (v1, . . . , vn) where vi = D(xi).

We see that
Combining the statement of Theorem 3.3 and Proposition 3.1 we see that

the derivations of the algebra C∞(Rn) → R over the homomorphism evx0

are in one-to-one correspondence with the tangent vectors v ∈ TxM .
This can be generalised to an arbitrary differentiable manifold.

Theorem 3.4. For an arbitrary point x0 on the differentiable manifold M the
derivations of the algebra C∞(M) → R over the evaluation homomorphism
evx0 are in one-to-one correspondence with the tangent vectors v ∈ Tx0M .

In other words for an arbitrary point x0 an arbitrary vector v ∈ Tx0M
defines the linear operation ∂v which satisfies at the point x0 the Leibnitz rule
and vice versa if D is a linear operation satisfying the Leibnits rule at the
point x0 then D = ∂v.

This is a reason why we identify vectors v with the corresponding deriva-
tions ∂v. For example, the coordinate basis vectors ei = ∂x

∂xi are identified
with the partial derivatives ∂i = ∂

∂xi .
We do not prove the Theorem.
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3.3 Bump functions and partitions of unity

We have to admit an embarrassing fact: for a general manifold M we do not
have tools allowing to show the existence of smooth functions defined every-
where on M (besides constants). On Rn we have plenty of functions: first of
all, the coordinate functions xi, then polynomials and various other smooth
functions of x1, . . . , xn. By contrast, in the absence of global coordinates,
how one can find a non-trivial smooth functions on a manifold?

How we are sure that there exists at least one smooth function which is
not equal to zero at all the points? 5

It turns out that it is necessary to impose topological restrictions on
a manifold M to guarantee a good supply of C∞ functions. It is done below.
(Without them, one can construct “pathological” examples where the only
smooth functions are constants. On the other hand, with the restrictions
described below, we shall be able to show that a manifold can be embedded
into a Euclidean space of sufficiently large dimension, which guarantees an
abundance of smooth functions.)

We impose on manifolds the following topological conditions

• it is Haussdorff topological space, i.e. for an arbitrary two different
points a 6= b one can find two open sets Ua, Ub such that a ∈ Ua, b ∈ Ub

and Ua ∩ Ub = ∅

• The atlas is countable, i.e. it contains countable number of charts
6. Later on we will consider in fact only the cases when manifold is
compact and atlas is finite

Remark 3.2. Here and later speaking about topology of manifold we mean
the topology induced by manifold structure (see the beginning of this section)
In particularly the set is open if its image under an arbitrary chart is an open
domain in Rn (see the beginning of this section).

5Note that in the complex analysis situation is very rigid: if a function is equal to zero
in the vicinity of an internal point of an analiticity domain, then it is equal identically to
zero in the whole domain

6this condition areises from the axiom of second countability: The topological space
is called second countable if it has a countable base. (A base of a topological space is a
family of open sets such that an arbitrary open set is the union of sets from that family)
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Remark 3.3. Note that an arbitrary smooth atlas on compact manifold
can be reduced to the finite atlas. Moreover in all non”pathological” cases
manifold is Haussdorffian and tone can deal with finite smooth atlas.

With the conditions imposed above it is possible to show that there are
enough smooth functions.

Recall that the support of a function (notation: Supp f) is the closure of
the subset where the function does not vanish.

Lemma 3.2 (Bump functions). For any point x0 ∈ M of a smooth man-
ifold M there is a nonnegative smooth function gx0 ∈ C∞(M) (a “bump
function”) globally defined on the whole M and compactly supported in a
neighborhood of x0 and which is identically 1 on a smaller neighborhood.

Formulate a more simplified version of this lemma:

Lemma 3.3 (Bump functions (simplified)). For any point x0 ∈ Rn and
an arbitrary open ball Bε(x0) = {x : d(x,x0) < ε} there is a nonnegative
smooth function globally defined on the whole M gx0 ∈ C∞(Rn) (a “bump
function”) such that this function is equal to zero out of the ball Bε(x0) and
it is identically 1 on a smaller ball B ε

2
(x0).

Remark 3.4. In the case if open domain is a ball Bε(x0) then its closure
is the closed ball B̄ε(x0) = {x : d(x,x0) ≤ ε}. The fact that this function is
equal to zero out of the open ball Bε(x0) means that Supp f (the support of
the function) belongs to the open ball Bε(x0).

The fact that smooth function f is equal 1 in the open ball B ε
2
(x0) means

that it is equal to 1 in the closure B̄ ε
2
(x0) of this ball.

Remark 3.5. Note that the non-trivial part of this statement is that this
function is defined on the whole M . E.g. if we consider complex analytical
functions on C then in this class of functions we cannot define bump function:
the condition that complex analytical function is equal identically to constant
in the vicinity of any point leads to the fact that it is equal to the constant
in the whole complex plane.

Proof. First let us prove the following. Let Ca be a cube {|xi| ≤ a,∀i} in Rn.
Prove that there is a C∞-function which equals zero outside C2 and equals
to one on C1. Consider the function

Φ(x) =

{
e−

1
x if x > 0

0 if x ≤ 0
(3.9)
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f(x) defined as e−1/x for x > 0 and zero for x ≤ 0. It is well-known fact that
this function is smooth (see for e.g. solutions of coursework). Now consider
the function H(x) on
R such that

H(x) =
Φ(x)

Φ(x) + Φ(1− x)
.

One can see that this is well-defined smooth function and

H(x) =

{
0 if x ≤ 0

1 if x ≥ 1
(3.10)

It is easy to see that the function

G(x) = H(x + 2)H(2− x) (3.11)

is equal to zero out of the open interval (−2, 2) and it is equal to 1 in the closed
interval [−1, 1]. Taking the product of such functions for each coordinate,
we obtain the required function on Rn.

To transfer this proof to a manifold (i.e. to prove non-simplified version
of the lemma), one has to use the Hausdorff condition; and we skip the
details. The details are as follows. Consider a manifold M and a point x ∈ M . Consider
a coordinate neighborhood V around x. From the local construction we have a smooth
function gx defined on V such that it is 1 near x and its support is contained in some
open O ⊂ V homeomorphic to an open ball or a cube. Extend gx from V to M \ V by
zero. It is necessary to prove that the result is smooth. It is sufficient to prove that for
any y ∈ M \ V there is a whole neighborhood W on which gx is identically zero. Fix y.
Consider all points z ∈ Ō. Since M is Hausdorff, there are disjoint open neighborhoods
Oyz and Oyz of z and y respectively. Since Ō is compact, we can extract a finite number
of neighborhoods Oyzk

, k = 1, . . . , N covering Ō. Then the intersection
⋂

Oyzk
is an open

neighborhood of y and does not intersect with Ō. So we can take it as W 3 y, and the
function gx is identically zero on W , hence smooth at y.

Now we study partition of unity
Let M be a smooth manifold and {Uα}, α = 1, . . . , N is covering of this

manifold by open sets: M =
⋃N

α=1 Uα. We say in this case that the manifold
M is covered by the finite collection {Uα} of open sets.

Definition 3.4. Let a manifold M is covered by the finite collection {Uα}
of open sets (α = 1, 2, . . . , N).

We say that a collection of smooth non-negative functions {ρα}, (globally
defined on the whole M) where α = 1, 2, . . . , N is a smooth partition of unity
subordinate to the cover {Uα} if the following conditions are obeyed
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• Support of every function ρα, i.e. the closure of the points where ρα 6= 0
belongs to the open set Uα:

Supp ρα ⊂ Uα

• all functions ρα are non-negative functions

ρα ≥ 0

• sum of these functions is equal to 1 (at any point x ∈ M):

N∑
α=1

ρα(x) = 1. (3.12)

Theorem 3.5. For any finite cover {Uα} of the manifold M there exists a
partition of unity subordinate to this open cover.

Remark 3.6. In particularly if A = {Uα, ϕα} is a finite smooth atlas of
manifold M , α = 1, . . . , N , where N is number of charts, then the manifold
M is covered by the collection {Uα, ϕα} of open sets and one can consider a
partition of unity subordinated to this cover.

The proof uses the bump functions. We omit the proof, and consider the
following very simple examples

Example 3.5. Consider the following two open sets on R: U+ = (−ε,∞)
and U− = (−∞, ε), where ε > 0. These two open sets cover R: R = U=∪U+.
Construct smooth partition of unity subordinate to this covering. Consider
non-negative functions

G+(x) = H(x), G−(x) = H(δ − x), where 0 < δ < ε

where H(x) is the bump function (3.10).

For all points x > 0 the function G+(x) > 0 and for all x < δ G−(x) < 0.
Hence one can consider the following two smooth functions well-defined on
the whole Rn:

ρ+(x) =
G+(x)

G+(x) + G−(x)
, ρ−(x) =

G−(x)

G+(x) + G−(x)
(3.13)
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It is evident that

ρ± ≥ 0, Supp ρ+ ⊂ U+, Supp ρ− ⊂ U−, and ρ+(x) + ρ−(x) ≡ 1,

i.e. {ρ+, ρ−} is the smooth partition of unity subordinate to the cover
{U+, U−} of the R.

Example 3.6. A partition of unity for the open cover of S2 consisting of
UN = S2 \ {N} and US = S2 \ {S}. (see solutions of coursework(after
18november))

Having bump functions is already sufficient for showing that there are
many global smooth functions. Indeed, take an arbitrary smooth function
defined in a neighborhood of x ∈ M . Then, by multiplying it by a suitable
bump function, it is possible to extend it by zero (from a smaller neigh-
borhood) to the whole manifold M . We shall use this many times in the
future.

Now we formulate very important and very beautiul statement—-Urysohn
Lemma.

Corollary 3.2. (Urysohn lemma) Let C1, C2 ⊂ M be closed subsets such
that C0 ∩ C1 = ∅. There is a function f ∈ C∞(M) such that f ≡ 1 on C1

and f ≡ 0 on C0.

(Recall the subset A in the topological space X is closed if and only if
X\A is open.)

Proof. Consider the open cover M = U1∪U2, where U1 := M \C1 and U2 :=
M \C2. The intersection of sets C1, C2 is empty, hence the union of the sets
U1, U2 cover M . Consider a smooth partition of unity {ρ1, ρ2} subordinate to
this cover. ρ1 + ρ2 = 1. Take f := r1. By definition, Supp f1 ⊂ U1 = M \C1.
Thus f = 0 on C1. Similarly, ρ2 = 0 on C2. Thus f = ρ1 = 1 − ρ2 = 1 on
C1.

Remark 3.7. Note that the function f which we constructed satisfies already
the additional condition

0 ≤ f ≤ 1 for all points of the manifold M (3.14)

Functions constructed in Corollary 3.2 are called Urysohn functions for
the pair C0, C1. On a topological space the existence of (continuous) Urysohn
functions is a separation property which is stronger than being Hausdorff.
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3.4 Embedding manifolds in RN

Smooth manifold can be embedded in RN . It is one of the remarkable theo-
rems of mathematics.

”Manifolds” first appeared as surfaces in RN . They were later axiomatised
to give abstract manifolds we consider. However this theorem shows that the
abstract viewpoint yields the same supply of objects.

Theorem 3.6. Smooth compact manifold can be embedded in RN for suffi-
ciently large N .

To prove the theorem we assume that manifold can be covered by the so
called atlas with ”thick boundaries”

Let M = Mn be a compact smooth manifold, and A = {Ua, ϕa}, (α =
1, . . . , N) be a finite atlas on it.

We say that an atlas of N charts is an atlas with thick boundaries if the
following conditions are obeyed:

• All ϕa are maps onto open unit balls in Rn, i.e. all local coordinates
x1

α, x2
α, . . . , xn

α run over the unit balls in Rn:

(x1
α)2 + (x2

α)2 + (x3
α)2 + · · ·+ (xn

α)2 < 1

• The open sets {Wα} defined as

Wα = {x : x ∈ Uα such that (x1
α)2 +(x2

α)2 +(x3
α)2 + · · ·+(xn

α)2 < s2}

also cover the manifold M .

Any open set Uα is the preimage of the ball of the radius r = 1 under the
map ϕ−1

α and an open set Wα can be considered as the preimage of a ball of
radius r = s < 1 under the map ϕ−1

α .
Usually one takes s = 1

2
.

In other words we say that atlas with thick boundaries is provided if
manifold is covered by unit balls with thick boundaries such that interior of
these balls having radius s also cover manifold M .

Suppose that the given atlas is the atlas with thick boundaries.
Proof of the Theorem.
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Now consider the set of ”bump” functions {σα} chosen such that

σ(x) :





σα(x) = 1 if x ∈ Wα, i.e. if (x1
α)2 + (x2

α)2 + (x3
α)2 + · · ·+ (xn

α)2 ≤ 1
4

0 < σα(x) < 1 if x ∈ Uα, but x 6∈ W α, i.e. if1
4

< (x1
α)2 + · · ·+ (xn

α)2 < 1

σα(x) ≡ 0 if x 6∈ Uα, i. if (x1
α)2 + · · ·+ (xn

α)2 ≥ 1

(3.15)
(Note that these functions define the partition of unity subordinate to

this atlas: ρα(x) = σα(x)∑
σβ(x

)

Consider the N(n + 1)-dimensional coordinate space RN(n+1). Coordi-
nates of this space we denote by yi

α, where i = 1, 2, 3, . . . , n, n + 1, and
α = 1, 2, 3, . . . , N . (You may view yi

α as N ×n + 1 matrices.). Our goal is to
embed our smooth manifold Mn in this N(n + 1)-dimensional linear space
RN(n+1).

We define the following map Φ: Mn → RN(n+1). Let x be an arbitrary
point on manifold M , let (Uα, ϕα) be an arbitrary chart of the atlas. Then
we define the value Φ(x) in RN(n+1) by the following formula:

{
yi

α(x) = σα(x)xi
a, (i = 1, . . . , n) and yn+1

α (x) = σα(x) if x ∈ Uα

yi
α(x) = 0, (i = 1, . . . , n + 1) if x 6∈ Uα

(3.16)

where functions {σα(x)} are defined in (3.15).
This map is smooth map from manifold Mn to RN(n+1). Let us show that

it is an embedding.
Recall that a map Φ: M → N is an embedding if it is an injection and

induces an injection of tangent spaces, i.e. if the following conditions are
obeyed:

• Φ(x1) = Φ(x2) ⇔ x1 = x2

• It is monomorphism of tangent spaces for an arbitrary point x ∈ M :
For two tangent vectors v1,v2 at a point x

dΦx(v1) = dΦx(v2) ⇔ v1 = dΦv2 .

We show first that our Φ is a monomorphism of tangent spaces then that
it is injection. We need to calculate differential in an arbitrary point x. The
matrix of differential is the rectangular matrix of the order n× (N(n + 1)).
We need to show that this matrix has the maximal rank, i.e. its rank is equal
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to n. Take α such that x ∈ Wα. In the vicinity of this point σα(x) ≡ 1,
hence {

yi
α(x) = xi

α, 1 ≤ i ≤ n

yn+1
α (x) = 1

We see that derivatives matrix ∂yi
α

∂xj
α

is identity matrix. Hence ”big” matrix

has maximal rank n.
It remains to prove the injection of manifolds.
Take an arbitrary x1,x2. Suppose they belong to the same Wα and x1 6=

x2. Then σα(x1) = σα(x2) = 1 and they have different coordinates and and
yi

α(x1) 6= yi
α(x2).

Suppose now that x1 and x2 belong to different balls, x1 ∈ Wα1
, x2 ∈

Wα2
. Then yn+1

α1
(x1) = 1 but yn+1

α1
(x2) 6= 1.

We see that this map is injection. Thus we proved that the map (3.16)
is injection and it is immersion.

The Theorem is proved.
One can prove that the dimension of the ambient space can be decreased till N = 2n+1.

This is the content of Withney Theorem

4 Vector fieldls and their commutators

Consider a manifolds M and tangent bundle TM . Consider the map π—
projection. It is a surjection of TM on M . The map s : M → TM such that
π ◦ s = id is an identity is a section, or a vector field.

The vector field assigns to every point x ∈ M the vector s(x) belonging
to the tangent space TxM .

A vector field X on a manifold M is the smooth map from M to TM .
We often consider vector fields defined not on the whole manifolds but

on its open domains.

4.1 Commutator of vector fields

The space of vector fields is linear space. One can add vector fields, multiply
them on constants.

Now we define a fundamental operation: commutator of vector fields.
Let X and Y be two arbitrary vector fields defined in domain U of man-

ifold.
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Definition 4.1. Vector field C = [X,Y] is called commutator of vector fields
X,Y if for an arbitrary function f the following identity holds:

∂Cf ≡ ∂X∂Yf − ∂Y∂Xf

One can see that this definition is correct. (See exercises in homework 4)

5 Differential forms

Consider manifold M and its tangent bundle TM .
Consider a manifold M = Mn and the tangent space TxM at a point

x ∈ M . An exterior k-form on TxM , i.e., an antisymmetric tensor at x of
order k is called a differential k-form at x.

Using local coordinates near x, we can write a differential k-form at x as

ω = ωi1...ik dxi1 ∧ . . . ∧ dxik(k = 0, 1, 2, 3, . . . , n)

where the coefficients are numbers. If we allow these numbers to vary, we get
a differential k-form on an open domain U ⊂ M . The adjective ‘differential’
is often dropped. In the case if k ≥ n exterior k-form vanishes because
antisymmetrical tensor with many than n components vanishes.

5.1 Exterior differential

The space of all k-forms on a manifold M is denoted Ωk(M) and likewise for
any open U ⊂ M .

A particular case of a differential form is, of course, a function. Functions
are the same as 0-forms. Recall that we have differential on functions, which
takes functions to covector fields, i.e., in the new terminology, to 1-forms:

d : C∞(M) = Ω0(M) → Ω1(M) .

It turns out that it is possible to extend this operation to obtain an operation
that maps k-forms to (k + 1)-forms for all k ≥ 0.

Theorem 5.1. (Theorem-Definition) There exists a unique map d : Ωk(U) →
Ωk+1(U) for all open sets U ⊂ M and each k = 0, 1, . . . , with the following
properties:

1. d is linear over R: d(λω + µω′) = λdω + µdω′ for λ, µ ∈ R.
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2. d(ω ∧ σ) = dω ∧ σ + (−1)kω ∧ dσ if ω ∈ Ωk(U);

3. for all f ∈ Ω0(U) = C∞(U) , df is the usual differential of functions;

4. for all f ∈ C∞(U), d(df) = 0;

5. d commutes with restrictions, i.e., if there are two open sets V ⊂ U
and ω ∈ Ωk(U), then (dω)|V = d(ω|V ).

The map d is called the exterior differential or exterior derivative.
The following relation holds

Ω0(U)
d−→Ω1(U)

d−→Ω2(U)
d−→Ω3(U)

d−→ . . .
d−→Ωn−1(U)

d−→Ωn(U)
d−→0

where d2 = 0.

Proof. Suppose a map possessing the above properties exists. We shall show
that it is unique and obtain for it an explicit formula. Then we shall use this
formula as a definition and check that it indeed satisfies the required proper-
ties, and thus prove existence. Consider a domain U ⊂ M where it is possible
to introduce local coordinates. Let d exist on U and satisfy the properties
1–4. Let ω = ωi1...ik(x) dxi1 ∧ . . . ∧ dxik be a coordinate representation of a
k-form σ ∈ Ωk(U). Then, by using 1 and 2, we arrive at

dω = dωi1...ik ∧ dxi1 ∧ . . . ∧ dxik + ωi1...ikd
(
dxi1 ∧ . . . ∧ dxik

)
.

By 3, dωi1...ik is the usual differential of a function. Applying 2, 3, and 4, we
deduce that d (dxi1 ∧ . . . ∧ dxik) = 0. Indeed, d(dxi) = 0 for all i; we have

d
(
dxi1 ∧ . . . ∧ dxik

)
= d(dxi1) ∧ dxi2 ∧ . . . ∧ dxik−

dxi1 ∧ d
(
dxi2 ∧ . . . ∧ dxik

)
= 0 ,

by induction. Therefore, if d exists, it should be given by the formula

dω = dωi1...ik ∧ dxi1 ∧ . . . ∧ dxik . (5.1)

In particular, it follows that this expression should hold in any coordinate
system on U . Conversely, let us now define d on U by formula (5.1) using
some particular coordinate system, and check that it satisfies the axioms
1–4. Properties 1 (linearity) and 3 are clearly satisfied. To check 2, it is
sufficient to consider forms ω and σ of the form ω = fdxi1 ∧ . . . ∧ dxik and
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σ = gdxj1 ∧ . . . ∧ dxjl , where f and g are arbitrary functions. The general
case follows by linearity. We have

d(ωσ) = d
(
fdxi1 ∧ . . . ∧ dxik ∧ gdxj1 ∧ . . . ∧ dxjl

)
=

d
(
fg dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl

)
=

d(fg) ∧ dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl =(
gdf + fdg

) ∧ dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl =

df∧dxi1∧. . .∧dxik ∧ gdxj1∧. . .∧dxjl+(−1)kfdxi1∧. . .∧dxik ∧ dg∧dxj1∧. . .∧dxjl ,

where the sign (−1)k comes from swapping dg and dxi1 ∧ . . .∧ dxik , and it is
precisely dω ∧ σ + (−1)kω ∧ dσ. Hence 2 is proved. Consider now 4. Let f
be a function. We have

df =
∂f

∂xi
dxi.

Hence

d(df) = d

(
∂f

∂xi
dxi

)
=

∂2f

∂xj∂xi
dxj∧dxi = − ∂2f

∂xi∂xj
dxi∧dxj = −d(df) = 0.

Here we used the commutativity of partial derivatives and the skew-commu-
tativity of the wedge product. Hence 4 is proved. To summarize, we proved
the existence and uniqueness of the operator d for any domain U ⊂ M
admitting local coordinates (from properties 1–4). If V ⊂ U is an open subset
of such a domain U , then we can use the restriction of coordinates from U
to V to calculate d on V . Hence 5 will also be satisfied. For an arbitrary
open domain (such as M itself) we use a coordinate cover. To define d on
‘global’ forms, we consider their restrictions to coordinate domains and apply
d there; uniqueness of d, which is established for coordinate domains, implies
that coordinate expressions for d agree on intersections. Hence d is defined
globally. Properties 1–5 follow.

Remark 5.1. Antisymmetry plays crucial role in the extension of the opera-
tion d from functions to forms of higher degree. It is impossible to construct
an analog of the exterior differential for other types of tensor fields.

Consider examples of calculation of the exterior derivative.

Example 5.1. Let A be a 1-form given in local coordinates by A = Aj dxj.
We have dA = dAj∧dxj. By expanding dAj we arrive at dA = ∂iAj dxi∧dxj.
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This is not the final expression yet, because the coefficients ∂iAj are not
antisymmetric (note that the summation is over all combinations of indices
i, j). By writing ∂iAj = 1

2
(∂iAj − ∂jAi) + 1

2
(∂iAj + ∂jAi) we finally obtain

dA =
1

2
(∂iAj − ∂jAi) dxi ∧ dxj =

∑
i<j

(∂iAj − ∂jAi) dxi ∧ dxj , (5.2)

which is the desired formula for the differential of 1-forms.

5.2 Integral of a form over Rn

Let us first recall integration of a function over Rn. Fix a coordinate system
on Rn. Denote the corresponding coordinates x1, . . . , xn. (For example, we
can take the standard coordinates.)

Consider a function f ∈ C∞(Rn) and suppose that it has compact sup-
port. Practically that means that f is identically zero outside of a sufficiently
large cube. Consider the integral of f over Rn with respect to a chosen
coordinate system. The integral makes sense because f is compactly sup-
ported. It is, effectively, the integral over a sufficiently large cube:

∫

Rn

f(x)dx1 . . . dxn :=

∫

CR

f(x)dx1 . . . dxn .

Here x = (x1, . . . , xn) and CR = {|xi| ≤ R for ∀i = 1, . . . , n}.
What happens if we change coordinates: x = x(x′), or, in greater detail,

xi = xi(x1′ , . . . , xn′). It is well known that the following formula holds:

∫

Rn

f(x)dx1 . . . dxn =

∫

Rn

f(x(x′)) |J(x′)| dx1′ . . . , dxn′ (5.3)

where

J(x′) = det
( ∂xi

∂xi′

)

is the Jacobian of the given transformation of coordinates, i.e., the determi-
nant of the Jacobi matrix. Note that the formula contains the absolute value
|J | of the Jacobian, not just the Jacobian J .

Remark 5.2. One might be confused about this absolute value. In particular,
aren’t there a discrepancy with the formula for functions of a single variable? In
it, ∫ b

a
f(x)dx =

∫ b′

a′
f(x(x′))

dx

dx′
dx′ ,
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there arises the derivative dx
dx′ itself, not the absolute value. The explanation is

as follows. The notation
∫ b
a for the integral over a segment includes a choice

of the order of the endpoints a, b: that a comes first, b, second. In fact, it is
the integral over an oriented segment (see below) and it includes an extra sign
if a > b. Therefore the formula for a change of variable takes care of this extra
sign. Suppose a < b so that the LHS can be understood as the integral over the
segment in the same sense as we write

∫
Rn above. If dx

dx′ > 0, then a′ < b′ too, and
both sides can be interpreted in the same sense. Here dx

dx′ = | dx
dx′ |. If dx

dx′ < 0, then
a′ > b′ and the integral in the RHS is the negative of the integral over the segment
“without orientation”. This extra minus combines with dx

dx′ under the integral sign
to give the factor of − dx

dx′ = | dx
dx′ |, exactly as in the general formula (5.3).

Fix an orientation on Rn. Suppose an n-form ω ∈ Øn(Rn) has compact
support (meaning that the coefficient ω12...n(x) has compact support).

Definition 5.1. The integral of ω over Rn with a chosen orientation is defined
as

∫

Rn

ω =

∫

Rn

ω12...n(x) dx1 ∧ . . . ∧ dxn :=

∫

Rn

ω12...n(x) dx1 . . . dxn

where at the RHS stands the integral w.r.t. an arbitrary coordinate system
(belonging to the given orientation) of the function ω12...n, the component of
ω in this system.

It immediately follows that the integral of a differential form does not
depend on a choice of coordinates:

∫

Rn

ω12...n(x) dx1 ∧ . . . ∧ dxn =

∫

Rn

ω1′2′...n′(x
′) dx1′ ∧ . . . ∧ dxn′ ,

provided the orientation is preserved.
Instead of integrating forms over the whole Rn one can consider integrals

over (oriented) open domains U ⊂ Rn. In this case it should be assumed
that an n-form to be integrated is compactly supported inside U , i.e., the
closure of the set where the form does not vanish is contained in U (and is
compact).

Remark 5.3. Recall two bases (ei) and (ei′) define the same orientation if
the transition matrix between them has positive determinant. The above
definition for coordinate systems can be rendered as follows: two coordinate
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systems define the same orientation if an only if the corresponding bases
(ei = ∂x

∂xi ) and (ei′ = ∂x
∂xi′ ) define the same orientation as each point. (For

connected domains such as the whole Rn it is sufficient to check at one point
only.)

In actual examples it is also necessary to integrate forms over compact
domains D ⊂ Rn such as, e.g., a closed ball or closed cube.

5.3 Integration of forms over manifolds

A manifold is orientable if it possesses an atlas for which the Jacobians of
all changes of coordinates are positive. Such an atlas is called orienting.
Two orienting atlases are said to be equivalent, or compatible, or belonging
to the same orientation, or defining the same orientation, if their union is
also orienting. (In other words, the changes of coordinates between charts of
the two atlases also have positive Jacobians.) Formally, an orientation of a
manifold M can be defined as the equivalence class of an orienting atlas. If M
is not orientable (= “is non-orientable”), then it does not have an orientation.

It is not difficult to see that if an orientable manifold M is connected, it
has exactly two orientations.

An oriented manifold is an (orientable) manifold together with some cho-
sen orientation.

Consider a compact oriented manifold M = Mn. Choose a finite atlas
(Uα, ϕα : Uα → Vα ⊂ Rn) belonging to the chosen orientation and a partition
of unity (ρα) subordinate to this atlas, i.e., Supp ρα ⊂ Uα. We may assume
that functions ρα have compact support (indeed, their supports are closed
subsets of a compact space, therefore compact).

Definition 5.2. Let ω be n-form. The integral of ω over Mn with a given
orientation is defined as follows:

∫

M

ω :=
∑

α

∫

Uα

ραω ,

where each integral in the sum is defined as

∫

Uα

ραω :=

∫

Vα

(ϕ−1
a )∗(ραω)
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We may rewrite the integral over Vα as the integral over the whole Rn:

∫

Uα

ραω =

∫

Vα

(ϕ−1
a )∗(ραω) =

∫

Rn

(ϕ−1
a )∗(ραω) ,

which makes sense because the integrand is compactly-supported. Such in-
tegrals do not depend on the choice of coordinates as we have established
above.

Theorem 5.2. Definition of the integral of an n-form over a compact ori-
ented manifold Mn does not depend on a choice of atlas and partition of
unity.

Proof. First of all we notice that, for a fixed atlas (Uα, ϕα), the integral does not depend
on a choice of coordinates, i.e., on the the maps ϕα, as long as they belong to the given
orientation. Consider now two atlases (Uα, ϕα) and (U ′

µ, ϕ′µ) together with partitions of
unity (ρα) and (ρ′µ) subordinate to them. Consider the cover (Wαµ = Uα∩U ′

µ) and notice
that the products ραρ′µ make a partition of unity subordinate to (Wαµ). We may write

∑
α

∫

Uα

ραω =
∑
α

∫

Uα

∑
µ

ρ′µραω =
∑
α,µ

∫

Uα

ραρ′µω =
∑
α,µ

∫

Uα∩U ′µ

ραρ′µω ,

and similarly ∑
µ

∫

U ′µ

f ′µω =
∑
α,µ

∫

Uα∩U ′µ

ραρ′µω ,

which is the same. Hence the two sums are equal and the integral
∫

M
ω therefore does not

depend on a choice of cover and a partition of unity subordinate to it.

Remark 5.4. Definition of integral using partitions of unity has theoret-
ical significance (allows to prove theorems). Practically when calculating
integrals one works differently. A rather standard situation is as follows: a
manifold M admits an atlas such that one particular chart covers the whole of
M except for a set of lower dimension (such as a line for a two-dimensional
manifold, etc.). One can check that in such a case the integral over M
amounts to the integral over this particular chart, and no partition of unity
is necessary.

Example 5.2. For S1 we can use angular coordinate θ ∈ (0, 2π). Or stere-
ographic coordinate. (In both cases a single point is missing.)
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Example 5.3. Calculate integral over the unit circle with center at the origin
in R2 of the following form:

A =
xdy − ydx

x2 + y2
.

Solution: consider embedding x = cos t, y = sin t, where t ∈ [0, 2π]. We have
i∗A = dθ, therefore ∫

(S1, i)

A =

∫ 2π

0

dt = 2π .

Example 5.4. Consider stereographic coordinates on S2. Given a 2-form

ω =
dx ∧ dy

(1 + x2 + y2)2
.

Calculate its integral over S2. First of all, notice that S2 is orientable and
we may assume that an orientation is given by x, y. We have

∫

S2

ω =

∫

S2

dx ∧ dy

(1 + x2 + y2)2
=

∫

R2

dx ∧ dy

(1 + x2 + y2)2
.

Substituting x = r cos ϕ, y = r sin ϕ, where r ≥ 0 and 0 < ϕ < 2π, we arrive
at
∫

S2

ω =

∫ ∞

0

∫ 2π

0

rdrdϕ

(1 + r2)2
=

∫ 2π

0

dϕ

∫ ∞

0

1

2

d(1 + r2)

(1 + r2)2
= − 2π

2(1 + r2)

∣∣∣∣
r=∞

r=0

= π.

5.4 Stokes theorem

There is a natural extension of the notion of a manifold.

Example 5.5. Closed disk.

Consider Rn
+ = {xn ≥ 0}. Open sets can be of two types.

Change of coordinates between two open domains involving boundary
points.

Lemma 5.1. At the points of the boundary, xn = 0,

∂xn

∂xn′ > 0 .
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Definition 5.3. A manifold with boundary is defined exactly as an ordinary
manifold (manifolds are sometimes referred to as ‘manifolds without bound-
ary’) with the replacement of open sets in Rn by open sets in Rn

+. The subset
consisting of all points where the last coordinate is zero is called the boundary
and denoted ∂M .

We immediately see that ∂M is itself a manifold (without boundary).
From the above Lemma we have

Corollary 5.1. Orientation of M induces orientation on ∂M .

Convention: positive orientation on ∂M is (−1)n−1× the orientation given
by x1, . . . , xn−1 if x1, . . . , xn give orientation on M .

Remark 5.5. If function f ∈ C∞(R) has compact support, then

∫

R

df

dx
dx = 0.

Theorem 5.3 (Stokes Theorem). For compact oriented manifold with
boundary Mn and an (n− 1)-form σ ∈ Ωn−1(M),

∫

M

dσ =

∫

∂M

σ

6 De Rham cohomology

6.1 Definition, examples, and basic properties

A k-form ω is closed if dω = 0. It is exact if there is a (k − 1)-form σ such
that dσ = ω.

The condition dω = 0 is local, in the sense that a form on M is closed if
it is closed near every point of M (in other words, if all the restrictions ω|U
are closed as forms on U ⊂ M). To check that dω = 0, we simply check it in
coordinates.

Compared to it, the property of being exact is not a local one.
We know that every exact form is closed, since d(dω) = 0. On the other

hand, we have already seen examples of closed but not exact forms. As a
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prototype of all such examples one should consider the 1-form ω = dθ on
R2 \ {0} where θ is the polar angle. In standard Cartesian coordinates,

ω =
xdy − ydx

x2 + y2
.

This form is not exact, because for a cycle going around the origin once, say,
counterclockwise, ∮

C

ω = 2π .

(The exact number is not important; that it is non-zero, is important.) On
the other hand, dθ looks like an exact form (the differential of the function
θ), but it is not, because the function θ is ‘bad’. It cannot be made every-
where defined, smooth and single-valued function in the whole of R2 \ {0},
at the same time. It can be made such an ‘honest’ function only locally,
in a sufficiently small domain, not allowing cycles going around the origin.
This is a typical situation. Every closed form can be regarded as exact if we
surrender some of the properties: allow discontinuities, multi-valuedness, or
consider it only locally. Therefore, the difference between closed forms and
exact forms is a ‘global’ feature and measures the ‘topological complexity’ of
the manifold in question.

Definition 6.1. Closed k-forms ω and ω′ on a manifold M are cohomologous
if their difference is exact: ω − ω′ = dτ for some (k − 1)-form τ . (The form
τ should be well-defined smooth form on the whole M .) Equivalence classes
w.r.t. this relation are called cohomology classes. The set of all cohomology
classes of degree k (sometimes people also say: in dimension k), is denoted
Hk(M).

(Check that it is indeed an equivalence relation!)
Consider the sum of two closed forms, ω +σ. It is closed, by the linearity

of d. If we replace one of the summands by a cohomologous form, the sum
will remain in the same cohomology class: ω+σ′ = ω+(σ+dτ) = (ω+σ)+dτ .
Thus, Hk(M) inherits the structure of an Abelian group. Similarly, multi-
plication by real numbers is well-defined on cohomology classes. Therefore
Hk(M) is a vector space. Nevertheless, the traditional name for Hk(M) is
the k-th cohomology group.

Remark 6.1. It is also called the de Rham cohomology group, after George
de Rham, who proved a fundamental statement (the “de Rham theorem”)
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about these groups. The name suggests that there are other cohomology
theories, and this is indeed true, but for manifolds they all give the same
objects. This is the statement of the de Rham theorem. Sometimes the
notation Hk

DR(M) is used for de Rham cohomology.

Consider the product of closed forms: ω ∧ σ. The Leibniz rule implies
that it is closed: d(ω∧σ) = dω∧σ±ω∧dσ = 0+0 = 0. If one of the factors is
replaced by a different representative of the same cohomology class, then the
class of the product will not change: ω′∧σ = (ω +dτ)∧σ = ω∧σ +dτ ∧σ =
ω ∧ σ + d(τ ∧ σ), by the same Leibniz rule, since dσ = 0. Hence, the exterior
multiplication induces a well-defined multiplication on cohomology classes.
We arrive at the graded algebra H∗(M), called the cohomology algebra of M .

Notation for cohomology classes: [ω] ∈ Hk(M), if ω ∈ Ωk(M) is a closed
form representing an element [ω]. Exact forms and only them represent the
zero class.

Proposition 6.1. For any manifold M , the dimension of the space H0
DR(M)

is the number of connected components of M .

Proof. The space of 0-forms is the space of smooth functions C∞(M). A
function f ∈ Ω0(M) = C∞(M) is closed if df = 0. What does it mean?
Near each point f must be a constant (indeed, we may introduce coordinates
and write df = 0 in coordinates). Hence f is a local constant. It need not
be a constant on the whole M (a global constant), which is demonstrated
by the example of a manifold consisting of two connected components such
as two disjoint copies of Rn. The function may be zero on one component
and 1, on another. Notice that there no exact 0-forms (because there are no
−1-forms). Therefore H0(M) is the space of all local constants on M . It is
intuitively clear and can be proved by a simple topological argument that on
a connected topological space any local constant is a constant. Therefore,
if a topological space, in particular, a manifold M , is the disjoint union of
its connected components (maximal connected subspaces), then any local
constant is defined by its values of the components (constants); thus it is a
function on the set of components. If the number of components is finite,
the space of functions on this set is finite-dimensional. As a basis one take
functions that are identically 1 on one component and identically 0 on all
other components. Hence the dimension is the number of components.

In most of our examples, the manifolds in question are connected. Then,
automatically, H0(M) ∼= R for them.
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Consider examples of cohomology classes in degrees higher than zero.

Example 6.1. We saw above that [dθ] is a non-zero class in H1(R2 \ {0}).
Example 6.2. If we consider θ as a parameter on the circle S1 (defined up
to 2π), the 1-form dθ is well-defined and gives a non-zero class [dθ] in H1(S1).
We shall shortly see that all other cohomology classes of the circle in degree
1 are proportional to [dθ], i.e., dim H1(S1) = 1 and [dθ] can be taken as a
basis (consisting of a single element).

Definition 6.2. The dimension dim Hk(M) is denoted bk(M) and called,
the k-th Betti number of M .

Consider a smooth map F : M → N . It induces the pull-back of forms:
F ∗ : Ωk(N) → Ωk(M).

Proposition 6.2. The pull-back on forms induces a linear map of cohomology (denoted
by the same symbol):

F ∗ : Hk(N) → Hk(M) .

Moreover, F ∗ is an algebra homomorphism of cohomology algebras.

Proof. Define F ∗[ω] as [F ∗ω]. We have to check that the class [F ∗ω] will not change if we
replace ω by a cohomologous form ω + dσ. Indeed,

F ∗(ω + dσ) = F ∗ω + F ∗dσ = F ∗ω + d(F ∗σ) .

(It is here where we need that pull-backs commute with d!) To see that F ∗ is an algebra
homomorphism on cohomology, consider

F ∗
(
[ω][σ]

)
= F ∗

(
[ω ∧ σ]

)
= [F ∗

(
ω ∧ σ

)
] = [F ∗ω ∧ F ∗σ] =

[F ∗ω][F ∗σ] = F ∗[ω]F ∗[σ] .

Corollary 6.1. If two manifolds are diffeomorphic, then the corresponding
de Rham cohomology groups (vector spaces, actually) are isomorphic.

Proof. Suppose F : M → N and G : N → M are mutually inverse smooth
maps giving a diffeomorphism M ∼= N . Consider Hk(M) and Hk(N) for
some given k. There are linear maps

F ∗ : Hk(N) → Hk(M)

and
G∗ : Hk(M) → Hk(N) .
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The identities F ◦G = id and G ◦ F = id imply (F ◦G)∗ = G∗ ◦ F ∗ = id
and (G ◦ F )∗ = F ∗ ◦ G∗ = id. Hence F ∗ and G∗ are mutually inverse linear
maps, so the vector spaces Hk(M) and Hk(N) are isomorphic (in particular,
have the same dimension).

Remark 6.2. Moreover, if M and N are diffeomorphic, the cohomology
algebras H∗(M) and H∗(N) are isomorphic. Indeed, we have isomorphism
of vector spaces (in each degree) that also preserves the multiplication.

Corollary 6.1 means that the de Rham cohomology is a ‘diffeomorphism
invariant’ of a smooth manifold.

We shall see below that de Rham cohomology is, in fact, an invariant
under a much coarser equivalence relation. Namely, it is a ‘homotopy invari-
ant’.

6.2 Poincaré Lemma and the homotopy property

Example 6.3. On the real line R, any 1-form ω = f(x)dx (which is auto-
matically closed), is exact. Indeed, consider the function

F (x) =

∫ x

0

f(y)dy .

It is defined on the whole line R and we have dF = ω by the Newton–Leibniz
theorem (the “main theorem of calculus”).

This is a prototype of the general statement concerning Rn or the so-called
‘star-shaped’ domains.

Definition 6.3. An open domain U ⊂ Rn is called star-shaped if there is a
point x0 ∈ U such that for each x ∈ U , all points of the segment [x0x] are in
U . (The segment [x0x] consists of all points of the form (1− t)x0 + tx where
t ∈ [0, 1].) The point x0 is often referred to as the center of the star-shaped
domain U .

For example, any convex domain (i.e., such that for any two points the
segment joining them is also contained in the domain) is star-shaped. How-
ever, a star-shaped domain does not have to be convex.

Example 6.4. An open ball in Rn is convex, therefore star-shaped.
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Example 6.5. The interior of any “star” in R2 is star-shaped. (Notice that
a star is not convex.)

Theorem 6.1 (Poincaré Lemma). On Rn or any star-shaped domain in
Rn, every closed k-form is exact, if k ≥ 1.

Proof. We shall only consider the case k = 1. (The general case can be
considered similarly. Alternatively, it could be deduced from the homotopy
invariance considered below.) Let A = Ai(x)dxi be a closed 1-form on a
star-shaped domain U ⊂ Rn, dA = 0. That means that ∂iAj − ∂jAi = 0.
Without loss of generality we may assume that the center x0 of U is the
origin 0 ∈ Rn. For any point x ∈ U , the segment [0x] consists of points tx
where t ∈ [0, 1]. Define a function f by the formula

f(x) =

∫ 1

0

xiAi(tx)dt

for all x ∈ U . It makes sense because tx ∈ U . We have

df = dxj ∂

∂xj

(∫ 1

0

xiAi(tx)dt

)
= dxj

∫ 1

0

∂

∂xj

(
xiAi(tx)

)
dt

= dxj

∫ 1

0

(
δi
jAi(tx) + xit ∂jAi(tx)︸ ︷︷ ︸

=∂iAj(tx) because dA = 0

)
dt

= dxj

∫ 1

0

(
Aj(tx) + txi∂iAj(tx)

)
dt = dxj

∫ 1

0

d

dt

(
tAj(tx)

)
dt

= dxj tAj(tx)
∣∣∣
t=1

t=0
= A ,

therefore A = df is exact, as claimed.

Remark 6.3. In the proof for 1-forms above, the function f is nothing but
the integral

∫
[x0x]

A over the straight line segment [x0x]. A similar proof for

k > 1, which we skipped, also uses integration, but of course it has to be
in a more sophisticated way (since the integral of a k-form over a k-surface
would give a number, not a (k − 1)-form).

Although the Poincaré lemma is the statement that certain cohomology
vanishes, namely, Hk(Rn) = 0 for k ≥ 0, it plays the key role in calculating
cohomology for manifolds when it is non-zero.

The Poincaré lemma is closely related with the fundamental property of de
Rham cohomology called ‘homotopy invariance’.
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Definition 6.4. Two smooth maps f0, f1 : M → N are homotopic if there is a
smooth map F : M× [0, 1] → N such that F (x, 0) = f0(x) and F (x, 1) = f1(x) for
all x ∈ M . Notation: f0 ∼ f1. (In other words, there is a family ft = F (·, t) giving
‘smooth interpolation’ between f0 and f1.) The map F is known as a homotopy
between f0 and f1.

Of course, homotopy also makes sense just for topological spaces, not mani-
folds. In such a case instead of smoothness we impose continuity. What we have
defined above is known as ‘smooth homotopy’, but we shall skip the adjective.

Theorem 6.2 (Homotopy invariance). Homotopic maps of smooth manifolds
induce the same linear map of their de Rham cohomology.

Proof. Suppose f0 and f1 are two homotopic maps M → N . Let F : M × [0, 1] →
N be a homotopy. We wish to show that the linear maps f∗0 : Hk(N) → Hk(M)
and f∗1 : Hk(N) → Hk(M) coincide for all k ≥ 0. That means that if we take
a cohomology class [ω] ∈ Hk(N) represented by a closed k-form ω ∈ Ωk(N), the
pull-backs f∗0 (ω) and f∗1 (ω) not necessarily coincide, but they must differ only by
an exact form. To this end, we shall introduce a linear transformation

K : Ωk(N) → Ωk−1(M)

decreasing degrees such that for any form ω ∈ Ω(N),

f∗1 ω − f∗Ωω = (d ◦K + K ◦ d)ω .

Thus for closed forms there will be f∗1 ω − f∗0 ω = d(Kω). We define K, using the
homotopy F . Consider F ∗ω ∈ Øk(M × [0, 1]). Each k-form σ on M × [0, 1] can
be uniquely written as σ = σ

(0)
t + dt ∧ σ

(1)
t where σ

(0)
t and σ

(1)
t are forms on M

depending on the parameter t. (Use some local coordinates on M to see how it
works.) The degree of σ

(0)
t is k, while the degree of σ

(1)
t is k− 1. Indeed, the term

with σ
(1)
t contains an extra factor of dt, which raises the degree by 1. We define

the operation K by Kω = (K̃ ◦ F ∗)ω, where K̃ sends any σ = σ
(0)
t + dt ∧ σ

(1)
t

on M × [0, 1] to
∫ 1
0 dt(σ(1)

t ) (integration over t as a parameter). The result is a
(k−1)-form. Let us check that K has the desired property. Firstly, d◦F ∗ = F ∗◦d,
so we need to calculate the commutator of d and K̃. On M × [0, 1],

d = dx + dt ∧ ∂

∂t

where dx can be considered as the differential on M . In local coordinates, dx =
dxi ∧ ∂

∂xi . If we apply it to σ written as above, we arrive at

dσ =
(

dx + dt ∧ ∂

∂t

)(
σ

(0)
t + dt ∧ σ

(1)
t

)
= dxσ

(0)
t + dt ∧

(
−dxσ

(1)
t +

∂σ
(0)
t

∂t

)
.
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Hence

K̃dσ =
∫ 1

0
dt

(
−dxσ

(1)
t +

∂σ
(0)
t

∂t

)
= −

∫ 1

0
dt

(
dxσ

(1)
t

)
+ σ

(0)
1 − σ

(0)
0 .

On the other hand, clearly

dK̃σ = d

∫ 1

0
dt(σ(1)

t ) =
∫ 1

0
dt

(
dxσ

(1)
t

)
.

Therefore (
d ◦ K̃ + K̃ ◦ d

)
σ = σ

(0)
1 − σ

(0)
0 .

Now we can apply this to σ = F ∗ω. We have, for K = K̃ ◦ F ∗,

(d ◦K + K ◦ d) ω =
(
d ◦ K̃ ◦ F ∗ + K̃ ◦ F ∗ ◦ d

)
ω

=
(
d ◦ K̃ ◦ F ∗ + K̃ ◦ d ◦ F ∗

)
ω =

(
d ◦ K̃ + K̃ ◦ d

)
(F ∗ω)

= (F ∗ω)(0)
1 − (F ∗ω)(0)

0 = f∗0 ω − f∗1 ω .

Indeed, when we view F as the family ft = F (·, t), we see that f∗t ω is obtained from
F ∗ω by setting dt to zero, i.e., by passing to (F ∗ω)(0)

t in the above notation. Hence
f∗0 ω and f∗1 ω are obtained by additionally setting t to 0 and to 1, respectively, which
gives the desired formula.

An immediate application of this property is as follows.
Two manifolds (more generally, two topological spaces) are homotopy equiva-

lent if there are maps in the opposite directions such that their compositions are
homotopic to identities. That is, for X and Y , there are f : X → Y and g : Y → X
such that f ◦ g ∼ idY and g ◦ f ∼ idX . Notation: X ∼ Y .

Example 6.6. Rn ∼ {∗} (a single point). We can identify the point with 0 ∈ Rn.
Consider the obvious maps i : {0} → Rn (inclusion) and p : Rn → {0} (projection).
We have p◦ i = id, but i◦p is not the identity, it is the map that send every vector
to zero. However, it is homotopic to the identity, the family ft : x 7→ tx, where
t ∈ [0, 1], giving the desired homotopy.

Example 6.7. Both open and closed cylinders, S1 × R and S1 × [−1, 1], are
homotopy equivalent to the circle S1. (The same is true if we replace S1 by any
space X.) (Construct the maps and homotopies following the previous example.)

Corollary 6.2. Homotopy equivalent manifolds M and N have isomorphic coho-
mology groups Hk(M) and Hk(N) for all k.
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Proof. Let f : M → N and g : N → M be such maps that f ◦ g ∼ idN and
g◦f ∼ idM . Then by Theorem 6.2, for each k, we have linear maps of vector spaces
f∗ : Hk(N) → Hk(M) and g∗ : Hk(M) → Hk(N) with the property f∗ ◦ g∗ = id
on Hk(M) and g∗ ◦ f∗ = id on Hk(N) (‘homotopic to identity’ becomes ‘equal to
identity’ for the maps of cohomology). That mean that these vector spaces are
isomorphic.

From here it follows that Rn (or any star-shaped domain) being homotopy
equivalent to a point, has the same cohomology as a point. Obviously, it implies
that H0(Rn) ∼= R and Hk(Rn) = 0 for k > 0. We again arrive at the Poincaré
lemma.

6.3 n-th de Rham cohomology of n-dimensional com-
pact manifold

Theorem 6.3. Let M be n-dimensional smooth orientable compact manifold.
Then Hn

DR(M) = Rn.

Proof of the Theorem.
Let M be smooth compact orientable manifold.
Consider volume form on M . It is closed form.

∫
M

σ 6= 0, Hence according
to Stokes theorem σ is not exact form. (If σ = dr then

∫
M

σ =
∫

M
σ =∫

M
dr =

∫
∂M

r = 0)
Hence we see that equivalence class of the form σ is not equal to zero:

[σ] 6= 0. Hence
Hn

DR(M) 6= 0

To show that Hn
DR(M) 6= R we use the following lemma:

Lemma : n-form θ on M is exact if and only if
∫

M
θ = 0

Indeed let [ω] be an arbitrary cohomological class [w] ∈ Hn
DR(M). Let∫

M
ω = kσ. One can see that the form ω′ = ω − kσ obeys the conditions of

the lemma and is exact. Hence [ω] = k[σ]. Thus we prove that all elements
in Hn

DR(M) are proportional to [σ].
It remains to prove the Lemma. This lemma follows from the following

three propositions:

Proposition 6.3. If n-form is compactly supported in Rn and
∫
M ω = 0 then

ω = dθ such that θ is compactly supported too.
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Proposition 6.4. Let two coordinate domains domains U1, U2 intersect by domain
W = U1∩U2 Let n-form ω1 is supported in the coordinate domain U1, and n-form
ω2 is supported in the coordinate domain U2 and

∫

M
ω1 =

∫

M
ω2

Then there exists n-form ρ such that ρ is supported in the domain W = U1 ∩ U2

and ∫

M
ρ =

∫

M
ω1 =

∫

M
ω2 (6.1)

(We suppose that orientation on the domains U1, U2 is chosen)

Proposition 6.5. Let two coordinate domains domains U1, U2 intersect by domain
W = U1∩U2 Let n-form ω1 is supported in the coordinate domain U1, and n-form
ω2 is supported in the coordinate domain U2 and

∫

M
ω1 =

∫

M
ω2

Then form ω1 − ω2 is exact.

The first Propostition is almost obvious. Suppose for example that ω =
a(x, y)dx ∧ dy has support in the 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Then consider

θ(x, y)dy =
[∫ x

−∞
a(t, y)dt

]
dy

One can see that θ(x, y) vanishes for (x, y) 6∈ [0, ]× [0, 1] because
∫

ω = 0.
To prove the next proposition we just consider a bump function fW associated

with domain W . Let y1, y2. . . . , . . . , yn be an arbitrary local coordinates in W then
consider an n-form

ρ = cfW dy1 ∧ dy2 ∧ · · · ∧ dyndyn

where one choose constant c such that condition (6.1) fulfills.
Now we prove the last proposition. Consider the form ρ such that its support

is in the intersection of the domains U1, U2 and
∫

M
ρ =

∫

M
ω1 =

∫

M
ω2 (6.2)

Then we see that the forms ω1 and ρ have support in the domain U1 and the forms
ω2 and ρ have support in the domain U2. Then due to (6.2)

∫
(ω1 − ρ) = 0 and∫

(ω2 − ρ) = 0 hence due to Proposition6.3

ω1 − ρ = dθ1, ρ− ω2 = dθ2 ⇒ ω1 = ω2 + d(θ1 + θ2)
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Now take an arbitrary but fixed small enough coordinate domain U0 and an
arbitrary form σ such that this form has a support in this domain and

∫
σ = 1.

Then one can see that if U is an arbitrary coordinate domain and ω is an arbitrary
form such that this form has a support in the domain U then

ω − kσ = dθ, where k =
∫

M
ω (6.3)

Indeed if k = 0 this is just the statement of the proposition6.3. If domains U0 and
U intersect it is the statement of the last proposition. In the general case one have
consider the chain of the intersected domains.

Using these Propositions and partition of unity one can prove the Lemma.
Indeed let {Ua, ϕα} be finite oriented cover and let {ρα} be partition of unity

subordinate to this cover. Let ω be n-form on manifold such that
∫

ω = 0. Consider

ω = 1 · ω =
∑

ραω =
∑

ωα, where ωa = ραω

Now the statement of lemma follows from the (6.3). Indeed

[ωα] = kασ where k =
∫

M
ωα ⇒ [ω] =

∑
[ωα] = [σ]

∑
kα =

∫

M

∑
ωα = 0

The lemma is proved.
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